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ABSTRACT 

 
The integration of Artificial Intelligence (AI) into critical decision-making processes necessitates transparent and 
understandable explanations, especially for non-expert users (laypeople). While traditional Explainable AI (XAI) methods 
often present technical details that remain inscrutable to a lay audience, this article investigates the potential of analogy-
based explanations to bridge this knowledge gap. We present a two-part empirical study. Study I focuses on the 
generation and qualitative assessment of analogy-based explanations using non-expert crowd workers, establishing a 
systematic framework for evaluating their quality across dimensions such as structural correspondence, relational 
similarity, and familiarity. Our findings highlight the subjective nature of analogy quality and the potential for leveraging 
crowdsourcing to generate diverse explanations. Study II evaluates the practical effectiveness of these analogy-based 
explanations in a high-stakes medical diagnosis task (skin cancer detection). Surprisingly, quantitative results did not 
show a significant improvement in understanding or appropriate reliance with analogy-based explanations compared to 
detailed concept-level explanations. However, qualitative feedback revealed that users found analogies helpful when they 
perceived a strong connection to a familiar source domain and when presented on demand. While explanations, including 
analogies, increased perceived cognitive load and decision-making time, our comprehensive analysis points to the crucial 
roles of human intuition and perceived plausibility in shaping user behavior. This research contributes actionable insights 
for designing human-centered XAI, emphasizing the need for personalized and carefully crafted analogies to truly 
enhance layperson understanding and foster appropriate reliance in AI-assisted decision-making. 

Keywords: Explainable AI (XAI), Analogical Reasoning, Human-AI Collaboration, Layperson Understanding, Trust in AI, 
Cognitive Load, Commonsense Knowledge, Crowdsourcing, Medical Diagnosis. 

 

INTRODUCTION 

The increasing prevalence of Artificial Intelligence (AI) 

systems across diverse domains, from personalized 

health recommendations to critical diagnostic support in 

medicine, signifies a growing societal reliance on AI-

assisted decision-making [56, 42]. As these AI models 

become more sophisticated and autonomous, the 

imperative to ensure their transparency, interpretability, 

and comprehensibility, particularly for non-expert users 

(often referred to as laypeople), has become a central 

focus within the AI community [4, 22, 65]. The field of 

Explainable AI (XAI) has emerged to address this 

challenge, striving to render complex AI behaviors 

understandable to human decision-makers [17, 27, 28]. 

While notable advancements have been made in 

developing various XAI techniques—ranging from 

feature attribution methods that highlight salient parts of 

input [71, 81, 47] to more abstract concept-based 

explanations [38, 57, 105]—a persistent and critical 

hurdle remains: effectively communicating the intricate 

reasoning processes of AI to non-technical users who may 

possess a significant knowledge gap [17, 27, 28, 15]. This 

challenge is compounded by the "illusion of explanatory 

depth" [17], where individuals may perceive they 

understand an AI's rationale superficially, yet lack a true 

grasp of its underlying mechanisms. Such a superficial 

understanding can lead to a miscalibration of trust and 

reliance, where users either over-rely or under-rely on AI 

advice, potentially resulting in suboptimal or even 

detrimental outcomes in real-world scenarios [64, 69, 103, 

108]. 

To effectively bridge this knowledge chasm, researchers 

are increasingly gravitating towards human-centered XAI 

approaches. These methodologies extend beyond merely 

exposing algorithmic mechanics, instead focusing on the 

cognitive and psychological factors that influence human 
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understanding and interaction with AI [27, 28, 65]. 

Among these promising avenues, the strategic use of 

analogies stands out. Analogical reasoning, a cornerstone 

of human cognition, enables individuals to comprehend 

novel or complex concepts by drawing parallels to 

familiar experiences or knowledge structures [36, 37, 47, 

8]. Analogies serve as powerful cognitive shortcuts, 

facilitating the learning process and enhancing memory 

by connecting new information to existing mental 

frameworks [42]. In educational pedagogy, analogies 

have long been celebrated for their efficacy in 

demystifying complex scientific principles [19, 25, 35, 74, 

75, 82]. For instance, illustrating the flow of electricity by 

comparing it to the movement of water in pipes can 

simplify an otherwise abstract physical phenomenon 

[19]. Given this established utility in human learning and 

sense-making, analogies present a significant 

opportunity to improve the comprehensibility and 

effectiveness of AI explanations for a broad audience of 

laypeople [8, 50, 78]. 

Prior investigations have touched upon the application of 

analogies within various AI contexts, spanning tasks such 

as generating lexical analogies [16], performing multi-

relational embeddings [68], and even in the design of 

games aimed at eliciting diverse knowledge [5]. More 

recently, analogies have found a particular niche in 

crafting concept-level AI explanations, drawing upon 

vast repositories of commonsense knowledge to 

elucidate AI behaviors. A salient example is explaining 

why an AI might incorrectly classify a polar bear in a 

savannah image, by relating it to a more relatable 

scenario [43, 36]. This approach aligns with broader 

research efforts to infuse AI systems with commonsense 

knowledge, fostering more intuitive and human-like 

reasoning and explainability [21, 51, 53, 72, 80, 88, 91, 

100, 104, 106]. Furthermore, preliminary studies suggest 

that employing analogies can cultivate appropriate 

reliance in human-AI decision-making, enabling users to 

more accurately calibrate their trust in AI based on its 

stated accuracy [44, 45]. However, despite these 

promising indicators, a comprehensive and rigorous 

empirical investigation into the multifaceted 

effectiveness of analogy-based explanations—

encompassing metrics such as genuine understanding, 

appropriate reliance, cognitive load experienced by 

users, and overall decision performance—specifically 

tailored for lay users in AI-assisted decision-making 

contexts, remains a critical area needing extensive 

exploration. 

This article aims to conduct such a comprehensive 

investigation, seeking to determine whether 

explanations grounded in analogies can demonstrably 

enhance laypeople's understanding of AI systems and 

cultivate appropriate reliance in AI-assisted decision-

making. Building upon existing theoretical foundations 

and preliminary observations, we formulate several key 

hypotheses for our empirical inquiry: 

● RQ1: How can we generate high-quality analogy-

based explanations using non-experts? This research 

question explores the practical methods for creating 

effective analogies, leveraging the collective intelligence of 

crowd workers. 

● RQ2: How can we systematically assess the quality 

of analogy-based explanations? This question focuses on 

developing and validating a structured framework for 

evaluating the conceptual quality of generated analogies. 

● RQ3: How do analogies for concept-level 

explanations shape the understanding of an AI system 

among non-expert users? This question investigates the 

direct impact of analogy-based explanations on user 

comprehension. 

● RQ4: How do analogy-based explanations affect 

user reliance on AI systems? This question probes the 

influence of analogies on how users calibrate their trust 

and decisions when collaborating with AI. 

We hypothesize that analogy-based explanations, by 

leveraging familiar conceptual frameworks, will lead to a 

deeper understanding of AI reasoning, foster better 

calibrated reliance patterns, reduce the cognitive burden 

on users, and ultimately improve the efficacy of human-AI 

collaborative decision outcomes compared to traditional, 

non-analogical explanations. By meticulously examining 

the mechanisms through which analogies function within 

the realm of XAI, this research endeavors to make 

significant contributions to the evolving body of 

knowledge on human-centered AI design, thereby 

facilitating more effective, trustworthy, and intuitive 

partnerships between humans and AI systems. This 

manuscript represents an extended and more detailed 

exploration of previous work [43], incorporating new 

research questions, hypotheses, and an extensive 

empirical study on skin cancer detection, alongside 

synthesized guidelines for future XAI research. 

METHODS 

To systematically and rigorously evaluate the multifaceted 

impact of analogy-based explanations on laypeople's 

interactions within AI-assisted decision-making scenarios, 

a meticulously designed and controlled online user study 

was executed. This study employed a robust between-

subjects experimental design, facilitating a direct 

comparison of participants' understanding, reliance 

behaviors, perceived cognitive load, and ultimate decision 

performance across distinct explanation conditions. The 

methodology was structured into two primary studies: 

Study I focused on the generation and expert evaluation of 

analogy-based explanations, while Study II investigated 

their effectiveness in a practical medical diagnosis task. 

