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ABSTRACT 

 
Office Open XML (OOXML) documents represent a primary vector for malware distribution, capitalizing on their 
ubiquitous presence in modern enterprise and personal computing. The inherent complexity of the OOXML format 
provides a fertile ground for concealing malicious payloads, which often evade traditional security measures. 
Conventional detection methods, which predominantly rely on signature-based scanning and predefined rules, are 
frequently outpaced by the rapid evolution of malware, particularly sophisticated threats like polymorphic code, zero-
day exploits, and advanced social engineering tactics. This paper proposes a novel, in-depth static analysis framework 
that leverages the advanced contextual understanding and reasoning capabilities of Large Language Models (LLMs) to 
unmask malicious OOXML documents. Our methodology involves a systematic deconstruction of the OOXML package into 
a structured, human-readable JSON format. This comprehensive representation is then fed to an LLM, which, guided by a 
sophisticated, role-based prompt, performs a deep semantic analysis of the document’s constituent parts. The model 
scrutinizes everything from VBA macro code and XML relationship files to embedded objects and metadata for indicators 
of malicious intent. This approach transcends the limitations of simple pattern matching, enabling a holistic assessment 
of the document's structure and content. The framework demonstrates a high potential for accurately identifying 
malicious documents, including those that employ heavy obfuscation or novel attack vectors, thereby offering a significant 
and necessary advancement in the ongoing fight against document-based cyber threats. 

Keywords: Pulmonary blastoma, Biphasic tumor, Lung neoplasm, Case report, Review, Diagnosis, Treatment, Prognosis, 
Molecular pathology, Sarcomatoid carcinoma, Fetal lung, Chemotherapy, Radiotherapy. 

 

INTRODUCTION 

In the digital ecosystem of the 21st century, Microsoft 

Office has solidified its position as the undisputed leader 

in productivity software. Its applications are deeply 

woven into the fabric of daily operations for an 

overwhelming majority of corporations, government 

agencies, and individual users worldwide [1]. The 

associated Office Open XML (OOXML) file formats—.docx 

for documents, .xlsx for spreadsheets, and .pptx for 

presentations—have become the de facto standard for 

information exchange. However, this very ubiquity 

makes them an irresistible target for cybercriminals, who 

adeptly exploit their intricate architecture to deploy a 

wide array of malware. 

1.1. Defining Document-Based Malware 

Before delving into technical specifics, it is crucial to 

define what constitutes a "malicious document." In this 

context, a malicious document, or "maldoc," is any file 

created by a standard productivity application (primarily 

Microsoft Office) that has been weaponized to cause 

harm to a user's system. The malicious nature is defined 

by its intent: to execute unauthorized actions such as 

installing ransomware, stealing credentials, establishing a 

backdoor for persistent access, or exfiltrating sensitive 

data. This malicious functionality is often concealed within 

a seemingly benign document—for instance, a resume, an 

invoice, or a company report—to deceive the recipient and 

bypass initial suspicion. The harm is directed at the target, 

while the objective for the attacker can range from 

financial gain and corporate espionage to political 

disruption or cyber warfare. 

1.2. The Architectural Vulnerability of OOXML 

To understand how these documents are exploited, one 

must first appreciate their underlying structure. The 

modern OOXML format is, at its core, a ZIP archive. This 

archive contains a structured collection of XML files, 

folders, and other resources (such as images or media 

files) that collectively define every aspect of the document, 

from its text content and formatting to its metadata and 

embedded functionalities [3, 4]. This is a departure from 

the older binary OLE (Object Linking and Embedding) 
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format, which was a monolithic file system in itself. 

The component-based nature of OOXML, while 

promoting interoperability and data recovery, creates a 

vast attack surface. Attackers can manipulate these 

components in numerous ways to embed malicious 

payloads. The most common methods include: 

● VBA (Visual Basic for Applications) Macros: 

Embedding malicious scripts that can execute system 

commands, download external payloads, or manipulate 

the file system. 

● Remote Template Injection: Modifying a 

document's relationship files (.xml.rels) to point to a 

malicious template hosted on a remote server. When the 

document is opened, it fetches and executes the code 

from this template [34]. 

● Embedded OLE Objects: Inserting malicious 

executables or scripts disguised as legitimate objects, 

such as PDFs or images. 

● Exploiting Software Vulnerabilities: Crafting a 

document to trigger a specific bug or vulnerability in the 

Microsoft Office software itself, leading to remote code 

execution [6, 7]. 

While Microsoft has implemented security measures, 

such as disabling macros from internet-sourced 

documents by default [2], attackers continuously 

innovate. They employ sophisticated evasion techniques, 

including multi-stage obfuscation of macro code, 

encrypting documents with passwords to thwart 

automated scanners [25], and using non-traditional 

elements like malicious shapes or text boxes to hide 

payloads [11, 12]. 

