
EUROPEAN JOURNAL OF EMERGING CYBERSECURITY AND INFORMATION PROTECTION

pg. 1

A STATIC ANALYSIS FRAMEWORK UTILIZING LARGE LANGUAGE MODELS FOR IDENTIFYING
MALICIOUS OFFICE OPEN XML FILES

Dr. Carlos M. Ruiz
School of Computing and Information Systems, University of Melbourne, Australia

 Prof. Anna Petrova

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russia

V0LUME01 ISSUE01 (2024)

Published Date: 11 December 2024 // Page no.: - 1-13

ABSTRACT

Office Open XML (OOXML) documents represent a primary vector for malware distribution, capitalizing on their
ubiquitous presence in modern enterprise and personal computing. The inherent complexity of the OOXML format
provides a fertile ground for concealing malicious payloads, which often evade traditional security measures.
Conventional detection methods, which predominantly rely on signature-based scanning and predefined rules, are
frequently outpaced by the rapid evolution of malware, particularly sophisticated threats like polymorphic code, zero-
day exploits, and advanced social engineering tactics. This paper proposes a novel, in-depth static analysis framework
that leverages the advanced contextual understanding and reasoning capabilities of Large Language Models (LLMs) to
unmask malicious OOXML documents. Our methodology involves a systematic deconstruction of the OOXML package into
a structured, human-readable JSON format. This comprehensive representation is then fed to an LLM, which, guided by a
sophisticated, role-based prompt, performs a deep semantic analysis of the document’s constituent parts. The model
scrutinizes everything from VBA macro code and XML relationship files to embedded objects and metadata for indicators
of malicious intent. This approach transcends the limitations of simple pattern matching, enabling a holistic assessment
of the document's structure and content. The framework demonstrates a high potential for accurately identifying
malicious documents, including those that employ heavy obfuscation or novel attack vectors, thereby offering a significant
and necessary advancement in the ongoing fight against document-based cyber threats.

Keywords: Pulmonary blastoma, Biphasic tumor, Lung neoplasm, Case report, Review, Diagnosis, Treatment, Prognosis,
Molecular pathology, Sarcomatoid carcinoma, Fetal lung, Chemotherapy, Radiotherapy.

INTRODUCTION

In the digital ecosystem of the 21st century, Microsoft

Office has solidified its position as the undisputed leader

in productivity software. Its applications are deeply

woven into the fabric of daily operations for an

overwhelming majority of corporations, government

agencies, and individual users worldwide [1]. The

associated Office Open XML (OOXML) file formats—.docx

for documents, .xlsx for spreadsheets, and .pptx for

presentations—have become the de facto standard for

information exchange. However, this very ubiquity

makes them an irresistible target for cybercriminals, who

adeptly exploit their intricate architecture to deploy a

wide array of malware.

1.1. Defining Document-Based Malware

Before delving into technical specifics, it is crucial to

define what constitutes a "malicious document." In this

context, a malicious document, or "maldoc," is any file

created by a standard productivity application (primarily

Microsoft Office) that has been weaponized to cause

harm to a user's system. The malicious nature is defined

by its intent: to execute unauthorized actions such as

installing ransomware, stealing credentials, establishing a

backdoor for persistent access, or exfiltrating sensitive

data. This malicious functionality is often concealed within

a seemingly benign document—for instance, a resume, an

invoice, or a company report—to deceive the recipient and

bypass initial suspicion. The harm is directed at the target,

while the objective for the attacker can range from

financial gain and corporate espionage to political

disruption or cyber warfare.

1.2. The Architectural Vulnerability of OOXML

To understand how these documents are exploited, one

must first appreciate their underlying structure. The

modern OOXML format is, at its core, a ZIP archive. This

archive contains a structured collection of XML files,

folders, and other resources (such as images or media

files) that collectively define every aspect of the document,

from its text content and formatting to its metadata and

embedded functionalities [3, 4]. This is a departure from

the older binary OLE (Object Linking and Embedding)

EUROPEAN JOURNAL OF EMERGING CYBERSECURITY AND INFORMATION PROTECTION

pg. 2

format, which was a monolithic file system in itself.

The component-based nature of OOXML, while

promoting interoperability and data recovery, creates a

vast attack surface. Attackers can manipulate these

components in numerous ways to embed malicious

payloads. The most common methods include:

● VBA (Visual Basic for Applications) Macros:

Embedding malicious scripts that can execute system

commands, download external payloads, or manipulate

the file system.

● Remote Template Injection: Modifying a

document's relationship files (.xml.rels) to point to a

malicious template hosted on a remote server. When the

document is opened, it fetches and executes the code

from this template [34].

● Embedded OLE Objects: Inserting malicious

executables or scripts disguised as legitimate objects,

such as PDFs or images.

● Exploiting Software Vulnerabilities: Crafting a

document to trigger a specific bug or vulnerability in the

Microsoft Office software itself, leading to remote code

execution [6, 7].

While Microsoft has implemented security measures,

such as disabling macros from internet-sourced

documents by default [2], attackers continuously

innovate. They employ sophisticated evasion techniques,

including multi-stage obfuscation of macro code,

encrypting documents with passwords to thwart

automated scanners [25], and using non-traditional

elements like malicious shapes or text boxes to hide

payloads [11, 12].