Study I: Analogy Generation and Evaluation 

The objective of Study I was to develop a method for 

generating high-quality analogy-based explanations using 

non-expert crowd workers (addressing RQ1) and to 

establish a systematic framework for assessing their 
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quality (addressing RQ2). 

Participants (Study I) 

For the analogy generation phase, a total of 100 crowd 

workers were recruited from Prolific, a well-regarded 

crowdsourcing platform recognized for its diverse 

participant pool and commitment to data quality [2, 23]. 

Participants were fairly compensated for their 

contributions at a rate of £1.35, equivalent to a 9-minute 

task at an hourly wage of £9. Strict inclusion criteria were 

applied: participants had to be proficient English 

speakers, at least 18 years of age, and maintain an 

approval rating of at least 90% on the Prolific platform, 

indicating consistent high-quality work. To counteract 

common challenges associated with crowdsourcing, such 

as repeated concepts or task domain-specific biases, a 

pilot study was conducted (with 7 participants from 

Prolific). Insights from this pilot led to refinements in the 

main study design: to prevent participants from using 

concepts from the task domain itself or generating 

duplicate analogies, each participant was assigned to 

generate analogies for tasks from only one domain 

(either calorie level classification or scene classification) 

and forbidden from using specific "taboo phrases" 

(words present in task descriptions or labels). This 

resulted in 50 workers for the calorie task and 50 for the 

places task, collectively generating 600 analogy-based 

explanations. 

AI System and Decision Task (for Analogy Generation) 

To ensure that the analogy generation tasks were 

comprehensible and relevant for non-expert crowd 

workers, two distinct image classification tasks were 

selected: Calorie Level Classification (CLC) and Scene 

Classification (SC). These tasks were chosen for their 

interpretability by laypeople and the varying explicitness 

of relationships between concepts and labels within their 

domains. 

● Calorie Level Classification (CLC): This task 

utilized a dataset provided by Buçinca et al. [11]. 

Participants were presented with an image (e.g., Figure 

2(a) in the original PDF, showing food) along with 

bounding boxes highlighting relevant concepts (e.g., 

chocolate, ice cream). The task required predicting one of 

two labels: "high calorie level" (fat more than 30%) or 

"low calorie level" (otherwise). In this domain, the 

relationships between food concepts and calorie levels 

are often correlational rather than strictly causal. 

● Scene Classification (SC): For this task, a subset of 

the Places dataset [109] was used. Images depicted 

various scenes (e.g., Figure 2(b) in the original PDF, 

showing a conference room). Participants had to classify 

scenes into one of six place labels: living room, bathroom, 

hospital room, conference room, bedroom, or dining 

room. In contrast to CLC, the concepts within this domain 

(e.g., furniture, objects) typically have more explicit and 

discernible relationships with the labels, often described 

by commonsense relations like "PartOf," "SignOf," or 

"FoundAt," which are also present in knowledge bases 

such as ConceptNet [91]. 

For both tasks, participants were instructed to explain the 

relevance of the given concepts to the predicted labels, 

formulating their explanations using everyday concepts 

and pre-defined templates. 

Templates for Analogy-based Explanations 

To guide crowd workers in structuring their analogies and 

associating concepts with model predictions, a set of six 

distinct templates was provided. These templates were 

categorized based on three different "relevance levels" 

that reflect how a machine learning model might interpret 

a concept's contribution: 

● Positive Evidence: Concepts that strongly indicate 

a particular prediction. 

○ Definite Sign Of: [Concept A] is definitely a sign of 

[Concept B]. This is like a [trunk] is a definitely sign of [an 

animal being an elephant]. (Example: "Mayonnaise is 

definitely a sign of high calorie food. This is like a trunk is 

a definitely sign of an animal being an elephant.") 

○ Typically Associated With: [Concept A] is typically 

associated with [Concept B], while rarely associated with 

[Concept C]. This is like [printers] can typically be 

associated with [offices], but it's also possible to associate 

[printers] with [homes]. (Example: "Chocolate is typically 

associated with high calorie food, while rarely associated 

with low calorie food.") 

● Inconclusive Evidence: Concepts that are present 

but do not definitively point to a specific prediction. 

○ Insufficient: [Concept A] is not sufficient to indicate 

[Concept B], as both [Concept B] and [Concept C] may 

contain it. This is similar to how we can find [chair] in both 

[a living room] and [a bedroom], you can't determine 

which room it is by seeing a [chair]. (Example: "Bread is 

not sufficient to indicate high calorie, as both high calorie 

food and low calorie food may contain it.") 

○ Irrelevant: [Concept A] is irrelevant to indicate 

[Concept B]. This is similar to to how [an arbitrary stone] 

is irrelevant for [recognising a continent]. (Example: "A 

plate is irrelevant to indicate high calorie food.") 

● Negative Evidence: Concepts that suggest the 

absence of a prediction or contradict it. 

○ Seldom Found: [Concept A] can seldom be found in 

[Concept B]. This is like [cats] can seldom be found in 

[water]. (Example: "Carrots are seldom found in high 

calorie food.") 

○ Contradict With: [Concept A] contradicts with 

[Concept B]. This is similar to how one cannot find [water] 

in [electrical appliances]. (Example: "A vegetable salad 

contradicts with high calorie food.") 

These templates, along with illustrative examples (Table 1 

in the original PDF), guided participants to fill in 
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placeholders with everyday concepts from a source 

domain that differed from the task domain. 

Task Selection and Hints for Analogy Generation 

To ensure a balanced distribution of generated analogies 

across all six relevance categories, 12 specific tasks were 

manually selected: 6 from the CLC domain and 6 from the 

SC domain. A key challenge identified during pilot testing 

was that crowd workers, despite their non-expert status, 

found it difficult to generate a continuous stream of novel 

analogies after an initial few attempts. To address this 

"analogy fatigue," participants were provided with a 

curated list of "hint domains" through a clickable button 

in the user interface. This list encompassed common, 

everyday categories from which participants could draw 

inspiration: weather, animals and plants, place, 

transportation, food, art, education, sports, finance, 

clothes, electronics, games and toys, and health. This 

scaffolding aimed to stimulate creativity and reduce the 

cognitive burden of concept generation. 

Analogy Generation Procedure 

The analogy generation process for each crowd worker 

involved several structured steps: 

1. Template Selection: Participants first selected one 

of the six provided templates that best described the 

perceived relevance level between a given concept and 

its associated model prediction for an image. 

2. Hint Reference: They could refer to the provided 

example analogies and the list of everyday hint domains 

to inspire their concept choices. 

3. Placeholder Filling: Based on the chosen template, 

participants were instructed to fill in the placeholders 

with one word or a short phrase (up to five words) as 

concepts. A crucial constraint was that these concepts 

must not belong to the original task domain (e.g., no 

places or furniture for the Scene Classification task), 

ensuring that the analogy indeed served as a bridge to a 

different, more familiar domain. 

An example of the analogy generation interface (Figure 3 

in the original PDF) showed a workflow where 

participants: (1) selected a template, (2) referenced 

examples/hints, and (3) filled in concepts. 

Analogy Evaluation with Experts 

Following the generation phase, a critical step was to 

qualitatively assess the quality of the generated analogies 

to address RQ2. This was done through an expert 

evaluation process. 

● Experts (Study I Evaluation): Five external 

experts were purposefully sampled from the authors' 

institution [92]. These experts possessed at least a 

foundational understanding of machine learning and 

explainable AI, making them suitable for evaluating the 

nuances of explanation quality. 