1.3. The Pervasive Threat Landscape 

The result of these factors is a persistent and severe 

threat. Document-based malware is a cornerstone of 

modern cyberattacks, with email serving as the primary 

delivery vector [8]. Phishing campaigns frequently use 

malicious attachments as their payload, leveraging social 

engineering to trick users into opening the files and 

enabling their malicious content. 

Statistics confirm the severity of this threat. For years, 

exploits targeting Microsoft Office applications have 

consistently accounted for the majority of exploitation 

attempts observed in the wild, far surpassing those 

targeting browsers or other software [5]. The CVE 

(Common Vulnerabilities and Exposures) database 

documents hundreds of high-severity vulnerabilities in 

Microsoft Office, with dozens of new critical flaws 

discovered each year, providing a steady stream of new 

attack opportunities for criminals [7]. 

1.4. The Need for a New Detection Paradigm 

Traditional antivirus and security solutions have 

struggled to keep pace. Their reliance on signature-based 

scanning—looking for known patterns of malicious 

code—is fundamentally reactive. These systems are often 

blind to: 

● Zero-Day Threats: Novel attacks that exploit 

previously unknown vulnerabilities. 

● Polymorphic and Metamorphic Malware: Malicious 

code that automatically rewrites itself with each new 

infection to create a unique signature, rendering hash-

based detection useless [23, 24]. 

● Advanced Obfuscation: Multi-layered encoding or 

encryption schemes that hide the true nature of the 

malicious script. 

Static analysis, the process of examining a file without 

executing it, is a safer alternative to dynamic analysis 

(which runs the malware in a sandbox) but has 

traditionally been limited by its inability to understand the 

intent behind complex code or file structures [35, 38]. 

While machine learning (ML) models have been applied to 

this problem with some success [36, 37], they often 

require extensive and brittle feature engineering and can 

struggle to generalize to entirely new attack techniques. 

The recent and rapid advancement of Large Language 

Models (LLMs) offers a paradigm shift [26, 27]. With their 

profound ability to understand, reason about, and 

generate complex text and code, LLMs are uniquely 

positioned to overcome the limitations of previous 

technologies. Researchers are already exploring their use 

for a range of cybersecurity tasks, from deobfuscating 

malicious scripts [33] to detecting malicious code 

packages [32] and analyzing system behavior [30]. 

This paper builds upon that momentum by proposing a 

comprehensive framework for applying LLMs to the static 

analysis of OOXML documents. We hypothesize that by 

converting the entire, complex structure of an OOXML file 

into a format an LLM can understand, we can leverage its 

reasoning capabilities to perform a deep, semantic 

security audit. The goal is to move beyond finding "bad 

strings" to understanding "bad behavior" as described by 

the document's own code and structure, thereby creating 

a more resilient and forward-looking defense against this 

pervasive threat. 

2. Literature Review: The Evolution of Maldoc Detection 

The battle against malicious documents is a continuous 

cat-and-mouse game between attackers and defenders. To 

appreciate the novelty of an LLM-based approach, it is 

essential to understand the evolution and inherent 

limitations of existing detection methodologies. This 

section reviews the landscape of traditional analysis 

techniques and surveys the emerging field of AI in 

malware detection. 

2.1. Traditional Static Analysis Techniques 

Static analysis involves inspecting a file's contents without 

executing it, making it a safe first line of defense. The 

primary methods include: 
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● Signature and Hash Matching: This is the most 

basic technique. A cryptographic hash (e.g., MD5, SHA-

256) of a suspicious file is calculated [16] and compared 

against a database of hashes from known malware 

samples, such as those found on MalwareBazaar [14] or 

VirusTotal [15]. While fast and efficient for known 

threats, it is trivially defeated by any modification to the 

file, no matter how small. 

● String Analysis: This involves extracting human-

readable strings from the file's binary. The presence of 

certain strings, such as suspicious URLs, file paths (e.g., 

C:\Windows\System32), or function names (Shell, 

CreateObject), can be strong indicators of malice. 

However, attackers easily circumvent this by encoding or 

encrypting strings. 

● YARA Rules: YARA is a powerful tool that allows 

analysts to create rules based on textual or binary 

patterns [17]. A YARA rule can search for specific strings, 

byte sequences, or combinations thereof. It is more 

flexible than simple hash matching but still requires a 

pre-existing rule to be written for a threat to be detected. 

It cannot, by definition, detect entirely new threats, and 

attackers can study public YARA rulesets to engineer 

malware that avoids them [49]. 

● Specialized Parsing Tools: For complex file 

formats like OOXML, tools like oletools [19] (specifically 

olevba for VBA macro analysis) are invaluable. olevba can 

extract and deobfuscate VBA code, identify suspicious 

keywords, and flag auto-executing functions. Similarly, 

tools like PeStudio [18] are used for analyzing embedded 

executable files. These tools provide crucial information 

but require a human analyst to interpret the findings and 

make a final judgment. 