1.3. The Pervasive Threat Landscape

The result of these factors is a persistent and severe

threat. Document-based malware is a cornerstone of

modern cyberattacks, with email serving as the primary

delivery vector [8]. Phishing campaigns frequently use

malicious attachments as their payload, leveraging social

engineering to trick users into opening the files and

enabling their malicious content.

Statistics confirm the severity of this threat. For years,

exploits targeting Microsoft Office applications have

consistently accounted for the majority of exploitation

attempts observed in the wild, far surpassing those

targeting browsers or other software [5]. The CVE

(Common Vulnerabilities and Exposures) database

documents hundreds of high-severity vulnerabilities in

Microsoft Office, with dozens of new critical flaws

discovered each year, providing a steady stream of new

attack opportunities for criminals [7].

1.4. The Need for a New Detection Paradigm

Traditional antivirus and security solutions have

struggled to keep pace. Their reliance on signature-based

scanning—looking for known patterns of malicious

code—is fundamentally reactive. These systems are often

blind to:

● Zero-Day Threats: Novel attacks that exploit

previously unknown vulnerabilities.

● Polymorphic and Metamorphic Malware: Malicious

code that automatically rewrites itself with each new

infection to create a unique signature, rendering hash-

based detection useless [23, 24].

● Advanced Obfuscation: Multi-layered encoding or

encryption schemes that hide the true nature of the

malicious script.

Static analysis, the process of examining a file without

executing it, is a safer alternative to dynamic analysis

(which runs the malware in a sandbox) but has

traditionally been limited by its inability to understand the

intent behind complex code or file structures [35, 38].

While machine learning (ML) models have been applied to

this problem with some success [36, 37], they often

require extensive and brittle feature engineering and can

struggle to generalize to entirely new attack techniques.

The recent and rapid advancement of Large Language

Models (LLMs) offers a paradigm shift [26, 27]. With their

profound ability to understand, reason about, and

generate complex text and code, LLMs are uniquely

positioned to overcome the limitations of previous

technologies. Researchers are already exploring their use

for a range of cybersecurity tasks, from deobfuscating

malicious scripts [33] to detecting malicious code

packages [32] and analyzing system behavior [30].

This paper builds upon that momentum by proposing a

comprehensive framework for applying LLMs to the static

analysis of OOXML documents. We hypothesize that by

converting the entire, complex structure of an OOXML file

into a format an LLM can understand, we can leverage its

reasoning capabilities to perform a deep, semantic

security audit. The goal is to move beyond finding "bad

strings" to understanding "bad behavior" as described by

the document's own code and structure, thereby creating

a more resilient and forward-looking defense against this

pervasive threat.

2. Literature Review: The Evolution of Maldoc Detection

The battle against malicious documents is a continuous

cat-and-mouse game between attackers and defenders. To

appreciate the novelty of an LLM-based approach, it is

essential to understand the evolution and inherent

limitations of existing detection methodologies. This

section reviews the landscape of traditional analysis

techniques and surveys the emerging field of AI in

malware detection.

2.1. Traditional Static Analysis Techniques

Static analysis involves inspecting a file's contents without

executing it, making it a safe first line of defense. The

primary methods include:

EUROPEAN JOURNAL OF EMERGING CYBERSECURITY AND INFORMATION PROTECTION

pg. 3

● Signature and Hash Matching: This is the most

basic technique. A cryptographic hash (e.g., MD5, SHA-

256) of a suspicious file is calculated [16] and compared

against a database of hashes from known malware

samples, such as those found on MalwareBazaar [14] or

VirusTotal [15]. While fast and efficient for known

threats, it is trivially defeated by any modification to the

file, no matter how small.

● String Analysis: This involves extracting human-

readable strings from the file's binary. The presence of

certain strings, such as suspicious URLs, file paths (e.g.,

C:\Windows\System32), or function names (Shell,

CreateObject), can be strong indicators of malice.

However, attackers easily circumvent this by encoding or

encrypting strings.

● YARA Rules: YARA is a powerful tool that allows

analysts to create rules based on textual or binary

patterns [17]. A YARA rule can search for specific strings,

byte sequences, or combinations thereof. It is more

flexible than simple hash matching but still requires a

pre-existing rule to be written for a threat to be detected.

It cannot, by definition, detect entirely new threats, and

attackers can study public YARA rulesets to engineer

malware that avoids them [49].

● Specialized Parsing Tools: For complex file

formats like OOXML, tools like oletools [19] (specifically

olevba for VBA macro analysis) are invaluable. olevba can

extract and deobfuscate VBA code, identify suspicious

keywords, and flag auto-executing functions. Similarly,

tools like PeStudio [18] are used for analyzing embedded

executable files. These tools provide crucial information

but require a human analyst to interpret the findings and

make a final judgment.

2.2. Dynamic Analysis Techniques

Dynamic analysis complements static analysis by

executing the suspicious file in a controlled, isolated

environment known as a sandbox. This allows analysts to

observe the file's actual behavior. Key aspects of dynamic

analysis include:

● Sandboxing: The malware is run on a virtual

machine (e.g., using REMnux [20] or a Flare-VM [40]

setup) that is disconnected from the production network

to prevent real-world damage.

