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ABSTRACT 
 

Ever wondered how our muscles work together so seamlessly? This article dives into a new way of looking at muscle 
activity using surface electromyography (sEMG). Forget complicated graphs; we're talking about creating clear, visual 
maps of how different muscle "components" light up during movement. We take raw sEMG signals, clean them up with 
smart processing steps like filtering and normalization, and then use a clever technique called Non-negative Matrix 
Factorization (NMF) to find the fundamental building blocks of muscle action. These building blocks are then beautifully 
mapped onto an electrode grid, giving us continuous, heatmap-like pictures. What do these maps tell us? They offer 
amazing insights into where muscles are working, how they overlap, how they change over time, and even how individual 
motor units might be recruited. This isn't just for scientists; it's a powerful tool that promises to transform clinical 
diagnostics, rehabilitation strategies, and even how we design prosthetics and robots, making them more intuitive and 
effective. 

Keywords: surface electromyography; sEMG; multichannel sEMG; muscle synergies; Non-negative Matrix Factorization; 
NMF; muscle activation mapping; spatial visualization; motor control; rehabilitation. 

 
INTRODUCTION 

Have you ever stopped to think about the incredible 

complexity behind a simple movement, like picking up a 

cup or waving your hand? It's not just one muscle doing all 

the work; it's a symphony of muscles coordinating their 

efforts. Understanding this intricate dance of muscle 

activation is absolutely vital, not just for curious minds in 

neuroscience, but also for groundbreaking advancements 

in fields like robotics, prosthetics, and rehabilitation. 

For a long time, surface electromyography (sEMG) has 

been our go-to non-invasive tool for peeking into this 

world. It works by detecting the tiny electrical signals our 

muscles generate when they contract. While traditional 

sEMG has given us valuable insights into when muscles are 

active, it often falls short in showing us the full picture of 

how muscles are working together across space. This can 

leave us with an incomplete understanding of how our 

nervous system orchestrates those complex movements. 

Here's the fascinating part: our bodies don't just activate 

individual muscles one by one. Instead, they use what 

scientists call "muscle synergies" [1]. Think of these as pre-

programmed, coordinated activation patterns – like 

shortcuts the brain uses to simplify the control of our many 

muscles. This clever strategy allows us to move efficiently, 

adapt to different situations, and perform a huge variety of 

actions [2]. The idea of muscle synergies has really taken off 

in neuroscience, revealing deep truths about how our 

movements are organized [1]. It's even helping us design 

smarter exoskeleton assistance [2] and predict how people 

might use advanced neuroprosthetic hands [3]. Plus, 

analyzing sEMG-based muscle synergies is proving 

incredibly useful for things like gesture recognition in 

technology [4] and making hand posture recognition better 

for individuals with limb loss [5, 7]. 

But even with the power of sEMG, its limited spatial view 

often hides the full story of how muscle activity is 

distributed. Even a single muscle can have surprisingly 

complex activation patterns within itself [6]. That's where 

high-density sEMG (HD-sEMG) comes in. Imagine not just a 

few electrodes, but a dense grid of them placed over a 

muscle. This advanced technique gives us a much richer, 

spatially detailed dataset of muscle electrical activity, 

painting a far clearer picture than conventional sEMG [10]. 

This extra spatial information opens up exciting new 

avenues for exploring exactly where muscles are active, how 

our motor units (the basic units of muscle control) are 

recruited, and the precise spatial layout of these functional 

muscle components. 

However, handling all this detailed multichannel sEMG data 
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can be a bit overwhelming. Current methods, like just 

showing raw signals or simple average maps, don't always 

fully reveal the underlying functional components of 

muscle activity. We desperately need more sophisticated 

ways to visualize this complex data – to turn it into 

intuitive, easy-to-understand spatial maps of how muscle 

components are activated. Such advanced mapping 

capabilities could revolutionize our understanding of how 

our nervous system controls movement, help us pinpoint 

abnormal activation patterns with precision, and 

significantly contribute to developing more effective and 

personalized rehabilitation strategies. 

So, in this article, we're proposing a fresh new framework 

for visualizing multichannel sEMG data as spatial maps of 

muscle component activation. By combining smart signal 

processing with powerful dimensionality reduction 

algorithms, our goal is to extract and visually represent the 

fundamental building blocks of muscle activity. This 

innovative visualization method is designed to give us a 

clearer, more insightful, and spatially detailed view of how 

muscles are activated during various tasks, moving beyond 

just measuring amplitude to truly uncover the intricate 

spatial organization of motor control. 

METHODS 

Getting a clear picture of muscle activity requires careful 

planning and execution. This section walks you through the 

steps we take to acquire and process the multichannel 

sEMG data, setting the stage for our unique visualization 

approach. 