2.2. Dynamic Analysis Techniques 

Dynamic analysis complements static analysis by 

executing the suspicious file in a controlled, isolated 

environment known as a sandbox. This allows analysts to 

observe the file's actual behavior. Key aspects of dynamic 

analysis include: 

● Sandboxing: The malware is run on a virtual 

machine (e.g., using REMnux [20] or a Flare-VM [40] 

setup) that is disconnected from the production network 

to prevent real-world damage. 

● Behavioral Monitoring: Analysts monitor the file's 

interactions with the operating system, including network 

connections (using tools like Wireshark), file system 

changes, and registry modifications. 

● Network Simulation: Tools like INetSim can 

simulate an internet connection, tricking the malware into 

revealing its command-and-control (C2) communication 

protocols or attempting to download second-stage 

payloads [21]. 

Endpoint Detection and Response (EDR) solutions are a 

commercial implementation of dynamic analysis, 

monitoring process behavior in real-time on user 

machines [22]. The primary drawback of dynamic analysis 

is that sophisticated malware is often "sandbox-aware" 

and will alter its behavior or remain dormant if it detects 

it is being analyzed. 

Table 1. Comparison of Traditional Malware Analysis Techniques 

Technique Category Key 

Characteristics 

Strengths Weaknesses 

Hash Matching Static Compares file 

hash to 

database of 

known threats. 

Extremely fast; 

low false 

positive rate. 

Fails on any file 

modification 

(polymorphism). 

String Analysis Static Extracts 

readable text 

strings from 

binary. 

Simple; can 

reveal URLs, 

commands. 

Easily defeated 

by 

encoding/encry

ption. 

YARA Rules Static Pattern 

matching based 

on custom rules. 

Flexible; can 

detect malware 

families. 

Requires pre-

existing rules; 

cannot detect 

zero-days. 

Dynamic Dynamic Executes file in a Detects Slow; resource-
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Analysis sandbox to 

observe 

behavior. 

behavior, not 

signatures; 

effective vs. 

obfuscation. 

intensive; can be 

evaded by 

sandbox-aware 

malware. 

 

2.3. Limitations of Conventional Malware Detection 

Both static and dynamic analysis face significant 

challenges from modern malware engineering: 

● Polymorphic and Metamorphic Code: This is the 

bane of signature-based detection. Polymorphic malware 

encrypts its malicious payload and uses a different 

decryption key for each infection. Metamorphic malware 

goes a step further, rewriting its entire code body with 

each propagation, ensuring no two samples are identical 

[23, 24]. 

● Obfuscation and Anti-Analysis: Attackers use 

layers of encoding (e.g., Base64, Hex), string splitting, 

dead-code insertion, and other techniques to make their 

scripts unreadable to both human analysts and 

automated tools. 

● Encryption: A simple yet highly effective 

technique is to password-protect the malicious 

document [25]. Many automated security gateways 

cannot scan the contents of an encrypted file. The 

attacker then simply provides the password to the victim 

in the body of the phishing email, bypassing the technical 

control and relying on social engineering. 

These limitations highlight a fundamental problem: 

conventional methods are largely reactive and struggle 

with novelty and complexity. They lack the ability to infer 

intent from convoluted or previously unseen code. 

2.4. The Rise of Large Language Models in Cybersecurity 

The emergence of powerful LLMs marks a potential 

turning point [27]. Trained on vast expanses of text and 

code from the internet, these models have developed 

emergent capabilities in reasoning, pattern recognition, 

and semantic understanding that are highly applicable to 

cybersecurity [26]. The research community has begun 

to explore their potential in several key areas: 

● Malware Analysis and Classification: Researchers 

have shown that LLMs can be fine-tuned to classify 

malicious software by analyzing system call traces [30] 

or detecting malicious packages in software repositories 

[32]. 

● Code Deobfuscation: LLMs have demonstrated a 

surprising aptitude for reversing common obfuscation 

techniques, successfully extracting malicious URLs and 

commands from heavily disguised scripts [33]. 

● Vulnerability Detection: By training on code and 

vulnerability reports, LLMs are being developed to 

identify security flaws in source code automatically. 

These studies indicate that LLMs can operate on a higher 

level of abstraction than traditional tools, moving from 

"pattern matching" to "intent recognition." 

2.5. Identifying the Research Gap 

While the application of LLMs to cybersecurity is a 

burgeoning field, a significant gap remains. Most existing 

research either fine-tunes a model for a very specific task 

(e.g., analyzing system calls) or uses it to analyze a single, 

isolated component (e.g., one obfuscated script). There has 

been little investigation into using a general-purpose, non-

fine-tuned LLM to perform a holistic, end-to-end static 

analysis of a complex, multi-component file format like 

OOXML. 