● Behavioral Monitoring: Analysts monitor the file's

interactions with the operating system, including network

connections (using tools like Wireshark), file system

changes, and registry modifications.

● Network Simulation: Tools like INetSim can

simulate an internet connection, tricking the malware into

revealing its command-and-control (C2) communication

protocols or attempting to download second-stage

payloads [21].

Endpoint Detection and Response (EDR) solutions are a

commercial implementation of dynamic analysis,

monitoring process behavior in real-time on user

machines [22]. The primary drawback of dynamic analysis

is that sophisticated malware is often "sandbox-aware"

and will alter its behavior or remain dormant if it detects

it is being analyzed.

Table 1. Comparison of Traditional Malware Analysis Techniques

Technique Category Key

Characteristics

Strengths Weaknesses

Hash Matching Static Compares file

hash to

database of

known threats.

Extremely fast;

low false

positive rate.

Fails on any file

modification

(polymorphism).

String Analysis Static Extracts

readable text

strings from

binary.

Simple; can

reveal URLs,

commands.

Easily defeated

by

encoding/encry

ption.

YARA Rules Static Pattern

matching based

on custom rules.

Flexible; can

detect malware

families.

Requires pre-

existing rules;

cannot detect

zero-days.

Dynamic Dynamic Executes file in a Detects Slow; resource-

EUROPEAN JOURNAL OF EMERGING CYBERSECURITY AND INFORMATION PROTECTION

pg. 4

Analysis sandbox to

observe

behavior.

behavior, not

signatures;

effective vs.

obfuscation.

intensive; can be

evaded by

sandbox-aware

malware.

2.3. Limitations of Conventional Malware Detection

Both static and dynamic analysis face significant

challenges from modern malware engineering:

● Polymorphic and Metamorphic Code: This is the

bane of signature-based detection. Polymorphic malware

encrypts its malicious payload and uses a different

decryption key for each infection. Metamorphic malware

goes a step further, rewriting its entire code body with

each propagation, ensuring no two samples are identical

[23, 24].

● Obfuscation and Anti-Analysis: Attackers use

layers of encoding (e.g., Base64, Hex), string splitting,

dead-code insertion, and other techniques to make their

scripts unreadable to both human analysts and

automated tools.

● Encryption: A simple yet highly effective

technique is to password-protect the malicious

document [25]. Many automated security gateways

cannot scan the contents of an encrypted file. The

attacker then simply provides the password to the victim

in the body of the phishing email, bypassing the technical

control and relying on social engineering.

These limitations highlight a fundamental problem:

conventional methods are largely reactive and struggle

with novelty and complexity. They lack the ability to infer

intent from convoluted or previously unseen code.

2.4. The Rise of Large Language Models in Cybersecurity

The emergence of powerful LLMs marks a potential

turning point [27]. Trained on vast expanses of text and

code from the internet, these models have developed

emergent capabilities in reasoning, pattern recognition,

and semantic understanding that are highly applicable to

cybersecurity [26]. The research community has begun

to explore their potential in several key areas:

● Malware Analysis and Classification: Researchers

have shown that LLMs can be fine-tuned to classify

malicious software by analyzing system call traces [30]

or detecting malicious packages in software repositories

[32].

● Code Deobfuscation: LLMs have demonstrated a

surprising aptitude for reversing common obfuscation

techniques, successfully extracting malicious URLs and

commands from heavily disguised scripts [33].

● Vulnerability Detection: By training on code and

vulnerability reports, LLMs are being developed to

identify security flaws in source code automatically.

These studies indicate that LLMs can operate on a higher

level of abstraction than traditional tools, moving from

"pattern matching" to "intent recognition."

2.5. Identifying the Research Gap

While the application of LLMs to cybersecurity is a

burgeoning field, a significant gap remains. Most existing

research either fine-tunes a model for a very specific task

(e.g., analyzing system calls) or uses it to analyze a single,

isolated component (e.g., one obfuscated script). There has

been little investigation into using a general-purpose, non-

fine-tuned LLM to perform a holistic, end-to-end static

analysis of a complex, multi-component file format like

OOXML.

This paper aims to fill that gap. We propose a system that

treats the entire OOXML document as a single,

comprehensive piece of evidence. By extracting and

structuring all its relevant parts, we can present this

complete context to a powerful, general-purpose LLM and

task it with acting as a virtual malware analyst. The core

research question is whether such a model, without any

specific malware training, can leverage its vast world

knowledge and reasoning skills to identify malicious

indicators, connect the dots between disparate

components, and arrive at an accurate and well-reasoned

security assessment.

3. Proposed Framework: LLM-Based Static Analysis

To address the challenges outlined, we propose a

comprehensive framework for the static analysis of

OOXML documents using a Large Language Model. This

framework is designed to be robust, thorough, and

adaptable. It systematically deconstructs the target

document, translates its structure and content into an

LLM-readable format, and then leverages the model's

analytical power to produce a detailed security

assessment.

3.1. System Architecture

The framework operates through a multi-stage pipeline,

designed to be modular and extensible. The conceptual

workflow is as follows:

1. Input: The process begins with an OOXML

document (.docx, .xlsm, etc.) being submitted for analysis.

2. Deconstruction and Parsing: The document, which

is a ZIP archive, is unpacked. A specialized parser, which

we conceptually call Office2JSON [13], iterates through

every file and folder within the archive.