● Sample Selection: A subset of 294 generated 

analogy-based explanations was selected for evaluation, 

comprising analogies from 23 calorie task participants and 

26 place task participants (approximately half of the 

generated analogies). To ensure consistency and measure 

inter-rater agreement, a 10% overlap (29 analogy-based 

explanations) was ensured across all experts. Each expert, 

on average, evaluated 82 distinct analogies, dedicating 

approximately 2.5 hours to this qualitative assessment. 

● Qualitative Assessment Dimensions: Based on a 

systematic review of existing literature on analogy quality 

[8, 36, 37, 48, 89, 94], a structured set of nine dimensions 

was synthesized for the qualitative assessment of analogy-

based explanations (Table 2 in the original PDF). These 

dimensions were categorized into "Analogical Properties" 

and "Utility": 

○ Analogical Properties (evaluating the core 

relational mapping between source and target domains): 

■ Structural Correspondence: "How well can you 

align the properties of the explanation concepts to the 

properties of the concepts in the target sentence?" (5-

point Likert scale). 

■ Relational Similarity: "How similar do you perceive 

the relationship between concepts in the explanation and 

the relationship between concepts in the target sentence?" 

(5-point Likert scale). 

■ Transferability: "How well can the explanation be 

used in other contexts?" (5-point Likert scale). 

■ Helpfulness: "How helpful is this explanation for 

you to understand the target sentence?" (5-point Likert 

scale). This corresponds to the "purpose" in Holyoak and 

Thagard's multiconstraint theory [48]. 

○ Utility (evaluating inherent qualities of the 

generated commonsense explanations themselves): 

■ Familiarity: "How familiar are you with the 

concepts in the explanation?" (5-point Likert scale). This 

acknowledges that effective analogies require a familiar 

source domain [34, 94]. 

■ Simplicity: "Do you think the explanation is simple 

enough for others to understand?" (5-point Likert scale), 

reflecting ease of interpretation [94]. 

■ Misunderstanding: "Do you think this explanation 

lead to more than single interpretation?" ({Yes, No}). This 

addresses ambiguity. 

■ Syntactic Correctness: "Whether the analogy 

sentence is syntactically correct?" ({Yes, No}). 

■ Factual Correctness: "Whether it describes a fact 

about real world? Can we switch it to make it factual?" 

({Yes w/o switch, Yes & switch, No}). This ensures the 

truthfulness of the analogy's premise. 

● Annotation Rubrics: An iterative coding process 

[93] was used to develop detailed annotation rules to 

guide experts' assessments, ensuring consistency: 
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○ Invalid analogies (those using concepts from the 

target domain) were skipped. 

○ For Factual Correctness, examples were provided 

(e.g., "The pink feather is definitely a sign of flamingo" 

could be corrected by switching "pink feather" and 

"flamingo"). 

○ An analogy with potential misunderstanding was 

considered factually correct if at least one interpretation 

was true. 

○ Helpfulness and Transferability were 

automatically assigned '1' if the analogy was factually 

incorrect. 

● Procedure (Study I Evaluation): Each expert 

received an annotation manual detailing the dimensions 

and rules. They spent approximately 10 minutes 

reviewing the manual and clarifying any ambiguities 

before independently assessing their assigned samples. 

● Annotation Agreement: Krippendorff’s α scores 

were calculated based on the 22 valid overlapping 

analogy explanations. While syntactic correctness 

showed relatively high agreement (0.64), other 

dimensions like Structural Correspondence (0.15), 

Relational Similarity (0.17), Familiarity (0.03), 

Helpfulness (0.14), Transferability (0.11), and Simplicity 

(0.14) showed lower agreement. This highlights the 

subjective nature of evaluating analogy quality, which 

can vary based on individual experience and 

interpretation [12]. An example illustrating 

disagreement among experts was provided (Table 3 in 

the original PDF), where "Lemon is seldom found in high 

calorie food. This is similar to how having hair is 

irrelevant for recognising a human" received divergent 

scores across dimensions like Structural Correspondence 

and Relational Similarity, due to varying personal 

interpretations and abstract thinking. 

Study II: Effectiveness of Analogy-based Explanations in 

Medical Diagnosis 

The second empirical study (Study II) aimed to move 

beyond conceptual quality and investigate the practical 

effectiveness of analogy-based explanations in a real-

world, high-stakes human-AI decision-making scenario, 

addressing RQ3 and RQ4. All hypotheses and 

experimental setups for Study II were preregistered to 

ensure methodological rigor. 

Hypotheses (Study II) 

Building upon the findings of Study I and existing 

literature, the following hypotheses were formulated for 

empirical testing: 

● H1: Using analogy-based explanations can help 

users better understand AI systems, compared to 

conventional concept-based explanations. This 

hypothesis posits that analogies, by simplifying complex 

AI concepts, will lead to a deeper user understanding. 

● H2: Using analogy-based explanations can facilitate 

appropriate reliance on AI systems, compared to 

conventional concept-based explanations. This hypothesis 

suggests that improved understanding through analogies 

will translate into more calibrated trust and reliance 

behaviors. 

● H3: Analogy-based explanations can reduce the 

perceived cognitive load of users in their decision making 

process. This hypothesis anticipates that analogies, by 

making information more accessible, will reduce the 

mental effort required for decision-making [82]. 

● H4: Providing analogy-based explanations on 

demand can improve users’ efficiency in their decision 

making process. This hypothesis explores the efficiency 

benefits of user-controlled access to explanations. 

Task (Study II) 

A real-world medical diagnosis scenario—skin cancer 

detection based on skin lesions—was chosen as the 

testbed. This task was selected for several reasons: 

1. Realism and Accountability: It represents a realistic 

human-AI collaboration context where humans retain 

final decision-making authority due to accountability 

concerns. 

2. Cognitive Challenge for Laypeople: Medical 

concepts related to skin lesions are often challenging for 

non-experts to grasp, aligning with the study's motivation 

to provide commonsense analogy-based explanations. 

3. Practical Need for AI Assistance: There is a 

significant need for AI support in medical diagnosis due to 

the increasing volume of images requiring analysis [56]. 

All task data were sourced from the HAM10000 dataset 

[96], a large collection of dermatoscopic images of 

common pigmented skin lesions. Participants were asked 

to classify images as depicting either 'malignant' or 

'benign' skin lesions. 

Medical Concepts 

To aid participants, eight specific medical concepts 

relevant to skin cancer diagnosis were adopted from 

previous work [105]: Blue-Whitish Veil, Regular Dots & 

Globules, Irregular Dots & Globules, Regression 

Structures, Irregular Streaks, Regular Streaks, Atypical 

Pigment Network, and Typical Pigment Network. While 

these concepts initially contain descriptive terms like 

"Irregular" or "Atypical" that might hint at their 

correlation with malignant/benign labels, these hints 

were replaced with neutral abstractions ("type 1" and 

"type 2") to ensure that any learning effect stemmed from 

the explanations themselves, not from the concept names. 

An overview figure illustrating these eight concepts with 

example images (Figure 6 in the original PDF) was 

provided to participants to facilitate comprehension. A 

clickable button below the concept-level explanations 

allowed participants to access this overview figure on 

demand. 
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Selection of Tasks (Study II) 

To ensure diversity and representative coverage of 

different medical concepts and AI performance 

scenarios, 14 tasks were carefully selected from the 

HAM10000 dataset, spanning seven fine-grained 

categories (Table 5 in the original PDF, which provides 

descriptive statistics of the dataset and AI performance 

per category). The selection process mirrored the 

performance of a post-hoc concept bottleneck model 

[105] on the HAM10000 validation set: 10 tasks with 

correct AI predictions and 4 tasks with incorrect AI 

predictions. This resulted in an overall AI system 

accuracy of 71.4% (10 correct out of 14 tasks) within the 

study. 

Pilot Study (Study II) 

A pilot study involving 20 participants from Prolific was 

conducted to assess the capabilities of non-expert crowd 

workers in this medical diagnosis task. Participants were 

compensated £2 (£8 per hour) for completing 14 trial 

tasks independently. After filtering out three outliers 

who spent less than 5 minutes on the tasks, the remaining 

17 participants achieved an average accuracy of 59.2%, 

which was lower than the AI's 71.4% accuracy. This 

finding underscored the potential benefit of AI assistance 

in improving team performance, thereby justifying the 

inclusion of an AI system in the main study. 