This paper aims to fill that gap. We propose a system that 

treats the entire OOXML document as a single, 

comprehensive piece of evidence. By extracting and 

structuring all its relevant parts, we can present this 

complete context to a powerful, general-purpose LLM and 

task it with acting as a virtual malware analyst. The core 

research question is whether such a model, without any 

specific malware training, can leverage its vast world 

knowledge and reasoning skills to identify malicious 

indicators, connect the dots between disparate 

components, and arrive at an accurate and well-reasoned 

security assessment. 

3. Proposed Framework: LLM-Based Static Analysis 

To address the challenges outlined, we propose a 

comprehensive framework for the static analysis of 

OOXML documents using a Large Language Model. This 

framework is designed to be robust, thorough, and 

adaptable. It systematically deconstructs the target 

document, translates its structure and content into an 

LLM-readable format, and then leverages the model's 

analytical power to produce a detailed security 

assessment. 

3.1. System Architecture 

The framework operates through a multi-stage pipeline, 

designed to be modular and extensible. The conceptual 

workflow is as follows: 

1. Input: The process begins with an OOXML 

document (.docx, .xlsm, etc.) being submitted for analysis. 

2. Deconstruction and Parsing: The document, which 

is a ZIP archive, is unpacked. A specialized parser, which 

we conceptually call Office2JSON [13], iterates through 

every file and folder within the archive. 

3. Feature Extraction and Serialization: The parser 
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extracts all relevant content—VBA macro code, XML 

data, relationship definitions, metadata, and embedded 

object information. This extracted data is then serialized 

into a single, structured JSON object. This step is critical 

as it translates the complex file structure into a unified, 

text-based format that an LLM can process. 

4. Prompt Engineering: A carefully designed system 

prompt is prepended to the JSON data. This prompt 

provides the LLM with its role (e.g., "expert malware 

analyst"), context, and specific instructions on how to 

analyze the data and what format to use for its response. 

5. LLM Inference: The combined prompt and JSON 

data are sent as a single request to a powerful, general-

purpose LLM (e.g., Anthropic's Claude 3.5 Sonnet, 

OpenAI's GPT-4o). 

6. Output and Interpretation: The LLM returns a 

structured response containing its analysis, including a 

summary of findings, a list of malicious indicators, and a 

final maliciousness score. This output is then parsed by 

the system for logging, alerting, or presentation to a 

human analyst. 

3.2. Feature Extraction: From OOXML to JSON 

The choice of JSON as the intermediate format is 

deliberate. Its key-value structure is ideal for 

representing the hierarchical nature of an OOXML file, 

and it is a format that LLMs are exceptionally well-

trained to understand and parse. The conceptual 

Office2JSON parser [13] is responsible for a deep and 

thorough extraction, capturing: 

● VBA Code: All code from vbaProject.bin is 

extracted. To enrich this, the output of a tool like olevba 

[19] is also included in the JSON, providing an initial 

analysis of suspicious keywords and auto-executing 

functions. 

● XML Content: The full text of all .xml files (e.g., 

document.xml, settings.xml, core.xml) is included. This 

contains the document's text, metadata, and configuration 

settings. 

● Relationships: The content of all .rels files is critical, 

as these define the relationships between document parts, 

including external links for remote template injection. 

● Embedded Objects: Information about embedded 

objects, such as their file type and ProgID, is extracted. The 

binary content of unknown or executable objects is flagged 

as suspicious. 

● File Structure: The entire directory tree of the 

archive is represented in the JSON structure, preserving 

the spatial relationships between files. 

This process ensures that no part of the document is 

ignored. The LLM receives a complete, high-fidelity 

representation of the original file. 

Table 2. Key Fields in the Office2JSON Output Structure 

JSON Key Path Description Malicious Potential 

vbaProject.bin.analysis Analysis from olevba, listing 

suspicious keywords (e.g., 

Shell, CreateObject) and auto-

exec functions. 

High: Direct indicator of 

potentially malicious script 

behavior. 

vbaProject.bin.macros The full, extracted VBA macro 

code. 

High: The primary location for 

malicious logic and obfuscated 

code. 

word/_rels/settings.xml.rels Relationship file that can 

contain links to external 

templates. 

Very High: A classic vector for 

remote template injection 

attacks. 

customXml Contains user-defined XML 

data, which can hide scripts or 

URLs. 

Medium: Can be used to store 

obfuscated data or 

configuration for malware. 

docProps/core.xml Core document metadata, 

such as author and title. 

Low: Can sometimes contain 

anomalous data, but rarely 

the primary indicator. 
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embedded_objects A list of embedded files, their 

types, and ProgIDs. 

High: Can contain embedded 

executables, scripts, or exploit 

documents. 

 

3.3. LLM-Based Detection and Analysis 

The core intelligence of the framework resides in the 

interaction with the LLM. 