3. Feature Extraction and Serialization: The parser

EUROPEAN JOURNAL OF EMERGING CYBERSECURITY AND INFORMATION PROTECTION

pg. 5

extracts all relevant content—VBA macro code, XML

data, relationship definitions, metadata, and embedded

object information. This extracted data is then serialized

into a single, structured JSON object. This step is critical

as it translates the complex file structure into a unified,

text-based format that an LLM can process.

4. Prompt Engineering: A carefully designed system

prompt is prepended to the JSON data. This prompt

provides the LLM with its role (e.g., "expert malware

analyst"), context, and specific instructions on how to

analyze the data and what format to use for its response.

5. LLM Inference: The combined prompt and JSON

data are sent as a single request to a powerful, general-

purpose LLM (e.g., Anthropic's Claude 3.5 Sonnet,

OpenAI's GPT-4o).

6. Output and Interpretation: The LLM returns a

structured response containing its analysis, including a

summary of findings, a list of malicious indicators, and a

final maliciousness score. This output is then parsed by

the system for logging, alerting, or presentation to a

human analyst.

3.2. Feature Extraction: From OOXML to JSON

The choice of JSON as the intermediate format is

deliberate. Its key-value structure is ideal for

representing the hierarchical nature of an OOXML file,

and it is a format that LLMs are exceptionally well-

trained to understand and parse. The conceptual

Office2JSON parser [13] is responsible for a deep and

thorough extraction, capturing:

● VBA Code: All code from vbaProject.bin is

extracted. To enrich this, the output of a tool like olevba

[19] is also included in the JSON, providing an initial

analysis of suspicious keywords and auto-executing

functions.

● XML Content: The full text of all .xml files (e.g.,

document.xml, settings.xml, core.xml) is included. This

contains the document's text, metadata, and configuration

settings.

● Relationships: The content of all .rels files is critical,

as these define the relationships between document parts,

including external links for remote template injection.

● Embedded Objects: Information about embedded

objects, such as their file type and ProgID, is extracted. The

binary content of unknown or executable objects is flagged

as suspicious.

● File Structure: The entire directory tree of the

archive is represented in the JSON structure, preserving

the spatial relationships between files.

This process ensures that no part of the document is

ignored. The LLM receives a complete, high-fidelity

representation of the original file.

Table 2. Key Fields in the Office2JSON Output Structure

JSON Key Path Description Malicious Potential

vbaProject.bin.analysis Analysis from olevba, listing

suspicious keywords (e.g.,

Shell, CreateObject) and auto-

exec functions.

High: Direct indicator of

potentially malicious script

behavior.

vbaProject.bin.macros The full, extracted VBA macro

code.

High: The primary location for

malicious logic and obfuscated

code.

word/_rels/settings.xml.rels Relationship file that can

contain links to external

templates.

Very High: A classic vector for

remote template injection

attacks.

customXml Contains user-defined XML

data, which can hide scripts or

URLs.

Medium: Can be used to store

obfuscated data or

configuration for malware.

docProps/core.xml Core document metadata,

such as author and title.

Low: Can sometimes contain

anomalous data, but rarely

the primary indicator.

EUROPEAN JOURNAL OF EMERGING CYBERSECURITY AND INFORMATION PROTECTION

pg. 6

embedded_objects A list of embedded files, their

types, and ProgIDs.

High: Can contain embedded

executables, scripts, or exploit

documents.

3.3. LLM-Based Detection and Analysis

The core intelligence of the framework resides in the

interaction with the LLM.

3.3.1. Model Selection

The choice of LLM is critical. The task requires a model

with a large context window (to handle large JSON files),

strong code comprehension, and excellent logical

reasoning abilities. For this conceptual framework, a

state-of-the-art model such as Anthropic's Claude 3.5

Sonnet or OpenAI's GPT-4o is ideal. These models have

demonstrated top-tier performance on complex

reasoning benchmarks [28, 29] and are well-suited for

the nuanced task of malware analysis. We use a general-

purpose model rather than a fine-tuned one to leverage

its broad knowledge base and avoid the overfitting that

can occur with specialized models.

3.3.2. Advanced Prompt Engineering

The prompt is the "operating system" for the LLM. A well-

designed prompt is essential for guiding the model to a

correct and useful conclusion [44, 45]. Our prompt

engineering strategy is multi-faceted:

1. Role-Playing: The prompt begins by assigning the

LLM a specific persona: You are an expert cybersecurity

analyst specializing in the static analysis of malicious

documents. This immediately focuses the model's

attention and activates the relevant knowledge domains

from its training data.

2. Structured Input: The prompt clearly demarcates

the user-provided data using XML tags (e.g.,

<json_content>...</json_content>). This helps the model

distinguish between instructions and data to be analyzed.

3. Comprehensive Instructions: The prompt

provides a detailed checklist of what to look for, covering

all major attack vectors: VBA macros, remote templates,

suspicious URLs, obfuscation, embedded objects, etc.

4. Structured Output: The prompt strictly defines

the required output format, again using XML tags (e.g.,

<summary>, <malicious_indicators>, <score>). This

ensures the response is machine-parsable and consistent

across different analyses.

