Investigating the Role of Royal Jelly's 10-Hydroxy-2-Decenoic Acid in Epithelial-to-Mesenchymal Transition within Colorectal Cancer Cells
Keywords:
10-Hydroxy-2-Decenoic Acid, Royal Jelly, Colorectal Cancer, Epithelial-to-Mesenchymal TransitionAbstract
Colorectal cancer (CRC) progression and the spread of cancer to other parts of the body (metastasis) are significantly driven by a fundamental cellular change called epithelial-to-mesenchymal transition (EMT). This study delves into how 10-Hydroxy-2-Decenoic Acid (10-HDA), a unique fatty acid found abundantly in royal jelly, influences EMT in human colorectal cancer cells, specifically the SW-480 cell line. Our findings reveal that while 10-HDA shows minimal harm to cells at lower concentrations, it powerfully hinders the ability of SW-480 cells to migrate and invade, doing so in a way that depends on the dose. Looking closer at the molecular level, we discovered that treating cells with 10-HDA significantly boosted the presence of E-cadherin, a key marker for healthy epithelial cells, at both the gene and protein levels. At the same time, it reduced the levels of mesenchymal markers like N-cadherin and Vimentin, which are associated with more aggressive, spreading cancer cells. What's more, 10-HDA put a damper on the expression of crucial EMT-promoting factors such as Snail, Slug, and Twist, and even lowered the levels of NANOG, a gene linked to cancer stem cell properties. These exciting results suggest that 10-HDA effectively reverses the aggressive, mesenchymal characteristics of SW-480 cells, thereby slowing down their potential to metastasize. This research shines a light on 10-HDA as a promising natural compound with properties that could fight cancer spread, opening new doors for innovative treatments or preventive strategies against colorectal cancer.
References
1. Hossain, M.S.; Karuniawati, H.; Jairoun, A.A.; Urbi, Z.; Ooi, J.; John, A.; Lim, Y.C.; Kibria, K.M.K.; Mohiuddin, A.K.M.; Ming, L.C.; et al. Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk Factors, preventive and treatment strategies. Cancers 2022, 14, 1732.
2. Miyata, Y.; Sakai, H. Anti-cancer and protective effects of royal jelly for therapy-induced toxicities in malignancies. Int. J. Mol. Sci. 2018, 19, 3270.
3. Huang, S.F.; Horng, C.T.; Hsieh, Y.S.; Hsieh, Y.H.; Chu, S.C.; Chen, P.N. Epicatechin-3-gallate reverses TGF-B1-induced epithelialto-mesenchymal transition and inhibits cell invasion and protease activities in human lung cancer cells. Food Chem. Toxicol. 2016, 94, 1–10.
4. Elkhateeb, W.A.; El-Ghwas, D.E.; Daba, G.M. Mushrooms and lichens the factory of important secondary metabolites: Review. J. Biomed. Res. Environ. Sci. 2023, 4, 1072–1082.
5. Jovanovi´c, M.M.; Šekli´c, D.S.; Rakobradovi´c, J.D.; Planojevi´c, N.S.; Vukovi´c, N.L.; Vuki´c, M.D.; Markovi´c, S.D. Royal jelly and trans-10-hydroxy-2-decenoic acid inhibit migration and invasion of colorectal carcinoma cells. Food Technol. Biotechnol. 2022, 60, 213–224.
6. Ramadan, M.F.; Al-Ghamdi, A. Bioactive compounds and health-promoting properties of royal jelly: A review. J. Funct. Foods 2012, 4, 39–52.
7. Shirzad, M.; Kordyazdi, R.; Shahinfard, N.; Nikokar, M. Does royal jelly affect tumor cells? J. HerbMed Pharmacol. 2013, 2, 45–48.
8. Townsend, G.F.; Morgan, J.F.; Tolnai, S.; Hazletf, B.; Morton, H.J.; Shuel, R.W. Studies on the in vitro antitumor activity of fatty acids. I. 10-hydroxy-2—decenoic acid from royal jelly. Cancer Res. 1960, 20, 503–510.
9. Orsoli´c, N.; Terzi´c, S.; Mihaljevi´c, Z.; Sver, L.; Basi´c, I. Effects of local administration of propolis and its polyphenolic compounds on tumor formation and growth. Biol. Pharm. Bull. 2005, 28, 1928–1933.
10. Sugiyama, T.; Takahashi, K.; Mori, H. Royal jelly acid, 10-hydroxy-trans-2-decenoic acid, as a modulator of the innate immune responses. Endocr. Metab. Immune Disord. Drug Targets 2012, 12, 368–376.
11. Šekli´c, D.S.; Jovanovi´c, M.M.; Virijevi´c, K.D.; Gruji´c, J.N.; Živanovi´c, M.N.; Markovi´c, S.D. Pseudevernia furfuracea inhibits migration and invasion of colorectal carcinoma cell lines. J. Ethnopharmacol. 2022, 284, 114758.
12. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.