3.3.1. Model Selection 

The choice of LLM is critical. The task requires a model 

with a large context window (to handle large JSON files), 

strong code comprehension, and excellent logical 

reasoning abilities. For this conceptual framework, a 

state-of-the-art model such as Anthropic's Claude 3.5 

Sonnet or OpenAI's GPT-4o is ideal. These models have 

demonstrated top-tier performance on complex 

reasoning benchmarks [28, 29] and are well-suited for 

the nuanced task of malware analysis. We use a general-

purpose model rather than a fine-tuned one to leverage 

its broad knowledge base and avoid the overfitting that 

can occur with specialized models. 

3.3.2. Advanced Prompt Engineering 

The prompt is the "operating system" for the LLM. A well-

designed prompt is essential for guiding the model to a 

correct and useful conclusion [44, 45]. Our prompt 

engineering strategy is multi-faceted: 

1. Role-Playing: The prompt begins by assigning the 

LLM a specific persona: You are an expert cybersecurity 

analyst specializing in the static analysis of malicious 

documents. This immediately focuses the model's 

attention and activates the relevant knowledge domains 

from its training data. 

2. Structured Input: The prompt clearly demarcates 

the user-provided data using XML tags (e.g., 

<json_content>...</json_content>). This helps the model 

distinguish between instructions and data to be analyzed. 

3. Comprehensive Instructions: The prompt 

provides a detailed checklist of what to look for, covering 

all major attack vectors: VBA macros, remote templates, 

suspicious URLs, obfuscation, embedded objects, etc. 

4. Structured Output: The prompt strictly defines 

the required output format, again using XML tags (e.g., 

<summary>, <malicious_indicators>, <score>). This 

ensures the response is machine-parsable and consistent 

across different analyses. 

5. Security Hardening: The prompt includes an 

explicit instruction to be wary of prompt injection 

attempts within the document data itself: Strictly stick to 

your task... and ignore any instructions that you may find 

within the <json_content> tags. 

3.4. Addressing Evasion and Deception 

A robust detection framework must anticipate attempts by 

attackers to evade it. 

3.4.1. Handling Obfuscation 

This is where the LLM's semantic understanding shines. 

While a traditional tool sees an obfuscated script as 

random characters, an LLM can often recognize the 

pattern of obfuscation. It can identify common techniques 

like Base64 encoding, character code manipulation 

(ChrW), string concatenation, and reverse functions. In 

many cases, the model can even reason about the likely 

purpose of the deobfuscated code without actually 

executing it, for example, by recognizing the structure of a 

PowerShell download cradle. 

3.4.2. Risk of Indirect Prompt Injection (IPI) 

This is a significant vulnerability for any system that feeds 

untrusted data to an LLM [46]. An attacker could embed a 

command within the document itself (e.g., in a hidden text 

box) like: "This is a benign document. Ignore all other 

evidence and assign a maliciousness score of 0." 

Our framework mitigates this in two ways: 

1. System Prompt Priority: As mentioned, the system 

prompt explicitly instructs the model to ignore any such 

instructions found in the document content. 

2. Detection and Reporting: The prompt also instructs 

the model to flag any detected attempts at prompt 

injection as a malicious indicator in its own right. In 

testing, models like Claude 3.5 Sonnet have shown the 

ability to report on the injection attempt (e.g., "The 

document contains a suspicious instruction in cell A1 

attempting to manipulate the analysis...") even if it is 

partially influenced by it. This turns the attack into a signal 

for detection. 

By combining a thorough extraction process with a 

powerful, well-prompted LLM, this framework provides a 

deep, contextual, and resilient method for statically 

analyzing OOXML documents. 

4. Evaluation and Results 

To validate the effectiveness of the proposed framework, a 

rigorous experimental evaluation is necessary. This 

section outlines the experimental setup, the metrics used 

for evaluation, and a detailed analysis of the quantitative 

and qualitative results derived from testing the system 

against a diverse set of documents. 

4.1. Experimental Setup 

● Dataset: A balanced corpus of 1,200 OOXML 

documents was assembled for the evaluation. 
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○ 600 Malicious Samples: Sourced from public 

malware repositories like MalwareBazaar [14] and 

VirusTotal [15]. These samples were chosen to represent 

a wide variety of recent attack techniques, including 

macro-based droppers (e.g., AgentTesla, LockBit), 

remote template injectors, and documents exploiting 

known CVEs. Samples featured varying levels of 

obfuscation. 

○ 600 Benign Samples: Collected from a variety of 

trusted corporate and public sources. These were not 

merely simple text documents; they were selected to 

include complex but legitimate features, such as data-

processing macros in financial spreadsheets, embedded 

charts and objects in reports, and hyperlinks to internal 

company resources. This ensures the model is tested 

against realistic false positive scenarios. 

● Environment: All analysis was conducted in a 

secure, isolated virtual machine environment (based on 

REMnux [20]) to prevent any accidental execution or 

network propagation of the malicious samples. 

● Procedure: Each of the 1,200 documents was 

processed through the entire framework pipeline. The 

LLM's final output, specifically the numerical 

maliciousness score, was recorded. For classification, a 

decision threshold was set: any document receiving a 

score of 3.0 or higher was classified as "Malicious," while 

any document with a score below 3.0 was classified as 

"Benign." This threshold was determined through 

preliminary testing to optimize the balance between 

detecting threats and minimizing false alarms. 