Data Acquisition 

To truly see how our visualization method works, we first 

need to gather multichannel surface electromyography 

(sEMG) data from a specific muscle group using a high-

density electrode array. Here’s how we typically set up and 

consider the data acquisition process: 

Setting Up the Electrodes: Imagine a finely woven net of 

tiny sensors. A standard high-density sEMG system usually 

uses a grid of electrodes, often 64, 128, or even more, 

arranged in a neat square or rectangular pattern. The 

distance between these electrodes is super important for 

how detailed our "picture" will be, usually around 5 to 10 

millimeters. For our study, we're looking at using cool 

wireless sensors called Trigno Avanti (from Delsys Inc., 

Natick, MA, USA). These are perfect for high-density sEMG 

and are placed in a circular pattern on the superficial 

muscles of the forearm. Why the forearm? Because it's a 

powerhouse for fine motor skills, everyday tasks, and grip 

strength! We specifically target muscles like the m. flexor 

carpi radialis, m. palmaris longus, m. flexor carpi ulnaris, m. 

extensor carpi ulnaris, m. extensor digitorum, and m. 

extensor carpi radialis brevis/longus. 

Getting the Skin Ready: Placing the electrodes perfectly is 

key to getting good signals and making sure we cover the 

muscle's activity thoroughly. We carefully choose electrode 

spots based on established anatomical guides, like the 

SENIAM recommendations and the Barbero innervation 

atlas [9]. These guides are like treasure maps, showing us 

where the most electrically active parts of the muscle are. 

Before we stick on the electrodes, we meticulously prepare 

the skin. This usually means a quick shave if needed, gently 

rubbing the skin to remove dead cells, and cleaning it with 

alcohol to get rid of any oils or dirt. We also double-check 

that the electrodes have good contact with the skin by doing 

"impedance checks" – making sure the electrical resistance 

is low enough (e.g., below 5-10 kΩ). 

Capturing the Signal: sEMG signals are fast and complex, so 

we need to capture them quickly and accurately. We 

typically "sample" the data at a high frequency, usually 

between 1000 Hz and 2000 Hz (for example, 1259 Hz, as 

mentioned in some studies). This high rate prevents 

something called "aliasing," which is like a blurry photo for 

signals, and ensures we get the full range of the sEMG signal. 

The raw sEMG signal itself is a bit chaotic, reflecting the 

combined electrical chatter from many motor units. But 

high-density sEMG, by listening in on so many points, gives 

us a much richer dataset for spatial analysis compared to 

older sEMG systems with fewer electrodes. The good news 

is, creating detailed high-density sEMG maps from arm and 

forearm muscles has been successfully done before [10], so 

we know this approach works! 

Signal Pre-processing 

Raw sEMG signals, while full of information, are also quite 

"noisy." Think of it like trying to listen to a whisper in a 

crowded room. We need to clean them up carefully to get to 

the meaningful physiological information. Here’s a step-by-

step look at how we prepare the data: 

1. Band-pass Filtering: Tuning In: First, we apply a 

"band-pass filter" to our raw sEMG signals. Imagine a 

radio tuner that only lets in certain frequencies. For 

sEMG, we typically focus on frequencies between 20 Hz 

and 450 Hz. The lower end (e.g., 20 Hz) is super 

important for getting rid of "motion artifacts" – those 

annoying jiggles from electrode movement or even 

breathing – and other low-frequency hums that can hide 

the real sEMG signal. The higher end (e.g., 450 Hz) helps 

us eliminate high-frequency noise, like electrical 

interference from power lines (you know, that 50/60 Hz 

buzz) and other biological signals we're not interested 

in. This filtering ensures we only keep the frequencies 

that genuinely come from our muscles contracting. We 

also choose our filter type carefully (like Butterworth or 

Chebyshev) to make sure we don't accidentally distort 

the signal. 

2. Rectification: Making It All Positive: After filtering, 

we "rectify" the sEMG signal. This is like taking all the 

negative parts of the signal and flipping them to become 

positive. We usually use "full-wave rectification," which 
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essentially takes the absolute value of the signal. Why 

do this? Because the sEMG signal naturally swings both 

positive and negative, but its amplitude (how big the 

swing is) is what tells us about muscle activity, 

regardless of direction. Rectification allows us to 

calculate a smooth "envelope" that truly represents the 

overall magnitude of muscle activation, making it 

much easier to understand and measure. Without it, 

positive and negative swings would cancel each other 

out, giving us a misleading picture. 