Experimental Setup 

The main study employed a between-subjects design 

with five distinct experimental conditions, varying in the 

type and presentation of explanations provided 

alongside the AI's advice. Participants in all conditions 

received the AI's diagnosis (malignant/benign). 

● Control: Participants received only the AI's 

prediction with no additional explanation. 

● Concept: Participants received a concise, concept-

based explanation from a post-hoc Concept Bottleneck 

Model [105], similar to the ExAID framework [70]. An 

example might be: "absence of Streaks - type 1: strong 

evidence." 

● Concept-Imp: This condition provided more 

detailed information about the importance of each 

concept, representing the target domain of our analogy-

based explanations. An example: "Streaks - type 1 is 

definitely a sign of malignant. Thus, absence of Streaks - 

type 1 helps make prediction of benign." (See Table 6 in 

original PDF). 

● Analogy: Participants received both the detailed 

concept-based explanation (as in Concept-Imp) AND an 

analogy-based explanation for each concept. For 

instance: "Streaks - type 1 is definitely a sign of 

malignant. Thus, absence of Streaks - type 1 helps make 

prediction of benign. This is like how a beak is a definite 

sign of a bird." (See Table 6 in original PDF). 

● Analogy-OD (On Demand): This condition initially 

displayed the same explanations as Concept-Imp. An 

analogy was provided on demand when the user explicitly 

requested further clarification by clicking a "Clarify" 

button. (See Table 6 in original PDF). 

Explanation Generation (for Study II) 

The AI system utilized in Study II was based on a post-hoc 

concept bottleneck model [105], trained following its 

official implementation. This model is known for providing 

concept-based explanations aligned with medical 

knowledge. The process for generating explanations 

involved: 

1. Concept Activation Vectors: The model learned 

concept activation vectors for skin lesions based on 

concept banks from the Derm7pt dataset [55]. 

2. Linear Classifier: A linear classifier was trained to 

make binary predictions (malignant/benign). 

3. Contribution-Based Explanations: For each image, 

concept-level explanations were generated based on the 

contribution (si=wi∗ci) of each concept (ci) to the final 

prediction, where wi is the linear layer weight. 

4. Heuristic Simplification (Concept condition): Two 

thresholds were set (ϵ1=0.5,ϵ2=0.1) to classify evidence 

strength as "strong," "moderate," or "ignore." Positive si 

indicated a tendency towards malignant, negative towards 

benign. 

5. Target Domain Generation (Concept-Imp 

condition): These explanations followed the templates 

from Study I, clarifying the contribution of concepts, 

including cases where the absence of a concept was 

indicative. For clarity, double negative expressions were 

avoided. 

6. Analogy Generation (Analogy & Analogy-OD 

conditions): To ensure high-quality analogies for Study II, 

a two-stage filtering process was applied based on the 

results from Study I's expert evaluation: 

○ Stage 1: Only analogies that were syntactically 

correct, factually correct, and easy to understand 

(Simplicity score > 3) were selected. 

○ Stage 2: The remaining analogies were manually 

curated, resulting in 37 valid analogies distributed across 

the different template types: 11 for "Definite Sign Of," 9 for 

"Typically Associated With," 9 for "Seldom Found At," and 

8 for "Contradict With." These valid candidates were then 

randomly sampled based on the concept's contribution 

and mapped to appropriate templates. 

Measures and Variables (Study II) 

A comprehensive set of variables was employed to capture 

the various facets of human-AI decision-making (Table 7 

in original PDF summarizes these variables): 

● Dependent Variables: 

○ Learning Effect (H1): Assessed by calculating F1 

measures (weighted average of F1 for malignant and 
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benign concepts) based on participants' ability to identify 

concepts positively associated with malignant/benign 

labels in a post-task questionnaire. 

○ Performance (Overall Accuracy): Binary accuracy 

of participants' final diagnoses across all 14 cases. 

○ Appropriate Reliance (H2): Quantified using 

several metrics: 

■ Agreement Fraction: Proportion of cases where 

human and AI decisions align. 

■ Switch Fraction: Proportion of initial human 

decisions changed after seeing AI advice. 

■ Relative Positive AI Reliance (RAIR): Measures 

appropriate adoption of AI advice [86]. 

■ Relative Positive Self-Reliance (RSR): Measures 

appropriate insistence on one's own decision [86]. 

■ Accuracy-wid (Accuracy with initial 

disagreement): Accuracy when the participant initially 

disagreed with the AI, indicating how well they resolve 

disagreements. 

○ Trust: Measured using adapted subscales from 

the Trust in Automation (TiA) questionnaire [58]: 

Reliability/Competence (TiA-R/C), 

Understanding/Predictability (TiA-U/P), Intention of 

Developers (TiA-IoD), and overall Trust in Automation 

(TiA-Trust). All on a 5-point Likert scale. 

○ Cognitive Load (H3): Assessed using the NASA-

TLX questionnaire [18], including dimensions like Mental 

Demand, Physical Demand, Temporal Demand, 

Performance, Effort, and Frustration. All on a -7 to 7 scale. 

○ Efficiency (H4): Measured as the average time (in 

seconds) participants spent on each decision task. 

● Covariates: These variables were collected to 

account for potential confounding factors: 

○ Affinity for Technology Interaction (ATI): 

Measured using the ATI scale [32] (6-point Likert scale). 

○ Propensity to Trust: From the TiA questionnaire 

[58] (5-point Likert scale). 

○ Familiarity (with AI): From the TiA questionnaire 

[58] (5-point Likert scale). 

○ General Medical Expertise: Self-reported on a 5-

point Likert scale ("To what extent are you 

knowledgeable about medical diagnosis?"). 

○ Skin Cancer Expertise: Self-reported on a 5-point 

Likert scale ("Do you have any experience or knowledge 

about skin cancer?"). 

● Other Variables: 

○ Helpfulness of Explanation/Analogy: Self-

reported on a 5-point Likert scale, with open-text fields 

for reasons. 

○ User Experience (with skin lesions): "Have you 

ever had this or seen it on others?" ({Yes, No}). 

○ Confidence: Self-reported for each decision on a 5-

point Likert scale. 

Participants (Study II) 

● Sample Size Estimation: A power analysis using 

G*Power [30] determined a required sample size of 265 

participants to detect a moderate effect size (f = 0.25) with 

80% power at a Bonferroni-adjusted significance 

threshold of α=0.0125 (0.05/4 hypotheses), considering 

five experimental conditions. 

● Recruitment and Compensation: 486 participants 

were initially recruited from Prolific [2, 23] to allow for 

potential exclusions. Each participant received £2 (hourly 

wage of £8) for the estimated 15-minute task, plus an 

additional £0.1 bonus for every correct decision in the 14 

trial cases. This monetary incentive was used to encourage 

genuine effort and appropriate system reliance [64]. 

● Filter Criteria: Participants were excluded if they 

failed any of the attention checks or had missing 

responses. The final analytical sample comprised 280 

participants. The average age was 37 (SD = 13.0), with a 

balanced gender distribution (51.4% female, 48.6% male). 

Procedure (Study II) 

The study procedure (illustrated in Figure 7 in the original 

PDF) involved several distinct phases: 

1. Instructions and Consent: All participants first 

reviewed basic instructions and provided informed 

consent. 

2. Pre-task Questionnaire: Participants completed a 

questionnaire to assess their ATI, general medical 

expertise, and specific skin cancer expertise. 

3. Onboarding and Medical Concepts Overview: To 

familiarize participants with the skin cancer detection 

task, two examples of benign and malignant skin lesions 

were presented. Following this, all participants, except 

those in the Control condition, received an overview of the 

eight medical concepts relevant to the task (Figure 6 in the 

original PDF). 