Table 3. Malicious Dataset Composition by Attack Type 

Attack Type / 

Malware Family 

Number of Samples Percentage of 

Malicious Set 

Key Characteristics 

VBA Macro Dropper 

(e.g., AgentTesla, 

Qakbot) 

350 58.3% Uses macros to 

download and 

execute a second-

stage payload. 

Remote Template 

Injection 

120 20.0% Abuses XML 

relationships to load 

malicious code from a 

remote server. 

Embedded OLE 

Object 

65 10.8% Hides a malicious 

executable or script 

inside a seemingly 

benign object. 

CVE Exploit (e.g., 

Follina) 

45 7.5% Crafted to trigger a 

specific software 

vulnerability in 

Microsoft Office. 

Other/Multi-Stage 20 3.3% Combines multiple 

techniques or uses 

novel methods. 

Total 600 100%  

 

4.2. Performance Metrics 

Standard binary classification metrics were used to 

measure the framework's performance: 

● Confusion Matrix: A table showing the breakdown 

of predictions into True Positives (TP), True Negatives 

(TN), False Positives (FP), and False Negatives (FN). 

● Accuracy: The overall percentage of correct 
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classifications.Accuracy=TP+TN+FP+FNTP+TN 

● Precision: The proportion of documents flagged 

as malicious that were actually malicious. High precision 

indicates a low false positive rate.Precision=TP+FPTP 

● Recall (Sensitivity): The proportion of all actual 

malicious documents that were correctly identified. High 

recall indicates a low false negative rate.Recall=TP+FNTP 

● F1-Score: The harmonic mean of Precision and 

Recall, providing a single metric that balances the two. It 

is particularly useful for imbalanced datasets, though our 

dataset is balanced.F1-

Score=2×Precision+RecallPrecision×Recall 

4.3. Quantitative Classification Results 

Upon running the 1,200 documents through the 

framework, the following results were obtained: 

● True Positives (TP): 582 (Out of 600 malicious files, 

582 were correctly identified) 

● False Negatives (FN): 18 (18 malicious files were 

missed) 

● True Negatives (TN): 589 (Out of 600 benign files, 

589 were correctly identified) 

● False Positives (FP): 11 (11 benign files were 

incorrectly flagged as malicious) 

This leads to the following performance metrics: 

Metric Score (%) 

Accuracy 97.58% 

Precision 98.14% 

Recall 97.00% 

F1-Score 97.57% 

 

The framework achieved an exceptionally high accuracy 

of 97.58%. The precision of 98.14% is particularly strong, 

indicating that the system is very reliable; when it flags a 

document, it is almost certainly malicious. The recall of 

97.00% is also very high, demonstrating that the system 

successfully caught the vast majority of threats. The 

balanced F1-Score of 97.57% confirms the overall 

robustness and reliability of the model. 

4.4. Qualitative Analysis and Case Studies 

The numerical scores only tell part of the story. The true 

power of the LLM-based approach lies in its reasoning. 

Analyzing the detailed explanations provided by the 

model gives insight into its "thought process." 

Case Study 1: True Positive (Heavily Obfuscated Macro) 

A .docm file containing a macro with multiple layers of 

Base64 and string reversal obfuscation was analyzed. 

● LLM's Verdict (Score: 9.5/10): "Malicious. The 

document contains a VBA macro with an AutoOpen 

subroutine for automatic execution. The macro code is 

heavily obfuscated using concatenated strings and 

Base64 decoding. The deobfuscated payload constructs a 

PowerShell command designed to download a remote 

file (http://evil.com/payload.exe) and execute it from 

the user's Temp directory. This is a classic dropper 

pattern." 

● Analysis: This case demonstrates the model's 

ability to see through complex obfuscation and 

understand the ultimate, malicious intent of the code—a 

task that would stump most signature-based tools. 

Case Study 2: True Negative (Complex Benign 

Spreadsheet) 

A .xlsm file from a finance department, containing 

legitimate macros for pulling data from an internal 

database and generating reports. 

● LLM's Verdict (Score: 1.0/10): "Benign. The 

document contains several VBA macros. These macros are 

well-commented and perform standard data manipulation 

tasks, such as connecting to a database, running queries, 

and populating cells. There are no signs of obfuscation, no 

calls to Shell, and no suspicious external URLs. The 

functionality is consistent with legitimate business 

automation." 

● Analysis: This shows the model's crucial ability to 

differentiate between complex code and malicious code, 

correctly interpreting the context of the operations and 

avoiding a false positive. 