3. Low-pass Filtering (Envelope Extraction): 

Smoothing Out the Bumps: Once rectified, we apply 

another "low-pass filter" to the signal to extract its 

"envelope." Think of this as smoothing out all the rapid, 

jagged ups and downs. We typically use a cutoff 

frequency between 6 Hz and 10 Hz for this. The goal is 

to reveal the underlying, slower changes in muscle 

activity – the overall "shape" of how the muscle is 

working over time. This smoothed envelope gives us a 

much clearer and more interpretable view of the 

muscle's activity, showing us the actual "neural drive" 

going to the muscle. Sometimes, instead of a simple 

filter, we might use a "sliding window method," 

calculating the root mean square (RMS) or average 

rectified value (ARV) over a short, moving time 

window. This achieves a similar smoothing effect. 

4. Normalization: Fair Comparisons: To make sure we 

can compare muscle activity fairly across different 

electrodes, different people, or even different 

experimental sessions, we need to "normalize" the 

sEMG data. This step helps us account for all sorts of 

individual differences, like muscle size, how much fat 

is under the skin, slight variations in electrode 

placement, and skin resistance, all of which can affect 

the raw sEMG signals. Common ways to normalize 

include: 

○ To Maximum Voluntary Isometric Contraction 

(MVIC): This is a popular method where we 

express a muscle's activity during a task as a 

percentage of its activity during a maximal effort 

contraction of that same muscle. We do these 

MVIC trials before the main experiment. 

○ To Peak Activity: If MVIC isn't practical, we can 

normalize the sEMG data to the highest activity 

observed during the task itself. 

○ Channel-wise Normalization: For our spatial 

maps, it's also helpful to normalize each 

electrode's data independently to its own 

maximum or average activity within a specific 

trial. This really helps to highlight the relative 

activation patterns within the electrode grid, 

focusing on the spatial distribution rather than 

just absolute differences in signal strength. 

Normalization is crucial because it ensures that 

any changes we see in muscle activity are truly 

due to physiological changes, not just 

measurement quirks, making our results much 

more valid and comparable. 

Experimental Procedure 

Our experiment is carefully designed to get specific muscle 

activation patterns while making sure our participants are 

comfortable and the data is consistent. We work with a 

group of healthy individuals as they perform a series of pre-

planned hand gestures. 

Who's Participating: We invited fifteen healthy people to 

join our study – seven women and eight men, all between 20 

and 27 years old. It was important that none of them had any 

arm injuries or neurological conditions that might affect 

their muscle function. Before they even started, we made 

sure everyone understood exactly what the study was about, 

what they'd be doing, and any tiny risks involved. Everyone 

signed consent forms, following strict ethical guidelines and 

the Declaration of Helsinki. Our entire study plan, from 

finding participants to collecting data, was approved by the 

Ethics Committee for Biomedical and Social Anthropological 

Research at Sirius University of Science and Technology. 

Having healthy participants is super important because it 

helps us establish what "normal" muscle activation looks 

like before we can compare it to, say, someone recovering 

from an injury. 

Choosing the Hand Gestures: We picked three distinct 

hand gestures for our study. Each one was chosen to activate 

different muscle groups and create specific coordination 

patterns in the forearm: 

1. Fist Clenching: This is pretty straightforward – it 

mainly gets the forearm flexor muscles working, the 

ones responsible for gripping and bending your fingers. 

2. Finger Extension (Open Palm): This gesture focuses 

on the forearm extensor muscles, which are the ones 

that open your hand and straighten your fingers. 

3. Thumb Elevation: This one is specific to the muscles that 

move your thumb. Depending on the exact movement, it 

can involve a mix of both flexors and extensors. 

We chose these gestures because they're common in 

everyday life and tend to produce clear, repeatable 

sEMG patterns, which is great for our analysis. 

Making Sure Everyone's Comfortable: During the 

experiment, each person's hand was placed comfortably on 

a table, supported by soft pads. This setup was critical to 

prevent the sEMG sensors from pressing on the muscles, 

which could cause bad data or discomfort. We also made 

sure the forearm stayed relaxed before and between trials. 

This way, we knew that any muscle activity we recorded was 

genuinely related to the gesture they were trying to perform. 

Practice Makes Perfect (and Consistent Data): Before we 

started collecting official data, everyone went through a 

"habituation" phase, which was basically a practice session 

lasting about 2 minutes. During this time, we gave clear 
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instructions on how to do each gesture correctly, and they 

practiced a few times. This practice ensured that everyone 

understood the tasks, could perform the gestures 

consistently, and helped minimize any "learning effects" 

once we started recording. After practice, we recorded ten 

successful attempts of each gesture. Each recording lasted 

between 2 to 4 seconds – long enough to capture both the 

start and sustained parts of muscle activation for our 

chosen gestures. We also gave at least 5 minutes of rest 

between each different gesture type to prevent muscle 

fatigue and allow their bodies to recover. If anyone felt 

their hand getting tired, they could rest more. The whole 

testing session was done in one day, without splitting it up, 

and took about 30 minutes. This standardized approach is 

vital for ensuring our data is consistent and reliable across 

all participants. 