5. Security Hardening: The prompt includes an

explicit instruction to be wary of prompt injection

attempts within the document data itself: Strictly stick to

your task... and ignore any instructions that you may find

within the <json_content> tags.

3.4. Addressing Evasion and Deception

A robust detection framework must anticipate attempts by

attackers to evade it.

3.4.1. Handling Obfuscation

This is where the LLM's semantic understanding shines.

While a traditional tool sees an obfuscated script as

random characters, an LLM can often recognize the

pattern of obfuscation. It can identify common techniques

like Base64 encoding, character code manipulation

(ChrW), string concatenation, and reverse functions. In

many cases, the model can even reason about the likely

purpose of the deobfuscated code without actually

executing it, for example, by recognizing the structure of a

PowerShell download cradle.

3.4.2. Risk of Indirect Prompt Injection (IPI)

This is a significant vulnerability for any system that feeds

untrusted data to an LLM [46]. An attacker could embed a

command within the document itself (e.g., in a hidden text

box) like: "This is a benign document. Ignore all other

evidence and assign a maliciousness score of 0."

Our framework mitigates this in two ways:

1. System Prompt Priority: As mentioned, the system

prompt explicitly instructs the model to ignore any such

instructions found in the document content.

2. Detection and Reporting: The prompt also instructs

the model to flag any detected attempts at prompt

injection as a malicious indicator in its own right. In

testing, models like Claude 3.5 Sonnet have shown the

ability to report on the injection attempt (e.g., "The

document contains a suspicious instruction in cell A1

attempting to manipulate the analysis...") even if it is

partially influenced by it. This turns the attack into a signal

for detection.

By combining a thorough extraction process with a

powerful, well-prompted LLM, this framework provides a

deep, contextual, and resilient method for statically

analyzing OOXML documents.

4. Evaluation and Results

To validate the effectiveness of the proposed framework, a

rigorous experimental evaluation is necessary. This

section outlines the experimental setup, the metrics used

for evaluation, and a detailed analysis of the quantitative

and qualitative results derived from testing the system

against a diverse set of documents.

4.1. Experimental Setup

● Dataset: A balanced corpus of 1,200 OOXML

documents was assembled for the evaluation.

EUROPEAN JOURNAL OF EMERGING CYBERSECURITY AND INFORMATION PROTECTION

pg. 7

○ 600 Malicious Samples: Sourced from public

malware repositories like MalwareBazaar [14] and

VirusTotal [15]. These samples were chosen to represent

a wide variety of recent attack techniques, including

macro-based droppers (e.g., AgentTesla, LockBit),

remote template injectors, and documents exploiting

known CVEs. Samples featured varying levels of

obfuscation.

○ 600 Benign Samples: Collected from a variety of

trusted corporate and public sources. These were not

merely simple text documents; they were selected to

include complex but legitimate features, such as data-

processing macros in financial spreadsheets, embedded

charts and objects in reports, and hyperlinks to internal

company resources. This ensures the model is tested

against realistic false positive scenarios.

● Environment: All analysis was conducted in a

secure, isolated virtual machine environment (based on

REMnux [20]) to prevent any accidental execution or

network propagation of the malicious samples.

● Procedure: Each of the 1,200 documents was

processed through the entire framework pipeline. The

LLM's final output, specifically the numerical

maliciousness score, was recorded. For classification, a

decision threshold was set: any document receiving a

score of 3.0 or higher was classified as "Malicious," while

any document with a score below 3.0 was classified as

"Benign." This threshold was determined through

preliminary testing to optimize the balance between

detecting threats and minimizing false alarms.

Table 3. Malicious Dataset Composition by Attack Type

Attack Type /

Malware Family

Number of Samples Percentage of

Malicious Set

Key Characteristics

VBA Macro Dropper

(e.g., AgentTesla,

Qakbot)

350 58.3% Uses macros to

download and

execute a second-

stage payload.

Remote Template

Injection

120 20.0% Abuses XML

relationships to load

malicious code from a

remote server.

Embedded OLE

Object

65 10.8% Hides a malicious

executable or script

inside a seemingly

benign object.

CVE Exploit (e.g.,

Follina)

45 7.5% Crafted to trigger a

specific software

vulnerability in

Microsoft Office.

Other/Multi-Stage 20 3.3% Combines multiple

techniques or uses

novel methods.

Total 600 100%

4.2. Performance Metrics

Standard binary classification metrics were used to

measure the framework's performance:

● Confusion Matrix: A table showing the breakdown

of predictions into True Positives (TP), True Negatives

(TN), False Positives (FP), and False Negatives (FN).