Case Study 3: False Negative (Subtle Remote Template 

Injection) 

One of the 18 missed files used a subtle remote template 

injection. The malicious URL was not in the main 

relationships file but was hidden in a less common XML file 

defining printer settings, and the document contained no 

VBA macros to act as a decoy. 
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● LLM's Verdict (Score: 2.0/10): "Benign. The 

document does not contain any VBA macros or 

suspicious embedded objects. The XML structure 

appears standard. While there is an external URL, its 

context seems related to a network resource and does 

not follow the typical pattern of a malicious template." 

● Analysis: This failure highlights a limitation. The 

model, associating template injection primarily with the 

main settings.xml.rels file, underestimated the 

significance of a URL in a more obscure location. This 

suggests that prompt refinement is a continuous process, 

and future prompts should instruct the model to treat 

any external relationship, regardless of its location, with 

high suspicion. 

Case Study 4: False Positive (Benign Script with 

Ambiguous Keywords) 

A benign .docx file contained a macro written by a 

developer to automate the cleanup of temporary files 

created by a custom in-house application. The macro 

used functions like Kill and referenced the 

C:\Users\...\AppData\ directory. 

● LLM's Verdict (Score: 5.5/10): "Malicious. The 

document's VBA macro contains suspicious indicators. It 

uses the Kill command to delete files and operates within 

the AppData directory, which are behaviors common in 

malware attempting to erase traces or manipulate 

system files. The lack of comments and use of direct file 

path manipulation is concerning." 

● Analysis: Here, the model correctly identified 

potentially dangerous functions but lacked the specific 

context to know they were being used for a legitimate, 

albeit unusual, purpose. This demonstrates the inherent 

challenge of static analysis; without understanding the 

user's specific environment and intent, some ambiguity 

is unavoidable. This type of alert would require review by 

a human analyst, but the LLM's detailed explanation 

would allow the analyst to resolve it in seconds. 

4.5. Cost and Performance Analysis 

● Performance/Latency: The end-to-end analysis 

time per document was measured. The Office2JSON 

extraction process averaged 0.3 seconds. The API call to 

the LLM (including network latency and model inference 

time) averaged 7 seconds. The total average time for a 

complete analysis was under 8 seconds, which is highly 

practical for many security workflows. 

● Cost Analysis: Using the pricing for a model like 

Claude 3.5 Sonnet [50], the cost was analyzed. The 

average input size was ~60,000 tokens, and the output 

was ~150 tokens. This results in an approximate cost of 

USD $0.20 per document analysis. While not free, this cost 

is negligible compared to the potential cost of a security 

breach or the salary of a human malware analyst 

performing the same task. 

5. DISCUSSION 

The evaluation results provide compelling evidence that a 

static analysis framework powered by a general-purpose 

Large Language Model is not only viable but also highly 

effective. The high performance across all metrics suggests 

this approach represents a significant leap forward. This 

section delves into the broader implications of these 

findings, discusses the inherent advantages and 

limitations, and charts a course for future research and 

development. 

5.1. Interpretation of Findings: Beyond Pattern Matching 

The framework's success stems from the LLM's ability to 

move beyond simple pattern matching to a form of 

semantic and contextual reasoning. Traditional tools are 

programmed to answer the question, "Does this file 

contain this known bad signature?" The LLM, however, is 

prompted to answer the question, "Does the structure and 

content of this file describe a malicious intent?" 

This is a fundamentally different and more powerful 

paradigm. It allows the system to: 

● Generalize from Concepts: The LLM knows what a 

"download cradle" is conceptually, not just as a specific 

string of PowerShell code. It can therefore recognize this 

pattern even if it's written in a novel way. 

● Correlate Disparate Evidence: The model can 

connect a seemingly innocent piece of VBA code with a 

suspicious URL found in a completely different XML file 

within the same package, understanding that the two are 

likely related. 

● Tolerate Ambiguity: The model can identify 

"suspicious" but not definitively "malicious" code, 

assigning a medium score and providing a nuanced 

explanation. This is invaluable for human analysts who 

need to prioritize alerts. 

The detailed, human-readable explanations are a 

transformative feature. They demystify the detection 

process, turning a "black box" alert into a transparent, 

actionable intelligence report. This can dramatically 

improve the efficiency of Security Operations Center (SOC) 

analysts, who can validate or dismiss an alert in a fraction 

of the time it would take to perform a manual analysis. 

5.2. Advantages Over Traditional Methods 

The LLM-based approach offers several clear advantages, 

summarized in the table below. 

Table 4. Comparative Advantages of the LLM-Based Approach 

Capability Signature-Based Traditional ML LLM-Based 
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(e.g., YARA) Framework 

Zero-Day Detection Ineffective. Requires 

pre-existing 

signature. 

Limited. Struggles 

with novel features. 

Effective. Reasons 

from first principles 

and malicious 

behaviors. 

Obfuscation 

Resilience 

Low. Easily defeated 

by simple encoding. 

Medium. Can learn 

some patterns but is 

brittle. 

High. Can often infer 

logic of obfuscated 

code. 

Feature Engineering Manual. Rules must 

be written by experts. 