Muscle Component Extraction 

To truly understand how our muscles work together, we 

need to go beyond just looking at individual muscle 

activations. We want to uncover the underlying 

coordinated patterns, and for that, we use powerful 

"dimensionality reduction" techniques. Non-negative 

Matrix Factorization (NMF) is a fantastic choice for 

extracting these "muscle components" or synergies from 

sEMG data, mainly because its properties perfectly match 

what we see physiologically in muscle activation. 

The Idea Behind NMF: Imagine you have a big, complex 

puzzle. NMF is like a smart algorithm that helps you break 

that puzzle down into simpler, non-negative pieces. In our 

case, we have a matrix (think of it as a big spreadsheet) of 

sEMG data, where each row is an sEMG channel (an 

electrode) and each column is a moment in time. NMF takes 

this big matrix, let's call it M, and breaks it down into two 

smaller, non-negative matrices, W and H: 

 

M≈WH 

 

Let's break down what these matrices mean: 

● M (channels × time points): This is our original sEMG 

data. It's already been cleaned up and filtered, 

containing the smoothed muscle activity from all our 

electrodes over the entire task. 

● W (channels × components): This is where the magic 

happens! This matrix gives us our "muscle synergy 

vectors" or "spatial weights." Each column in W 

represents a distinct muscle component. The numbers 

in that column tell us how much each sEMG channel 

(electrode) contributes to that specific component. 

Since muscle activity can't be negative, NMF's rule that 

all numbers must be non-negative makes W directly 

interpretable in a biological way. 

● H (components × time points): This matrix gives us the 

"activation coefficients" or "temporal profiles." Each 

row here describes when and how much a particular 

muscle component is active throughout the task. Again, 

because of NMF's non-negative rule, these activation 

profiles make perfect physiological sense. 

NMF finds these matrices by repeatedly adjusting them until 

the difference between our original data (M) and the 

reconstructed data (WH) is as small as possible. This is 

usually done by minimizing something called the Frobenius 

norm. The non-negative constraint is key: it ensures that our 

extracted components and their activations are additive and 

can be thought of as fundamental building blocks of muscle 

activity. This is a big advantage over other methods like 

Principal Component Analysis (PCA), which can sometimes 

give you negative values that don't have a clear biological 

meaning in this context. 

How Many Components Do We Need? A crucial question 

in NMF is figuring out the "right" number of muscle 

components to extract. This number (let's call it 'k', which is 

the number of columns in W and rows in H) directly impacts 

how well we can understand and interpret our results. We 

use several methods to decide this: 

● Variance Accounted For (VAF): This metric tells us 

how much of the original data's variability is explained 

by the components we've extracted. As you add more 

components, the VAF usually goes up. We often look for 

an "elbow" in the VAF plot – that's the point where 

adding more components doesn't give us much extra 

explanation, suggesting we've found a good balance. 

● Reconstruction Error: This measures how much 

difference there is between our original data and the 

data we reconstruct using our components. Similar to 

VAF, we look for where this error starts to level off. 

● Cross-validation: For a more robust approach, we can 

split our data into training and testing sets. We extract 

components from the training set and then see how well 

they can reconstruct the testing set. This helps us avoid 

"overfitting" – where our model becomes too specific to 

the training data and doesn't generalize well. 

● Physiological Interpretability: Ultimately, the 

number of components we choose should also make 

sense from a biological perspective. They should 

represent distinct and understandable muscle 

coordination patterns. Research actually suggests that a 

relatively small number of synergies can explain a lot of 

what muscles do during complex movements [1]. It's 

also important to remember that these muscle 

synergies can vary a bit, even within the same person or 

across different sessions [11], which shows how 

adaptable our motor system is. 

NMF vs. Other Methods: While you might hear about other 

"dimensionality reduction" techniques like PCA (Principal 

Component Analysis) or ICA (Independent Component 

Analysis), NMF is generally preferred for extracting muscle 

synergies. PCA tries to find components that capture the 
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most variability, but it can result in components with 

negative values that are hard to explain biologically. ICA 

looks for statistically independent components, but they 

might not always align with the idea of muscle synergies as 

non-negative, additive building blocks. NMF's strict non-

negative rule is what makes its components directly 

interpretable as real muscle activation patterns. 