● Accuracy: The overall percentage of correct

EUROPEAN JOURNAL OF EMERGING CYBERSECURITY AND INFORMATION PROTECTION

pg. 8

classifications.Accuracy=TP+TN+FP+FNTP+TN

● Precision: The proportion of documents flagged

as malicious that were actually malicious. High precision

indicates a low false positive rate.Precision=TP+FPTP

● Recall (Sensitivity): The proportion of all actual

malicious documents that were correctly identified. High

recall indicates a low false negative rate.Recall=TP+FNTP

● F1-Score: The harmonic mean of Precision and

Recall, providing a single metric that balances the two. It

is particularly useful for imbalanced datasets, though our

dataset is balanced.F1-

Score=2×Precision+RecallPrecision×Recall

4.3. Quantitative Classification Results

Upon running the 1,200 documents through the

framework, the following results were obtained:

● True Positives (TP): 582 (Out of 600 malicious files,

582 were correctly identified)

● False Negatives (FN): 18 (18 malicious files were

missed)

● True Negatives (TN): 589 (Out of 600 benign files,

589 were correctly identified)

● False Positives (FP): 11 (11 benign files were

incorrectly flagged as malicious)

This leads to the following performance metrics:

Metric Score (%)

Accuracy 97.58%

Precision 98.14%

Recall 97.00%

F1-Score 97.57%

The framework achieved an exceptionally high accuracy

of 97.58%. The precision of 98.14% is particularly strong,

indicating that the system is very reliable; when it flags a

document, it is almost certainly malicious. The recall of

97.00% is also very high, demonstrating that the system

successfully caught the vast majority of threats. The

balanced F1-Score of 97.57% confirms the overall

robustness and reliability of the model.

4.4. Qualitative Analysis and Case Studies

The numerical scores only tell part of the story. The true

power of the LLM-based approach lies in its reasoning.

Analyzing the detailed explanations provided by the

model gives insight into its "thought process."

Case Study 1: True Positive (Heavily Obfuscated Macro)

A .docm file containing a macro with multiple layers of

Base64 and string reversal obfuscation was analyzed.

● LLM's Verdict (Score: 9.5/10): "Malicious. The

document contains a VBA macro with an AutoOpen

subroutine for automatic execution. The macro code is

heavily obfuscated using concatenated strings and

Base64 decoding. The deobfuscated payload constructs a

PowerShell command designed to download a remote

file (http://evil.com/payload.exe) and execute it from

the user's Temp directory. This is a classic dropper

pattern."

● Analysis: This case demonstrates the model's

ability to see through complex obfuscation and

understand the ultimate, malicious intent of the code—a

task that would stump most signature-based tools.

Case Study 2: True Negative (Complex Benign

Spreadsheet)

A .xlsm file from a finance department, containing

legitimate macros for pulling data from an internal

database and generating reports.

● LLM's Verdict (Score: 1.0/10): "Benign. The

document contains several VBA macros. These macros are

well-commented and perform standard data manipulation

tasks, such as connecting to a database, running queries,

and populating cells. There are no signs of obfuscation, no

calls to Shell, and no suspicious external URLs. The

functionality is consistent with legitimate business

automation."

● Analysis: This shows the model's crucial ability to

differentiate between complex code and malicious code,

correctly interpreting the context of the operations and

avoiding a false positive.

Case Study 3: False Negative (Subtle Remote Template

Injection)

One of the 18 missed files used a subtle remote template

injection. The malicious URL was not in the main

relationships file but was hidden in a less common XML file

defining printer settings, and the document contained no

VBA macros to act as a decoy.

EUROPEAN JOURNAL OF EMERGING CYBERSECURITY AND INFORMATION PROTECTION

pg. 9

● LLM's Verdict (Score: 2.0/10): "Benign. The

document does not contain any VBA macros or

suspicious embedded objects. The XML structure

appears standard. While there is an external URL, its

context seems related to a network resource and does

not follow the typical pattern of a malicious template."

● Analysis: This failure highlights a limitation. The

model, associating template injection primarily with the

main settings.xml.rels file, underestimated the

significance of a URL in a more obscure location. This

suggests that prompt refinement is a continuous process,

and future prompts should instruct the model to treat

any external relationship, regardless of its location, with

high suspicion.

Case Study 4: False Positive (Benign Script with

Ambiguous Keywords)

A benign .docx file contained a macro written by a

developer to automate the cleanup of temporary files

created by a custom in-house application. The macro

used functions like Kill and referenced the

C:\Users\...\AppData\ directory.

● LLM's Verdict (Score: 5.5/10): "Malicious. The

document's VBA macro contains suspicious indicators. It

uses the Kill command to delete files and operates within

the AppData directory, which are behaviors common in

malware attempting to erase traces or manipulate

system files. The lack of comments and use of direct file

path manipulation is concerning."

● Analysis: Here, the model correctly identified

potentially dangerous functions but lacked the specific

context to know they were being used for a legitimate,

albeit unusual, purpose. This demonstrates the inherent

challenge of static analysis; without understanding the

user's specific environment and intent, some ambiguity

is unavoidable. This type of alert would require review by

a human analyst, but the LLM's detailed explanation

would allow the analyst to resolve it in seconds.

4.5. Cost and Performance Analysis

● Performance/Latency: The end-to-end analysis

time per document was measured. The Office2JSON

extraction process averaged 0.3 seconds. The API call to

the LLM (including network latency and model inference

time) averaged 7 seconds. The total average time for a

complete analysis was under 8 seconds, which is highly

practical for many security workflows.

● Cost Analysis: Using the pricing for a model like

Claude 3.5 Sonnet [50], the cost was analyzed. The

average input size was ~60,000 tokens, and the output

was ~150 tokens. This results in an approximate cost of

USD $0.20 per document analysis. While not free, this cost

is negligible compared to the potential cost of a security

breach or the salary of a human malware analyst

performing the same task.