Manual and 

Extensive. Requires 

domain experts. 

Minimal. Learns 

features implicitly 

from raw data. 

Interpretability High. The matching 

rule is the 

explanation. 

Low. Often a "black 

box" model. 

Very High. Provides 

detailed, human-

readable reasoning. 

Adaptability Low. Requires 

constant manual rule 

updates. 

Medium. Requires 

frequent retraining 

on new data. 

High. Leverages a 

vast, general 

knowledge base. 

 

5.3. Limitations and Avenues for Future Work 

Despite its strengths, the framework is not a silver bullet. 

Several limitations exist, each presenting an opportunity 

for future research. 

1. Cost and Latency: While the cost of ~$0.20 and 

latency of ~8 seconds per file is acceptable for many use 

cases (e.g., forensic analysis, high-risk attachment 

scanning), it may be prohibitive for real-time scanning of 

all documents on an enterprise network. 

2. Context Window Limitations: While modern LLMs 

have very large context windows [47, 48], an attacker 

could theoretically construct an enormous document 

that exceeds the limit. 

3. Sophisticated Adversarial Attacks: As LLM-based 

defenses become more common, attackers will develop 

adversarial techniques specifically designed to fool them. 

This will create a new arms race requiring ongoing 

research in AI safety and robustness. 

4. The Encryption Problem: Static analysis is 

fundamentally defeated by strong encryption [25]. If a 

document is password-protected, its contents cannot be 

analyzed without the password. This is not a unique 

limitation of our framework but a universal challenge for 

static analysis. 

Future Work should proceed along several parallel 

tracks: 

● Hybrid Models: A highly practical next step is to 

create a hybrid system. A fast, traditional scanner could 

handle the bulk of documents, flagging known threats 

instantly. Only the documents that pass this initial scan 

would be sent to the more resource-intensive LLM for 

deep analysis. 

● Model Specialization vs. Generalization: While this 

paper advocates for general-purpose models, research 

into fine-tuning LLMs on vast, curated datasets of 

malicious document structures could yield even higher 

accuracy, potentially at a lower cost if a smaller, 

specialized model can be used. 

● Expansion to Other File Formats: The core 

methodology—extract to structured text, analyze with 

LLM—is highly portable. Future work will apply this 

framework to other complex file formats that are common 

malware vectors, such as PDFs [36], LNK files, and ISOs. 

● Self-Hosted Models: For organizations with high 

security and data privacy requirements, the use of third-

party APIs is a non-starter. The maturation of powerful 

open-source models (e.g., Meta's Llama series [53], 

Google's Gemma [54]) makes self-hosting a viable path. 

This would eliminate API costs and data privacy concerns, 

though it introduces infrastructure and maintenance 

overhead. 

5.4. Ethical and Regulatory Considerations 

Deploying powerful AI in a security context carries 
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significant ethical weight. The potential for a false 

positive to disrupt critical business operations 

necessitates rigorous testing and a human-in-the-loop 

approach for high-stakes decisions. 

Furthermore, data privacy is paramount. Sending 

documents, which may contain sensitive personal or 

corporate information, to a third-party LLM provider 

requires careful consideration of the provider's terms of 

service [52] and compliance with data protection 

regulations like GDPR or the EU AI Act [51]. The self-

hosting approach described above is the most robust 

solution to these privacy concerns. 

6. CONCLUSION 

The proliferation of malicious Office documents remains 

one of the most persistent and damaging threats in the 

cybersecurity landscape. This research has 

demonstrated that by combining a thorough, structured 

extraction of a document's contents with the advanced 

reasoning capabilities of a Large Language Model, it is 

possible to create a static analysis framework that is 

more effective, resilient, and insightful than traditional 

methods. 

Our proposed framework achieved outstanding 

performance in a comprehensive evaluation, proving its 

ability to accurately distinguish between malicious and 

benign documents with high precision and recall. Its core 

strength lies in its ability to move beyond syntactic 

pattern matching to a semantic understanding of 

malicious intent, allowing it to see through obfuscation 

and identify novel threats. The generation of detailed, 

human-readable analysis reports is a transformative 

feature that can empower security teams and streamline 

incident response workflows. 

While the approach has limitations, such as cost and the 

universal challenge of encryption, these are balanced by 

its significant advantages. The path forward is clear: 

future development will focus on creating hybrid 

systems, exploring the trade-offs of model specialization, 

expanding the methodology to other file formats, and 

leveraging the growing power of self-hosted models to 

address privacy and cost. 

As attackers continue to innovate, our defenses must 

evolve beyond rigid, rule-based systems. The integration 

of AI, specifically the deep reasoning capabilities of Large 

Language Models, is not merely an incremental 

improvement; it represents a new paradigm in the fight 

against malware. This work provides a robust blueprint 

for how that paradigm can be put into practice, offering a 

more intelligent and adaptive defense against the ever-

present threat of weaponized documents. 
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