Spatial Mapping and Visualization 

Once we've extracted our muscle components – those 

spatial weights neatly organized in the W matrix from our 

NMF analysis – the next exciting step is to turn them into 

clear and visually appealing spatial maps. This process 

helps us truly understand where and how each muscle 

component contributes across the electrode grid. 

1. Placing Weights on the Grid: For each muscle 

component we've identified (which is a column in our 

W matrix), we take the corresponding weight for every 

sEMG channel (electrode) and assign it to its exact 

physical location on our electrode grid. Imagine a 

blank map of the forearm with little dots where the 

electrodes were. Now, we're coloring in those dots 

based on how much that electrode contributes to a 

specific muscle component. This gives us a basic, 

discrete map of how each component influences 

different areas. 

2. Making Smooth Maps with Interpolation: Our sEMG 

data comes from discrete electrode points, but muscles 

work continuously. So, to create a smooth, continuous 

picture across the entire muscle area, we use "spatial 

interpolation" techniques. This transforms our 

individual electrode weights into a beautiful, easy-to-

read heatmap. Think of it like filling in the gaps 

between the dots on our map to create a smooth 

gradient of color. Some common interpolation 

methods we use include: 

○ Bilinear Interpolation: This is a straightforward 

method that estimates values at unknown spots 

by taking a weighted average of the four closest 

known data points on our grid. It's efficient and 

creates nice, smooth transitions. 

○ Inverse Distance Weighting (IDW): With IDW, 

we estimate values based on a weighted average 

of known points, but the closer a known point is, 

the more influence it has. 

○ Spline Interpolation: This method uses clever 

mathematical functions (piecewise polynomials) 

to create a very smooth and continuous curve that 

passes through all our known data points. It can 

produce incredibly smooth maps, though it might 

take a bit more computing power. 

The choice of interpolation method can subtly 

change how smooth and detailed our final map 

looks. The resulting heatmap uses a color gradient 

– typically a spectrum from cool colors like blue 

(for low activity) to warm colors like red or even 

white (for high activity) – to visually show the 

strength of activation for that specific component 

at various locations across the muscle. We always 

include a clear color gradient scale next to the map 

(just like you might see in Figure 1, where "black 

means no activity and white means maximum 

activity") so you can accurately interpret the 

intensity values. 

3. Maps for Each Component: A really powerful part of 

this visualization approach is that we create a separate 

spatial map for each muscle component we've 

identified. This allows us to look at each underlying 

synergy independently and truly understand its unique 

contribution to the overall muscle activation pattern. By 

seeing these maps one by one, researchers can spot 

distinct spatial patterns and figure out exactly which 

anatomical regions are working together within each 

component. For example, one map might clearly show 

activity concentrated in the wrist flexors, while another 

might reveal activity spread across the finger extensors. 

4. Dynamic Visualization: Bringing Movement to Life: 

When we're studying movements, a static map only 

gives us a snapshot. To truly capture how muscle 

components change over time, we use "dynamic 

visualization." This means animating the series of 

spatial maps, creating a rich, four-dimensional 

representation (think of it as 2D space + time + the 

intensity of the component). This dynamic view lets us 

observe: 

○ The Flow of Activation: How different muscle 

components are recruited and then relax 

throughout a movement. For instance, during a 

complex task like reaching for something and then 

grasping it, one component might be most active 

during the initial reach, while another takes over 

during the precise grasping and manipulation. 

○ Shifting Hotspots: How the "center" of activation 

for a given component might move across the 

muscle as the movement progresses. 

○ Teamwork in Action: The dynamic interplay and 

coordinated activity of multiple components over 

time. 

Creating these animated maps requires careful 

synchronization of our sEMG data with any other 

movement data we might have (like joint angles 

from motion capture) and choosing the right frame 

rates to ensure a smooth and informative visual 

experience. It's a truly powerful way to understand 

the spatiotemporal (space and time) organization 

of how our nervous system controls our muscles. 

RESULTS 

After putting our methodology to work on multichannel 
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sEMG data, we end up with a series of incredibly 

informative and distinct spatial maps. Each map beautifully 

outlines the unique activation profile of a specific muscle 

component. In a realistic experiment involving forearm 

muscles during various hand gestures, we'd typically 

expect to find a handful of key muscle components, usually 

somewhere between three and five. These components, 

working together, would explain a large part of the total 

variation in the sEMG signal. 

Each component map is presented as a vibrant heatmap, 

carefully laid over a simple drawing of the forearm muscles 

and where our electrodes were placed. The colors on these 

heatmaps are super important: warmer colors, like reds 

and yellows, mean that particular electrode (and the 

muscle under it) is contributing a lot to that component's 

activity – it's really "lighting up." Cooler colors, fading 

towards black, mean less or no contribution, showing that 

those muscle regions aren't very involved in that specific 

component. We always include a clear color scale, going 

from black (no activity) to white (maximum activity), so 

you can easily understand what each color means. 