4. Trial Tasks (Two-Stage Decision Making): 

Participants proceeded to complete 14 trial tasks, each 

involving a two-stage decision-making process [41, 20]: 

○ Stage 1 (Initial Decision): Participants viewed a 

lesion image (Figure 8 in original PDF) and made an initial 

diagnosis (malignant/benign) without any AI advice or 

explanation. 

○ Stage 2 (AI Advice and Explanation): After their 

initial decision, participants were shown the AI's 

prediction and, depending on their assigned condition, the 

corresponding explanation (no explanation, concept-

based, concept-important, analogy-based, or on-demand 

analogy). They then had the opportunity to revise their 



EUROPEAN JOURNAL OF EMERGING ARTIFICIAL INTELLIGENCE 

pg. 44  

initial decision (Figure 9 in original PDF). Confidence 

levels were also collected at this stage. 

5. Post-task Questionnaires: Upon completing all 14 

tasks, participants filled out questionnaires to assess 

their cognitive load (NASA-TLX), trust in the AI system 

(TiA), and provided open-text feedback on their decision-

making criteria. Participants in conditions with 

explanations also responded to questions about the 

perceived helpfulness of explanations and provided 

open-text reasons. Those in Analogy and Analogy-OD 

conditions additionally commented on the analogies. 

6. Attention Checks: Three attention check 

questions were strategically placed within the pre-task 

questionnaire, task phase, and post-task questionnaire to 

ensure data reliability [73, 33]. 

Ethical Considerations 

The entire study protocol was rigorously reviewed and 

approved by the Institutional Review Board of the 

researchers' institution. All participants provided explicit 

informed consent prior to engaging in the study, and 

confidentiality and anonymity were strictly maintained 

throughout the data collection and analysis processes. 

Participants were explicitly informed of their right to 

withdraw from the study at any point without penalty. All 

data were securely collected, stored, and managed in full 

compliance with relevant privacy regulations and ethical 

guidelines. 

Results 

The comprehensive analysis of the collected data yielded 

significant findings regarding the effectiveness of 

analogy-based explanations in the context of AI-assisted 

decision-making for laypeople. The results address the 

hypotheses (H1-H4) and provide valuable insights into 

user behavior and perceptions. 

Descriptive Statistics 

A total of 280 participants who successfully passed all 

attention checks were included in the final analysis. 

These participants were distributed relatively evenly 

across the five experimental conditions: 55 in Control, 55 

in Concept, 55 in Concept-Imp, 53 in Analogy, and 62 in 

Analogy-OD. 

The distribution of covariates indicated the general 

characteristics of the participant pool: 

● Affinity for Technology Interaction (ATI): Mean 

(M) = 3.87, Standard Deviation (SD) = 0.87 (on a 6-point 

Likert scale, 1: low, 6: high). 

● Medical Diagnosis Expertise: M = 1.47, SD = 0.81 

(on a 5-point Likert scale, 1: no expertise, 5: extensive 

expertise). 

● Skin Cancer Expertise: M = 1.59, SD = 0.81 (on a 5-

point Likert scale, 1: no expertise, 5: extensive expertise). 

● TiA-Propensity to Trust: M = 2.76, SD = 0.57 (on a 

5-point Likert scale, 1: tend to distrust, 5: tend to trust). 

● TiA-Familiarity (with AI): M = 2.31, SD = 1.05 (on a 

5-point Likert scale, 1: unfamiliar, 5: familiar). 

These statistics confirm that most participants had low 

self-reported medical and skin cancer expertise, aligning 

with the "layperson" target audience. 

Overall performance across all conditions showed an 

average accuracy of 63.3% (SD = 0.11), which was lower 

than the AI system's accuracy of 71.4%. The average 

agreement fraction (proportion of human-AI aligned 

decisions) was 0.79 (SD = 0.16), and the average switch 

fraction (proportion of initial human decisions changed 

after seeing AI advice) was 0.57 (SD = 0.30). These figures 

suggest that participants did not blindly defer to AI advice 

and were willing to reconsider their initial decisions, 

indicating active engagement. Given that most dependent 

variables were not normally distributed, non-parametric 

statistical tests were primarily used for hypothesis 

verification. 

Performance Per Task 

A detailed breakdown of accuracy and confidence per task 

(Table 8 in the original PDF) across the 14 skin lesion cases 

revealed interesting patterns. Generally, participants' 

accuracy increased after exposure to correct AI advice and 

decreased when exposed to incorrect AI advice, 

underscoring the AI's influence. Confidence also tended to 

increase after receiving AI advice, with one notable 

exception (task ISIC-0032557) where confidence 

decreased despite an initially high confidence level, 

possibly indicating an "illusion of competence" among 

participants who significantly overestimated their initial 

accuracy on this task (achieving only 4.3% accuracy while 

maintaining high initial confidence). The "Experience 

ratio" (proportion of participants who reported seeing 

similar skin lesions) was consistently low across all tasks 

(ranging from 0.04 to 0.14), further confirming the 

layperson status of the participants. 

Helpfulness of Explanations and Analogies 

Participants' perceived helpfulness of the provided 

explanations and analogies was assessed via post-task 

questionnaires (Figure 10 in the original PDF). Overall, 

61.8% of participants who received concept-based 

explanations reported a positive attitude towards their 

helpfulness (either "somewhat helpful" or "helpful"). For 

participants in the Analogy and Analogy-OD conditions, 

39.1% found the analogies to be helpful to some extent. 

This suggests that while concept-based explanations were 

generally well-received, the utility of analogies was 

perceived less universally, indicating a mixed reaction. 

H1: The Impact of Analogy-based Explanations on 

Learning Effect 

H1 hypothesized that analogy-based explanations would 

enhance users' understanding of AI systems compared to 

conventional concept-based explanations. To test this, the 
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weighted average F1 score 

(F1avg=85F1malignant+83F1benign) was calculated 

based on participants' ability to correctly identify 

concepts correlated with malignant and benign labels. A 

Kruskal-Wallis H-test showed no significant difference 

across the explanation conditions (H(279) = 1.79, p = 

0.616). The mean F1 scores were: Concept (M = 0.55, SD 

= 0.20), Concept-Imp (M = 0.58, SD = 0.19), Analogy (M = 

0.56, SD = 0.21), and Analogy-OD (M = 0.52, SD = 0.22). 

This lack of statistical significance indicates that the 

study did not find empirical support for H1; analogy-

based explanations did not lead to a demonstrably 

improved learning effect or a deeper conceptual 

understanding of the AI system's inner workings. 

H2: The Impact of Analogy-based Explanations on 

Appropriate Reliance 

H2 proposed that analogy-based explanations would 

facilitate appropriate reliance on AI systems. Kruskal-

Wallis H-tests (Table 9 in the original PDF) revealed 

significant differences in appropriate reliance measures 

across the conditions. Specifically, significant differences 

were found for Agreement Fraction (H = 11.03, p = 

0.026), Accuracy-wid (H = 15.81, p = 0.003), and RAIR (H 

= 12.77, p = 0.012). 

Post-hoc Mann-Whitney tests, with a Bonferroni-

adjusted alpha level of 0.0125, indicated several key 

findings: 

● Concept-Imp vs. Others: Participants in the 

Concept-Imp condition demonstrated significantly 

higher Accuracy-wid and RAIR compared to participants 

in the Control, Concept, and Analogy conditions. This 

suggests that simply providing more detailed concept-

level explanations (the target domain of the analogies) 

was effective in promoting appropriate reliance, 

particularly by mitigating "under-reliance" (i.e., users 

inappropriately overriding correct AI advice). 

● Potential for Over-reliance: The relatively low 

RSR in the Concept-Imp condition, when compared to 

other conditions, suggests that while it reduced under-

reliance, it might have also triggered a tendency towards 

"over-reliance" (blindly following AI advice even when 

it's wrong). 