13. Khazaei, M.; Ansarian, A.; Ghanbari, E. New findings on biological actions and clinical applications of royal jelly: A review. J. Diet. Suppl. 2018, 15, 757–775.
14. Tamura, S.; Isobe, T.; Ariyama, H.; Nakano, M.; Kikushige, Y.; Takaishi, S.; Kusaba, H.; Takenaka, K.; Ueki, T.; Nakamura, M.; et al. E-cadherin regulates proliferation of colorectal cancer stem cells through NANOG. Oncol. Rep. 2018, 40, 693–703.
15. Bincoletto, C.; Eberlin, S.; Figueiredo, C.A.; Luengo, M.B.; Queiroz, M.L. Effects produced by royal jelly on haematopoiesis: Relation with host resistance against Ehrlich ascites tumour challenge. Int. Immunopharmacol. 2005, 5, 679–688.
16. Jiang, H.; Tang, Y.; Garg, H.K.; Parthasarathy, D.K.; Torregrossa, A.C.; Hord, N.G.; Bryan, N.S. Concentration- and stage-specific effects of nitrite on colon cancer cell lines. Nitric Oxide 2012, 26, 267–273.
17. Nietzer, S.; Baur, F.; Sieber, S.; Hansmann, J.; Schwarz, T.; Stoffer, C.; Hafner, H.; Gasser, M.; Waaga-Gasser, A.M.; Walles, H.; et al. Mimicking metastases Including tumor stroma: A new technique to generate a three-dimensional colorectal cancer model based on a biological decellularized intestinal scaffold. Tissue Eng. Part C Methods 2016, 22, 621–635.
18. Šekli´c, D.S.; Stankovi´c, M.S.; Milutinovi´c, M.G.; Topuzovi´c, M.D.; Štajn, A.Š.; Markovi´c, S.D. Cytotoxic, antimigratory and pro/ antioxidative activities of extracts from medicinal mushrooms on colon cancer cell lines. Arch. Biol. Sci. 2016, 68, 93–105.
19. Liu, S.; Sun, J.; Cai, B.; Xi, X.; Yang, L.; Zhang, Z.; Feng, Y.; Sun, Y. NANOG regulates epithelial-mesenchymal transition and chemoresistance through activation of the STAT3 pathway in epithelial ovarian cancer. Tumor Biol. 2016, 37, 9671–9680.
20. Kim, W.K.; Kwon, Y.; Jang, M.; Park, M.; Kim, J.; Cho, S.; Jang, D.G.; Lee, W.B.; Jung, S.H.; Choi, H.J.; et al. β-catenin activation down-regulates cell-cell junction-related genes and induces epithelial-to-mesenchymal transition in colorectal cancers. Sci. Rep. 2019, 9, 18440.
21. Lin, X.M.; Liu, S.B.; Luo, Y.H.; Xu, W.T.; Zhang, Y.; Zhang, T.; Xue, H.; Zuo, W.B.; Li, Y.N.; Lu, B.X.; et al. 10-HDA induces ROS-mediated apoptosis in A549 human lung cancer cells by regulating the MAPK, STAT3, NF-κB, and TGF-β1 signaling pathways. BioMed Res. Int. 2020, 2020, 3042636.
22. Suzuki, K.M.; Isohama, Y.; Maruyama, H.; Yamada, Y.; Narita, Y.; Ohta, S.; Araki, Y.; Miyata, T.; Mishima, S. Estrogenic activities of fatty acids and a sterol isolated from royal jelly. Evid. Based Complement. Altern. Med. 2008, 5, 295–302.
23. Mishima, S.; Suzuki, K.M.; Isohama, Y.; Kuratsu, N.; Araki, Y.; Inoue, M.; Miyata, T. Royal jelly has estrogenic effects in vitro and In Vivo. J. Ethnopharmacol. 2005, 101, 215–220.
24. Moutsatsou, P.; Papoutsi, Z.; Kassi, E.; Heldring, N.; Zhao, C.; Tsiapara, A.; Melliou, E.; Chrousos, G.P.; Chinou, I.; Karshikoff, A.; et al. Fatty acids derived from royal jelly are modulators of estrogen receptor functions. PLoS ONE 2010, 5, e15594.
25. Caiazza, F.; Ryan, E.J.; Doherty, G.; Winter, D.C.; Sheahan, K. Estrogen receptors and their implications in colorectal carcinogenesis. Front. Oncol. 2015, 5, 19.
26. Williams, C.; DiLeo, A.; Niv, Y.; Gustafsson, J.Å. Estrogen receptor beta as target for colorectal cancer prevention. Cancer Lett. 2016, 372, 48–56.
27. Di Zazzo, E.; Galasso, G.; Giovannelli, P.; Di Donato, M.; Bilancio, A.; Perillo, B.; Sinisi, A.A.; Migliaccio, A.; Castoria, G. Estrogen receptors in epithelial-mesenchymal transition of prostate cancer. Cancers 2019, 11, 1418.