Let's imagine some specific findings, much like what you'd 

see when analyzing muscle activation during different 

hand gestures: 

1. Fist Clenching (Imagine Figure 1A): 

When someone makes a fist, our spatial maps would clearly 

show components linked to the forearm flexor muscles. For 

example, one map might show intense activity specifically 

in the m. flexor carpi ulnaris and m. palmaris longus. This 

tells us these muscles are key players in generating the 

gripping force and bending the wrist needed for clenching. 

Another distinct component might reveal significant 

involvement of the m. extensor carpi radialis brevis. This 

suggests it's working hard to stabilize the wrist during that 

powerful flexion, stopping unwanted wrist movements. 

We'd also see smaller, but still noticeable, involvement 

from m. extensor carpi radialis longus and m. extensor 

digitorum, indicating their subtle contributions to fine-

tuning the grip. And here’s a neat detail: we'd also see 

activity in the m. extensor carpi ulnaris when the fist is 

unclenching, showing its role in releasing the grip. 

2. Finger Extension (Open Palm) (Imagine Figure 1B): 

For the gesture of opening the hand wide (finger 

extension), our maps would primarily highlight 

components connected to the forearm extensor muscles. A 

main component map would show the most intense 

activity focused in the m. extensor carpi radialis brevis and 

m. extensor digitorum. This clearly demonstrates their 

vital role in extending the fingers and wrist to achieve that 

open palm position. The maps might also show a little bit 

of activity in the m. flexor carpi ulnaris and m. extensor 

carpi ulnaris, hinting at their possible role in stabilizing the 

wrist or making tiny counter-movements during the 

extension. 

3. Thumb Elevation (Imagine Figure 1C): 

When someone lifts their thumb, our spatial maps would 

reveal unique component activation patterns just for this 

movement. We'd see the most significant involvement in the 

m. extensor digitorum and m. flexor carpi ulnaris, indicating 

their main roles in lifting the thumb and potentially 

stabilizing the hand. Plus, the maps would consistently show 

activity in the m. extensor carpi ulnaris and m. palmaris 

longus, suggesting their ongoing contribution to the precise 

coordination needed for thumb movement. 

What These Visualizations Really Tell Us: 

● Pinpointing Muscle Action: These maps clearly show 

us the "hotspots" and "cold spots" for each component, 

giving us a much more detailed understanding of how 

muscles are engaged than just looking at a single sEMG 

channel. This specificity helps us see exactly which parts 

of the muscle are working hardest for different parts of 

a movement. For instance, noticing that some muscles 

are active for one gesture but totally quiet for others 

(like the m. brachioradialis staying silent because it's 

mainly for elbow flexion, not wrist or finger 

movements) really emphasizes how precise and 

selective our muscle coordination is. 

● Muscles Working as a Team: The visualizations 

beautifully illustrate how different muscle components, 

even if they're distinct, can actually have overlapping 

areas of activity. This suggests a subtle interplay and 

shared contribution across various muscle regions to 

achieve a coordinated movement. It's powerful visual 

proof that our nervous system orchestrates muscle 

activity across a wide area, rather than just firing off 

isolated muscles. 

● The Story of Movement Over Time: When we animate 

these spatial maps, they become a powerful, four-

dimensional story of neuromuscular control. This 

dynamic view shows us how different muscle 

components are recruited and then relax throughout a 

movement. For example, in a complex task like reaching 

for something and then grabbing it, one component 

might be super active during the initial reach, while 

another takes over when it's time for the precise grab. 

This helps us truly understand the timing and 

coordination of muscle activation. 

● Hints About Motor Unit Recruitment: While our 

method doesn't show individual motor units directly, 

the spatial maps of components can give us indirect 

clues about how motor units are recruited. If a 

component shows very localized and intense activation, 

it might suggest that specific groups of motor units in 

that area are being preferentially activated. This could 
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even be influenced by things like blood flow restriction 

during exercise, as some recent research has explored 

[13]. 

In a nutshell, these spatial maps offer a compelling and 

intuitive way to visualize the complex, distributed, and 

dynamic nature of muscle activation. By moving beyond 

simple time-based measurements, they give us a deeper, 

more comprehensive understanding of how our 

movements are organized in space, paving the way for 

smarter interventions and exciting new technologies. 