● Analogies' Limited Impact: Surprisingly, the study 

found no statistically significant evidence that analogy-

based explanations (in Analogy or Analogy-OD 

conditions) had the expected effect in facilitating 

appropriate reliance. While Analogy-OD showed a non-

significant trend towards better appropriate reliance 

compared to Analogy, H2 was not empirically supported 

by the quantitative results. 

H3: The Impact of Analogy-based Explanations on 

Cognitive Load 

H3 hypothesized that analogy-based explanations would 

reduce the perceived cognitive load. A one-way ANOVA 

(Table 10 in the original PDF) revealed that participants 

who received any form of explanation (Concept, Concept-

Imp, Analogy, Analogy-OD) reported a higher perceived 

cognitive load compared to the Control group. Significant 

differences were found for average cognitive load (F = 

5.81, p = 0.000) and mental demand (F = 7.01, p = 0.000). 

Post-hoc Tukey HSD tests (alpha = 0.0125) confirmed that 

Control < Concept, Analogy, Concept-Imp, Analogy-OD for 

both average cognitive load and mental demand. This 

contradicts H3, indicating that explanations, including 

analogy-based ones, increased rather than decreased the 

perceived cognitive burden on users. 

H4: The Impact of Analogy-based Explanations on 

Decision Making Efficiency 

H4 posited that providing analogies on demand would 

improve users' efficiency in decision-making. A Kruskal-

Wallis H-test on task completion time showed a significant 

difference across conditions (H(279) = 23.73, p = 0.000). 

Post-hoc Mann-Whitney tests revealed that participants 

who received any explanations spent significantly more 

time making decisions compared to the Control group 

(Control < Concept, Analogy, Concept-Imp, Analogy-OD). 

The average total time spent (in seconds) was: Control (M 

= 462, SD = 309), Concept (M = 548, SD = 210), Concept-

Imp (M = 575, SD = 209), Analogy (M = 574, SD = 242), and 

Analogy-OD (M = 658, SD = 341). A more fine-grained 

analysis of time per correct/wrong decision (Table 11 in 

the original PDF) yielded consistent results. Thus, H4 was 

not supported; explanations, even on-demand analogies, 

increased decision-making time rather than improving 

efficiency. 

Exploratory Analysis 

Beyond the direct hypothesis testing, several exploratory 

analyses provided deeper qualitative and quantitative 

insights into the factors influencing human-AI interaction. 

The Impact of First Impression 

Prior research emphasizes the role of initial interactions in 

shaping user trust and reliance [76, 77, 95]. To investigate 

this, participants were grouped based on AI accuracy in 

the first five tasks ("Good First Impression" for no or one 

wrong AI advice, "Bad First Impression" for more errors). 

Kruskal-Wallis H-tests found no significant difference in 

participant performance or reliance behaviors based on 

this grouping, suggesting that the initial impression of the 

AI system did not have a measurable impact within the 

confines of this study. 

Analysis of Trust and Covariates 

An ANCOVA analysis across experimental conditions 

showed no significant difference in perceived trust in the 

AI system (TiA subscales) across the explanation 

conditions. However, examining covariates revealed 

important correlations (Table 12 in the original PDF). 

● Propensity to Trust: TiA-Propensity to Trust (a 

measure of general disposition to trust) positively 

correlated with all trust measures (TiA-R/C: r=0.650, 



EUROPEAN JOURNAL OF EMERGING ARTIFICIAL INTELLIGENCE 

pg. 46  

p<0.000; TiA-U/P: r=0.344, p<0.000; TiA-IoD: r=0.283, 

p<0.000; TiA-Trust: r=0.677, p<0.000). Furthermore, it 

showed significant positive correlations with Agreement 

Fraction (r=0.227, p<0.000), Switch Fraction (r=0.220, 

p<0.000), and RAIR (r=0.183, p=0.002), but a negative 

correlation with RSR (r=-0.216, p<0.000). This suggests 

that individuals with a higher inherent propensity to 

trust were more likely to align with AI advice, which 

could lead to both appropriate reliance (reducing under-

reliance) but also potentially over-reliance (as indicated 

by the negative correlation with RSR). 

● Other Covariates: TiA-Familiarity with AI showed 

positive correlations with TiA-R/C (r=0.232, p<0.000) 

and TiA-Trust (r=0.286, p<0.000), and ATI (Affinity for 

Technology Interaction) correlated positively with TiA-

Trust (r=0.149, p=0.012). However, ANCOVA analysis 

determined their overall impact on trust was not 

significant. Medical diagnosis expertise did not show 

strong correlations, while skin cancer expertise (self-

reported, mostly zero for laypeople) showed a negative 

correlation with Switch Fraction (r=-0.175, p=0.003). 

Impact of User Opinions towards Explanations and 

Analogies 

● Helpfulness of Explanations: Perceived 

helpfulness of explanations (for Concept, Concept-Imp, 

Analogy, Analogy-OD conditions) positively correlated 

with user trust in the AI system (TiA-R/C: r=0.400, 

p<0.000; TiA-U/P: r=0.397, p<0.000; TiA-IoD: r=0.249, 

p<0.000; TiA-Trust: r=0.407, p<0.000). However, no 

significant correlation was found between perceived 

helpfulness of explanations and reliance-based 

dependent variables. 

● Helpfulness of Analogies: Similarly, for Analogy 

and Analogy-OD conditions, perceived helpfulness of 

analogies positively correlated with user trust (TiA-R/C: 

r=0.303, p=0.001; TiA-U/P: r=0.290, p=0.002; TiA-IoD: 

r=0.368, p=0.000; TiA-Trust: r=0.297, p=0.001), but 

again, no significant correlation was found with reliance-

based variables. 

Notably, 24.5% of Analogy condition participants found 

analogies helpful, compared to 51.6% in Analogy-OD. 

This disparity might partially explain why the Analogy 

condition exhibited slightly lower (though not 

significant) appropriate reliance metrics, suggesting that 

perceived unhelpfulness could negatively impact trust 

and lead to under-reliance. Conversely, the Concept-Imp 

condition showed very low RSR, indicative of over-

reliance. 

Qualitative Analysis of Feedback 

Open-ended feedback from participants provided rich 

qualitative insights into their decision-making processes 

and perceptions of explanations. 

● Decision Criteria: Thematic analysis of responses 

to "Please describe how you made your decisions" (Table 

13 in the original PDF) identified five main topics: 

○ Picture (91 mentions): Directly relying on visual 

assessment of the skin lesion images. 

○ Examples (77 mentions): Referring back to the 

provided benign/malignant examples. 

○ Explanations (77 mentions): Using the concept-

level explanations to understand and refine decisions, 

often trusting AI more than self. 

○ Intuition (68 mentions): Making decisions based on 

"instinct" or "gut feeling," often finding alignment with AI. 

○ AI advice (62 mentions): Directly using AI 

recommendations, especially when confused. 

● Reasons for Helpfulness/Unhelpfulness of 

Explanations (Table 14 in original PDF): 

○ Helpful: Explanations were perceived as helpful 

because they "enrich the context of decision making" 

(32.4%), "help improve the understanding of the AI 

system" (18.7%), or "help confirm or validate their 

decision" (7.2%). 

○ Unhelpful: Reasons for unhelpfulness included 

participants lacking knowledge to interpret (41.9%), 

failing to understand (16.3%), or finding explanations 

difficult to apply (11.6%). 

● Reasons for Unhelpfulness of Analogies: Specific 

feedback on analogies included: "failed to connect the 

source domain with the target domain" (22.9%), "do not 

make sense" (18.6%), "concepts are not relevant" (14.3%), 

"failed to understand the analogies" (12.9%), or "not 

necessary" (10%). 

Participants' comments also revealed conflicting attitudes 

towards analogies. Some found them "useful and helpful 

for getting the point across to laymen," while others found 

them distracting or irrelevant ("I don’t get the relevance of 

using analogies to explain medical concepts. I also don’t 

think they were explaining the concepts. It was essentially 

saying water is wet..."). 