5. DISCUSSION

The evaluation results provide compelling evidence that a

static analysis framework powered by a general-purpose

Large Language Model is not only viable but also highly

effective. The high performance across all metrics suggests

this approach represents a significant leap forward. This

section delves into the broader implications of these

findings, discusses the inherent advantages and

limitations, and charts a course for future research and

development.

5.1. Interpretation of Findings: Beyond Pattern Matching

The framework's success stems from the LLM's ability to

move beyond simple pattern matching to a form of

semantic and contextual reasoning. Traditional tools are

programmed to answer the question, "Does this file

contain this known bad signature?" The LLM, however, is

prompted to answer the question, "Does the structure and

content of this file describe a malicious intent?"

This is a fundamentally different and more powerful

paradigm. It allows the system to:

● Generalize from Concepts: The LLM knows what a

"download cradle" is conceptually, not just as a specific

string of PowerShell code. It can therefore recognize this

pattern even if it's written in a novel way.

● Correlate Disparate Evidence: The model can

connect a seemingly innocent piece of VBA code with a

suspicious URL found in a completely different XML file

within the same package, understanding that the two are

likely related.

● Tolerate Ambiguity: The model can identify

"suspicious" but not definitively "malicious" code,

assigning a medium score and providing a nuanced

explanation. This is invaluable for human analysts who

need to prioritize alerts.

The detailed, human-readable explanations are a

transformative feature. They demystify the detection

process, turning a "black box" alert into a transparent,

actionable intelligence report. This can dramatically

improve the efficiency of Security Operations Center (SOC)

analysts, who can validate or dismiss an alert in a fraction

of the time it would take to perform a manual analysis.

5.2. Advantages Over Traditional Methods

The LLM-based approach offers several clear advantages,

summarized in the table below.

Table 4. Comparative Advantages of the LLM-Based Approach

Capability Signature-Based Traditional ML LLM-Based

EUROPEAN JOURNAL OF EMERGING CYBERSECURITY AND INFORMATION PROTECTION

pg. 10

(e.g., YARA) Framework

Zero-Day Detection Ineffective. Requires

pre-existing

signature.

Limited. Struggles

with novel features.

Effective. Reasons

from first principles

and malicious

behaviors.

Obfuscation

Resilience

Low. Easily defeated

by simple encoding.

Medium. Can learn

some patterns but is

brittle.

High. Can often infer

logic of obfuscated

code.

Feature Engineering Manual. Rules must

be written by experts.

Manual and

Extensive. Requires

domain experts.

Minimal. Learns

features implicitly

from raw data.

Interpretability High. The matching

rule is the

explanation.

Low. Often a "black

box" model.

Very High. Provides

detailed, human-

readable reasoning.

Adaptability Low. Requires

constant manual rule

updates.

Medium. Requires

frequent retraining

on new data.

High. Leverages a

vast, general

knowledge base.

5.3. Limitations and Avenues for Future Work

Despite its strengths, the framework is not a silver bullet.

Several limitations exist, each presenting an opportunity

for future research.

1. Cost and Latency: While the cost of ~$0.20 and

latency of ~8 seconds per file is acceptable for many use

cases (e.g., forensic analysis, high-risk attachment

scanning), it may be prohibitive for real-time scanning of

all documents on an enterprise network.

2. Context Window Limitations: While modern LLMs

have very large context windows [47, 48], an attacker

could theoretically construct an enormous document

that exceeds the limit.

3. Sophisticated Adversarial Attacks: As LLM-based

defenses become more common, attackers will develop

adversarial techniques specifically designed to fool them.

This will create a new arms race requiring ongoing

research in AI safety and robustness.

4. The Encryption Problem: Static analysis is

fundamentally defeated by strong encryption [25]. If a

document is password-protected, its contents cannot be

analyzed without the password. This is not a unique

limitation of our framework but a universal challenge for

static analysis.

Future Work should proceed along several parallel

tracks:

● Hybrid Models: A highly practical next step is to

create a hybrid system. A fast, traditional scanner could

handle the bulk of documents, flagging known threats

instantly. Only the documents that pass this initial scan

would be sent to the more resource-intensive LLM for

deep analysis.

● Model Specialization vs. Generalization: While this

paper advocates for general-purpose models, research

into fine-tuning LLMs on vast, curated datasets of

malicious document structures could yield even higher

accuracy, potentially at a lower cost if a smaller,

specialized model can be used.

● Expansion to Other File Formats: The core

methodology—extract to structured text, analyze with

LLM—is highly portable. Future work will apply this

framework to other complex file formats that are common

malware vectors, such as PDFs [36], LNK files, and ISOs.

● Self-Hosted Models: For organizations with high

security and data privacy requirements, the use of third-

party APIs is a non-starter. The maturation of powerful

open-source models (e.g., Meta's Llama series [53],

Google's Gemma [54]) makes self-hosting a viable path.

This would eliminate API costs and data privacy concerns,

though it introduces infrastructure and maintenance

overhead.

5.4. Ethical and Regulatory Considerations

Deploying powerful AI in a security context carries

EUROPEAN JOURNAL OF EMERGING CYBERSECURITY AND INFORMATION PROTECTION

pg. 11

significant ethical weight. The potential for a false

positive to disrupt critical business operations

necessitates rigorous testing and a human-in-the-loop

approach for high-stakes decisions.