DISCUSSION 

Looking at multichannel sEMG data through the lens of 

muscle component activation maps is a huge step forward 

in how we analyze and understand how our nerves and 

muscles work together. This approach helps us get past the 

limitations of traditional sEMG by giving us a clear, spatial, 

and functionally meaningful picture of muscle activity. By 

using smart "dimensionality reduction" techniques like 

Non-negative Matrix Factorization (NMF), we can take a 

massive amount of high-density sEMG information and boil 

it down into understandable spatial patterns that 

represent the basic "muscle synergies." This method fits 

perfectly with what we now understand about motor 

control: our bodies simplify the control of countless 

muscles by relying on a small set of coordinated modules 

to create all sorts of diverse and complex movements [1]. 

What's So Great About This Approach? 

The clear, heatmap-like pictures of muscle components on 

a spatial grid offer some really distinct advantages over 

older sEMG analysis methods: 

1. A Clearer View of How We Move: This approach 

gives us an intuitive, visual understanding of exactly 

where and how different muscle components 

contribute to a movement. This spatial insight is often 

hidden when we just look at individual sEMG channels 

or even averaged maps. Being able to see localized 

activation within a muscle group provides a much 

more detailed perspective on how muscles are 

engaged. 

2. Super Helpful for Doctors and Therapists: These 

spatial maps can be incredibly valuable in clinical 

settings. They can help doctors and therapists spot 

subtle ways people compensate for injuries, detect 

muscle imbalances, or see how conditions like stroke 

or spinal cord injury affect muscle activation. For 

example, when designing prosthetic hands, 

understanding the precise spatial distribution of 

muscle activity can make sEMG-based control systems 

much more reliable and accurate, especially when 

dealing with issues like electrodes shifting on the skin 

[7]. This detailed insight can guide clinicians in 

creating more targeted and effective rehabilitation 

plans. 

3. Deeper Understanding of Muscle Function: By 

breaking down overall muscle activity into distinct 

components, this visualization technique allows for a 

much more detailed investigation into what different 

muscle regions do. This complements studies that look 

at how a single muscle can be controlled synergistically 

[6], giving us a bigger picture of how these internal 

muscle components are organized in space and 

contribute to overall movement. The ability to visualize 

how our muscles adapt their synergistic responses to 

unexpected challenges, as shown in recent research 

[12], could be greatly enhanced by these detailed spatial 

maps. 

4. Game-Changer for Prosthetics and Robotics: 

Precisely identifying and visualizing muscle 

components can have a profound impact on creating 

more intuitive and personalized prosthetic control 

systems. By understanding the body's natural 

synergistic patterns, engineers can design interfaces 

that feel more like natural extensions of the user, 

potentially leading to faster adaptation and a better 

quality of life for people with limb loss. In robotics, this 

knowledge can inspire the development of robots that 

move more like humans, with greater accuracy and 

efficiency, allowing them to perform complex tasks 

requiring precise control and coordination. 

5. Comparing Movements and Spotting Specificity: The 

data we get from this visualization method aligns with 

previous studies that have shown how specific muscle 

activation patterns depend on the type of movement [5, 

10-12]. However, what makes our approach stand out, 

especially when we focus on specific superficial forearm 

muscles, is the comprehensive view it provides of arm 

movement coordination. For instance, our results 

consistently show that the m. brachioradialis muscle 

isn't active in the gestures we studied. This makes 

perfect sense physiologically, as this muscle is mainly 

involved in bending the elbow, not in wrist or finger 

movements. This observation further highlights just 

how selective and precise our motor control truly is for 

specific gestures. 

What Are the Challenges? 

Even with all its benefits, we need to be honest about some 

limitations that come with this method and with sEMG data 

in general: 

1. It All Starts with Good Data: The accuracy and how 

well we can understand our spatial maps really depend 

on the quality of the sEMG data we collect. Things like 

putting the electrodes in just the right spot, preparing 

the skin consistently (shaving, gently rubbing, cleaning), 

and keeping the electrical resistance between the skin 

and electrode low are super important. If the data 
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quality isn't great, we can end up with noisy signals 

and inaccurate component extraction. 

2. Everyone's a Little Different: Human bodies are 

unique! There's a lot of natural variation between 

people in terms of muscle size, the thickness of fat 

under the skin, and how motor units are organized. All 

these differences can affect the raw sEMG signals and, 

consequently, the muscle components we extract and 

how they look spatially. While normalization helps 

with some of these differences, making everything 

perfectly standard across individuals is still a 

challenge. 

3. Choosing the Right Tools and Numbers: The choice 

of which "dimensionality reduction" algorithm to use 

(like NMF versus others) and, crucially, deciding on the 

"right" number of components to extract can 

significantly impact how well we can interpret and 

trust our results. While NMF is great because it gives 

us non-negative components, different algorithms 

might produce different component structures. Plus, 

sometimes deciding on the number of components can 

feel a bit subjective, which can influence the final 

outcome. 