Insights from Users to Improve Analogy Effectiveness 

Based on user feedback, three potential directions 

emerged for improving analogy-based explanations: 

1. Enhancing Source-Target Relation: Analogies need 

stronger, clearer connections between the familiar source 

domain and the complex target domain to ensure 

immediate understanding. 

2. Domain Relevance: Analogies should ideally be 

drawn from domains that resonate with the context or 

general understanding of the specific task (e.g., medical 

analogies for medical tasks) to enhance plausibility and 

reduce cognitive dissonance. 

3. Selective/On-Demand Provision: When the 

primary explanation is already clear, forced analogies can 

be perceived as unnecessary or even condescending, 

leading to annoyance and reduced trust. Providing 

analogies on demand empowers users to seek clarification 
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only when needed, potentially improving user 

experience and efficacy. 

DISCUSSION 

This comprehensive investigation provides compelling 

evidence that while analogy-based explanations hold 

significant intuitive appeal and show promise in certain 

contexts, their immediate effectiveness in enhancing 

laypeople's understanding and appropriate reliance on 

AI systems is more nuanced than initially hypothesized. 

Our findings demonstrate that compared to traditional 

feature-based explanations or no explanations, 

analogies, when meticulously crafted, can indeed 

improve some aspects of comprehension and influence 

reliance patterns, but they also present challenges 

related to cognitive load and decision efficiency. The 

summary of key findings from both Study I and Study II 

is presented in Table 15 (in the original PDF). 

Key Findings and Implications 

The insights gleaned from this research offer several 

critical implications for the design and deployment of 

human-centered XAI: 

Subjectivity and Quality of Analogies 

Study I highlighted the inherent subjectivity in evaluating 

the qualitative dimensions of analogies. The low 

Krippendorff’s α scores for most qualitative dimensions 

(e.g., Structural Correspondence, Relational Similarity, 

Familiarity, Helpfulness, Transferability, Simplicity) 

among experts underscore that "quality" is not 

universally perceived. This disagreement stems from 

diverse personal experiences and interpretations of 

commonsense facts embedded within analogies. While 

this might initially appear as noise, prior work suggests 

that inter-rater disagreement can also be a valuable 

signal [3]. It reveals the ambiguity and vagueness of 

certain analogy-based explanations, pointing to areas for 

refinement. When evaluators diverge, involving 

additional crowd workers or incorporating iterative 

feedback loops could help in improving the clarity and 

universal appeal of analogies [52, 85]. 

Furthermore, the comparison between analogies 

generated from the calorie task (CLC) and the scene 

classification task (SC) revealed that superior quality on 

a single dimension (e.g., Relational Similarity for SC task) 

does not automatically translate to higher perceived 

helpfulness. However, if an explainer deems an analogy 

to be poor in relational similarity, they are more likely to 

find it unhelpful. This suggests a complex interplay 

between individual dimensions and overall perceived 

utility, further complicated by user-specific factors like 

abstract thinking, personal interpretation, and general 

attitudes toward explanations. This emphasizes the 

necessity for future research to delve deeper into the 

intricate relationships between user characteristics, 

qualitative dimensions, and the ultimate helpfulness of 

analogy-based explanations. 

The observed expert disagreement also subtly challenges 

the assumption that commonsense knowledge, while 

seemingly universal, is uniformly accepted and 

understood by all humans [51]. This finding aligns with the 

"one-size-fits-all" problem in XAI, where a single 

explanation method rarely satisfies all user needs [89, 65]. 

Consequently, future XAI designs should consider tailoring 

commonsense explanations to align with the explainee's 

existing beliefs and experiences to maximize the 

effectiveness of analogical inference. This strongly 

advocates for the integration of personalization into the 

generation and delivery of commonsense explanations. 

Automated Analogy Generation and Evaluation 

Study I revealed practical challenges in analogy 

generation: approximately one-third of generated 

analogies were not factually correct, and workers 

struggled to consistently produce analogies with high 

Structural Correspondence and Relational Similarity. This 

underscores the need for sophisticated strategies to 

support the creation of effective analogies. A promising 

direction is the development of machine-in-the-loop 

crowdsourcing tasks. By integrating relational knowledge 

bases (like ConceptNet [91] or HowNet [21]) and machine 

learning methods, automated tools could pre-select or 

suggest high-quality candidate concepts that share 

structural similarities with the target domain. For 

instance, if a specific relationship (e.g., "is a sign of") is 

identified in the AI's reasoning, a system could query a 

knowledge base for everyday facts exhibiting that same 

relationship, providing crowd workers with more 

appropriate and structurally sound analogies, thereby 

reducing their cognitive load and improving output quality 

[97, 16]. 

Moreover, the high cost of continuous human expert 

evaluation for quality control necessitates the exploration 

of (semi-)automatic assessment methods for analogy 

quality. While dimensions like Syntactic Correctness could 

be automatically verified using grammar tools, and 

Simplicity/Misunderstanding assessed against curated 

lists of common/ambiguous concepts, more subjective 

dimensions remain challenging. However, emerging 

concepts like "jury learning" [39] propose using machine 

learning models to perform pseudo-human value 

judgments, offering a potential pathway for large-scale, 

automated quality assessment that could account for the 

inherent subjectivity of certain dimensions. 

The Role of Human Intuition 

In Study II, a significant number of participants explicitly 

reported relying on their "intuition" to make final 

decisions. This highlights the critical, often 

underappreciated, role of human intuition in shaping user 

understanding and reliance behaviors within human-AI 

decision-making contexts [14, 13]. Our findings suggest 

that human intuition can, in some cases, facilitate 

complementary collaboration with AI systems. 

However, intuition can also introduce biases. While the 
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overall Agreement Fraction was high (around 0.80), the 

relatively low RSR in most conditions indicated a 

tendency for over-reliance. This means that even when 

the AI advice was incorrect and participants initially 

disagreed, they often deferred to the AI's judgment 

instead of trusting their correct initial decision. This 

phenomenon of "automation bias" [98] is a known pitfall 

of XAI interventions [7, 102]. Such over-reliance can be 

linked to "confirmation bias" (seeking information that 

confirms one's existing beliefs) and the "illusion of 

explanatory depth" [9]. Conversely, the Control, Concept, 

and Analogy conditions exhibited clear "under-reliance" 

compared to Concept-Imp. This under-reliance might be 

partially explained by the Dunning-Kruger effect [59], 

where users overestimate their own competence, leading 

to an inappropriate dismissal of AI advice, as explored in 

recent work [46]. The strong positive correlation 

between perceived helpfulness of 

explanations/analogies and subjective trust in the AI 

system further suggests that when users found analogies 

unhelpful, their trust was negatively impacted, 

potentially contributing to under-reliance and 

suboptimal team performance. In complex AI systems, a 

complete understanding is often impractical, and trust 

then becomes the guiding factor for reliance [64]. 

Uncalibrated trust, stemming from perceived 

unhelpfulness, can lead to inappropriate reliance. 

The Role of Plausibility 

The empirical results of Study II indicate that while the 

target domain of analogy-based explanations was 

generally perceived as clear, additional analogies were 

not always helpful, particularly when participants 

struggled to connect them meaningfully to the target 

domain. This can be partly attributed to the concept of 

plausibility. Users implicitly assume that "plausible 

explanations typically imply correct decisions, and vice 

versa" [54]. If participants found the analogies 

implausible or irrelevant to the medical context, they 

might have perceived the AI's advice as less trustworthy, 

leading to reduced reliance and potentially suboptimal 

team performance. The Analogy condition, which 

showed worse RAIR than Concept-Imp, might exemplify 

this, as more participants in the Analogy-OD condition 

(who received analogies on demand) found them 

plausible (51.6% vs. 24.5% in Analogy). The higher 

Switch Fraction, Accuracy-wid, RAIR, and RSR in 

Analogy-OD suggest that providing analogies on demand 

can be a superior design choice, allowing users to opt-in 

only when they perceive a need for deeper 

understanding, thus potentially increasing the perceived 

plausibility and overall effectiveness of the explanations. 

When analogies are not used appropriately or are poorly 

designed, both under-reliance and over-reliance can be 

triggered due to a perceived lack of plausibility. 

Caveats and Limitations 

Despite the comprehensive nature of this research, 

several caveats and limitations warrant 

acknowledgment: 

Bias in Templates 

The use of six pre-defined templates for analogy 

generation, while facilitating the crowd-sourcing process, 

may have introduced biases [49, 24]. These templates 

inherently favor specific types of relationships, potentially 

limiting the creativity and diversity of analogies generated 

by participants. Although providing hint domains 

mitigated some of this limitation, the structured nature of 

templates might still constrain the exploration of more 

complex or nuanced analogical mappings. 

Restricted Usage 

Analogy-based explanations may not be a universal 

solution suitable for all application scenarios. Our study 

suggests specific contexts where their utility might be 

diminished or counterproductive: 

1. Simple Tasks: When the original task is inherently 

simple and involves only everyday concepts already 

familiar to users, introducing analogies can introduce 

unnecessary cognitive load and create confusion rather 

than clarity. 

2. Implicit Relationships: In domains where explicit 

properties and clear relationships between concepts and 

labels are scarce (e.g., the Calorie Level Classification task 

in Study I), generating effective analogies with high 

structural correspondence and relational similarity 

becomes exceptionally challenging, limiting their 

effectiveness for laypeople. 

Cascading Effects 

As analogy-based explanations are built upon underlying 

concept-level explanations, they are susceptible to 

"cascading effects." If the foundational concept-level 

explanations do not accurately reflect the AI system's 

internal state or are inherently misleading, the analogy-

based explanations, even if well-crafted, will also fail to 

convey truthful information. Furthermore, given their 

familiar and often persuasive nature, effective analogy-

based explanations derived from misleading concept-level 

explanations could potentially amplify the negative impact 

on user trust and decision-making, leading to greater 

harm. 

Potential Human Biases 

The crowdsourcing methodology, while offering 

scalability, introduces potential for human biases that can 

affect experiment outcomes [24]. Several biases were 

identified in our study: 

● Overconfidence/Optimism Bias (Dunning-Kruger 

effect): For specific tasks (e.g., ISIC-0032557), participants 

exhibited high initial confidence despite very low 

accuracy, suggesting an illusion of competence [59, 46]. 

This overestimation of their own capabilities could lead to 

under-reliance on potentially accurate AI advice. 

● Confirmation Bias: Some participants explicitly 
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stated that explanations helped "confirm and validate" 

their initial decisions, suggesting a tendency to seek 

information that aligns with their pre-existing judgments 

rather than objectively evaluating new information [9]. 

● Information Overload: The provision of 4-7 

concept-level/analogy-based explanations per task 

sometimes led to self-reported information overload, 

which can negatively impact user trust and reliance. 

● Self-interest Bias: Monetary incentives, while 

encouraging effort, might also lead some crowd workers 

to prioritize speed over thoroughness, potentially 

reducing the diligent examination of explanations. 

Threats to Generalizability 

The generalizability of our findings requires careful 

consideration: 

● Task Complexity and Stakes: Study I used 

relatively simple, low-stakes image classification tasks 

for analogy generation. While Study II moved to a more 

realistic, high-stakes medical diagnosis scenario, it is 

unknown how these findings translate to even more 

complex AI applications or critical decision-making 

contexts (e.g., financial, legal). The effectiveness of 

analogies might vary significantly depending on the 

domain and the level of abstraction required. 

● Analogy Transferability: Although the generated 

analogies were deemed highly transferable in Study I, 

their actual effectiveness when applied to a new, complex 

task like medical diagnosis was limited. Future work 

should investigate how to generate analogies that are 

specifically effective for highly specialized and high-

stakes tasks, potentially requiring input from domain 

experts in the analogy generation process. 

● Role of Human Intuition: The dominant role of 

human intuition in the skin cancer detection task might 

mean that findings related to reliance do not generalize 

to tasks where intuition is less prominent. 

● Complexity of Explanations: This study focused 

on explaining the relevance level between concepts and 

predictions. Analogies can be used to convey more 

complex structural correspondence and relational 

similarities. Our findings might not directly extend to 

scenarios involving a greater number of concepts or 

more intricate relational structures within the AI's 

reasoning. 

CONCLUSIONS AND FUTURE WORK 

In this paper, we embarked on a comprehensive journey 

to explore the potential of elucidating concept-level AI 

explanations through analogical inference, leveraging 

commonsense knowledge to foster more meaningful 

collaborations between AI systems and non-expert 

human users. Our initial endeavor (RQ1) involved 

designing a novel, template-based analogy generation 

method, which we instantiated by engaging crowd 

workers across two distinct image classification tasks: 

calorie level classification and scene classification. To 

ensure the quality of these generated explanations (RQ2), 

we synthesized and applied a structured set of qualitative 

dimensions. An expert-led evaluation confirmed that our 

proposed method, despite the involvement of non-expert 

workers, could indeed yield high-quality analogy-based 

explanations. 

Subsequently, to thoroughly investigate how analogy-

based explanations influence user understanding and 

reliance on AI systems (RQ3 and RQ4), we conducted a 

rigorous follow-up empirical study focused on a skin 

cancer detection task. The results from this second study 

yielded several nuanced findings: (1) it reinforced that a 

lack of domain expertise significantly impedes user 

understanding of raw concept-level explanations; (2) 

while improved concept-level explanations (the target 

domain of our analogies) were effective in promoting 

appropriate reliance by mitigating under-reliance, they 

also demonstrated a propensity to trigger over-reliance; 

(3) the strategy of providing analogies on demand 

emerged as a potentially promising design approach for 

their adoption; (4) however, our findings underscore that 

analogy-based explanations must be meticulously 

designed and judiciously employed to effectively clarify 

concept-level explanations. The experimental results 

provided limited quantitative support for the hypotheses 

that analogy-based explanations would universally 

facilitate deeper user understanding of the AI system or 

consistently foster more appropriate reliance. 

Nevertheless, we cannot discount the significant 

qualitative evidence that highlights the substantial 

potential of analogy-based explanations in assisting 

laypeople in effective decision-making with AI. Crucially, 

compared to conventional concept-level explanations, the 

integration of analogies did not incur a statistically 

significant delay in decision-making efficiency nor impose 

a notably higher cognitive load on users. Our findings 

collectively suggest that the paramount challenge lies not 

in the mere presence of analogies, but in the ability to 

consistently generate high-quality, contextually relevant 

analogies and, critically, in the potential for personalized 

delivery. Based on an in-depth qualitative analysis of 

participants' feedback and observed user reliance 

patterns, we have synthesized a set of actionable 

guidelines. These guidelines are crucial for informing 

future research and development efforts aimed at 

generating truly effective analogy-based explanations and 

ensuring their appropriate and beneficial integration into 

human-AI collaborative decision-making frameworks. 

Looking forward, our immediate future work will focus on 

addressing the scalability and efficiency challenges 

identified in Study I. Given that both the generation and 

expert evaluation of high-quality analogy-based 

explanations are labor-intensive and time-consuming, we 

intend to explore the integration of machine learning 

algorithms and external knowledge bases to automate 

these tasks. This automation aims to enhance the process's 
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scalability and efficiency without compromising quality. 

Furthermore, the findings from Study II, particularly the 

limited quantitative support for appropriate reliance 

despite qualitative indications of potential, necessitate 

continued empirical research. This includes further 

exploration into the optimal characteristics of analogies 

(e.g., level of abstraction, domain specificity) and the 

conditions under which they are most effective. Finally, 

the observed variability in understanding of 

commonsense explanations based on recipient user 

experience strongly points towards the critical need for 

deeper investigation into the personalization of 

commonsense explanations, ensuring they resonate 

optimally with individual users' knowledge and cognitive 

styles. This continued research will contribute to 

building more intuitive, trustworthy, and effective AI 

systems for all users. 
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