4. Surface vs. Deep Muscles: sEMG mainly captures the 

activity of muscles close to the surface of the skin. The 

activity of deeper muscles might not be fully 

represented, or their signals could get mixed up with 

those from overlying muscles due to electrical "volume 

conduction." This means we might not get a complete 

picture of how deeper muscles coordinate. 

5. Tricky Motion Artifacts: Even after filtering, 

significant movement artifacts – especially during 

dynamic movements – can still mess with sEMG 

signals. While we try our best to minimize these in pre-

processing, completely getting rid of them without 

affecting the true signal can be tough. 

Where Do We Go From Here? (Future Directions) 

The amazing insights we get from visualizing multichannel 

sEMG as maps of muscle component activation open up so 

many exciting possibilities for future research and 

practical uses: 

1. Real-time Feedback: Learning and Healing Faster: 

Imagine systems that can show you your muscle 

component activation maps as you move. This is a 

promising direction for developing real-time 

visualization and biofeedback systems. Such tools 

could revolutionize rehabilitation training, allowing 

patients to actively see and adjust their muscle 

activation patterns to optimize recovery. In sports, 

athletes could use this feedback to fine-tune their 

technique and prevent injuries. The main hurdles here 

are making sure the signal processing is super fast and 

the maps render smoothly without delay. 

2. Putting All the Pieces Together: A Holistic View: To 

truly understand how our bodies control movement, 

future research should aim to combine these spatial 

sEMG maps with other types of physiological signals. 

Think about linking sEMG data with kinematic data (like 

joint angles and movement paths from motion capture 

systems), force plate data (for how we interact with the 

ground), and even brain activity (from EEG or fMRI). 

This "multi-modal" approach could give us a much more 

complete picture of the neural and muscular control of 

movement, revealing complex connections between 

brain activity, muscle activation, and what we actually 

see in movement. 

3. Smart Machines Learning from Muscles: The huge 

datasets generated by multichannel sEMG are perfect 

for applying advanced machine learning and deep 

learning techniques [8]. These smart algorithms can be 

used for automatically recognizing patterns, classifying 

movements based on our component maps, spotting 

abnormal activation patterns (which could be 

diagnostic tools!), and even predicting motor outcomes. 

Deep learning, in particular, could learn incredibly 

complex relationships between raw sEMG signals and 

higher-level intentions or movement characteristics. 

4. Understanding and Treating Conditions Better: 

Applying this visualization method to study muscle 

activation patterns in various neurological and 

musculoskeletal disorders (like stroke, cerebral palsy, 

spinal cord injury, or Parkinson's disease) has immense 

potential. It could give us objective ways to measure 

motor impairment, track how well someone is 

recovering, and evaluate how effective different 

therapies are. Understanding how muscle synergies 

change in disease states is absolutely critical for 

developing targeted and personalized rehabilitation 

strategies. 

5. Fatigue, Learning, and Adaptation: Our dynamic 

visualization capabilities can be used to track how 

muscle component activation patterns change over 

time, especially when someone gets tired or when 

they're learning a new movement. Research on how 

muscle synergies vary during hand grasps [11] and how 

our muscles adapt their responses to unexpected 

challenges [12] could greatly benefit from these spatial 

insights, revealing how our motor system reorganizes 

its control strategies under different conditions. 

6. Even Finer Details: Advanced Signal Processing: 

Future research might also explore more advanced 

signal processing techniques, like "blind source 

separation" or "independent component analysis" 

specifically designed for sEMG. These could potentially 

refine the extraction of muscle components even 

further, perhaps even isolating the activity of individual 

motor units or more granular functional units within 

muscles. This could lead to an even deeper 
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understanding of how muscle control is organized at a 

microscopic level. 

In conclusion, visualizing multichannel sEMG as a map of 

muscle component activation is a truly significant step 

forward in how we analyze and interpret data about our 

nerves and muscles. By transforming complex time-based 

data into intuitive spatial pictures, this method offers 

deeper insights into how our movements are organized. It 

holds tremendous promise for improving diagnostics, 

guiding therapies in various clinical and research settings, 

and driving the next generation of prosthetic and robotic 

technologies. Our findings suggest that our understanding 

of muscle synergy is constantly growing, showing that each 

movement activates a unique and consistent set of muscles 

across different individuals. This enhanced understanding 

will undoubtedly speed up developments in the fields of 

prosthetics and rehabilitation, ultimately leading to better 

functional outcomes and an improved quality of life for 

many. 
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