Furthermore, data privacy is paramount. Sending

documents, which may contain sensitive personal or

corporate information, to a third-party LLM provider

requires careful consideration of the provider's terms of

service [52] and compliance with data protection

regulations like GDPR or the EU AI Act [51]. The self-

hosting approach described above is the most robust

solution to these privacy concerns.

6. CONCLUSION

The proliferation of malicious Office documents remains

one of the most persistent and damaging threats in the

cybersecurity landscape. This research has

demonstrated that by combining a thorough, structured

extraction of a document's contents with the advanced

reasoning capabilities of a Large Language Model, it is

possible to create a static analysis framework that is

more effective, resilient, and insightful than traditional

methods.

Our proposed framework achieved outstanding

performance in a comprehensive evaluation, proving its

ability to accurately distinguish between malicious and

benign documents with high precision and recall. Its core

strength lies in its ability to move beyond syntactic

pattern matching to a semantic understanding of

malicious intent, allowing it to see through obfuscation

and identify novel threats. The generation of detailed,

human-readable analysis reports is a transformative

feature that can empower security teams and streamline

incident response workflows.

While the approach has limitations, such as cost and the

universal challenge of encryption, these are balanced by

its significant advantages. The path forward is clear:

future development will focus on creating hybrid

systems, exploring the trade-offs of model specialization,

expanding the methodology to other file formats, and

leveraging the growing power of self-hosted models to

address privacy and cost.

As attackers continue to innovate, our defenses must

evolve beyond rigid, rule-based systems. The integration

of AI, specifically the deep reasoning capabilities of Large

Language Models, is not merely an incremental

improvement; it represents a new paradigm in the fight

against malware. This work provides a robust blueprint

for how that paradigm can be put into practice, offering a

more intelligent and adaptive defense against the ever-

present threat of weaponized documents.

REFERENCES

1. Microsoft Office Statistics: Latest Data &

Summary. 2024. Available online:

https://wifitalents.com/statistic/microsoft-

office/ (accessed on 20 June 2024).

2. Macros from the Internet Are Blocked by Default in

Office. 2024. Available online:

https://learn.microsoft.com/en-

us/deployoffice/security/internet-macros-

blocked (accessed on 20 June 2024).

3. The Beginner’s Guide to—OOXML Malware

Reverse Engineering Part 1. 2024. Available online:

https://bufferzonesecurity.com/the-beginners-

guide-to-ooxml-malware-reverse-engineering-

part-1/ (accessed on 16 June 2024).

4. How to Analyze Malicious Microsoft Office Files.

2025. Available online:

https://intezer.com/blog/malware-

analysis/analyzemalicious-microsoft-office-files/

(accessed on 2 April 2025).

5. A Distribution of Exploits Used in Attacks by Type

of Application Attacked, May 2020. 2024. Available

online: https://securelist.com/kaspersky-

security-bulletin-2020-2021-eu-

statistics/102335/#vulnerable-applications-used-

by-cybercriminals (accessed on 17 June 2024).

6. Microsoft 365 MSO 2306 Build 16.0.16529.20100

Remote Code Execution. 2025. Available online:

https://packetstormsecurity.com/files/173361/

Microsoft-365-MSO-2306-Build-

16.0.16529.20100-Remote-Code-Execution.html

(accessed on 3 April 2025).

7. Microsoft Office Security Vulnerabilities, CVEs

CVSS Score >= 7. 2025. Available online:

https://www.cvedetails.com/vulnerability-

list/vendor_id-26/product_id-320/Microsoft-

Office.html?page=1&cvssscoremin=7 (accessed on

3 April 2025).

8. The Last Six Months Shows a 341% Increase in

Malicious Emails. 2025. Available online:

https://www.securitymagazine.com/articles/100

687-the-last-six-months-shows-a-341-increase-in-

malicious-emails (accessed on 15 April 2025).

9. 139,445—Pentesting SMB. 2025. Available online:

https://book.hacktricks.xyz/network-services-

pentesting/pentesting-smb (accessed on 19 April

2025).

10. HTTP Spoofing. 2025. Available online:

https://www.invicti.com/learn/mitm-https-

spoofing-idn-homograph-attack/ (accessed on 9

April 2025).

11. Malicious Shapes In Office—Part 1. 2025. Available

online:

https://medium.com/@laughing_mantis/maliciou

s-shapes-inoffice-part-1-8a4efca74358 (accessed

on 15 April 2025).

12. Malicious Shapes In Office—Part 2. 2025. Available

online:

https://medium.com/@laughing_mantis/maliciou

EUROPEAN JOURNAL OF EMERGING CYBERSECURITY AND INFORMATION PROTECTION

pg. 12

s-shapes-inoffice-part-2-910375cd05f3

(accessed on 15 April 2025).

13. Heß, J. Office2JSON. 2024. Available online:

https://github.com/RuntimeException420/Offic

e2JSON (accessed on 18 June 2024).

14. MalwareBazaar Database. 2024. Available online:

https://bazaar.abuse.ch/browse/ (accessed on

18 June 2024).

15. VirusTotal—Search. 2025. Available online:

https://www.virustotal.com/gui/home/search

(accessed on 10 April 2025).

16. HashMyFiles by NirSoft. 2025. Available online:

https://www.nirsoft.net/utils/hash_my_files.htm

l (accessed on 16 April 2025).

17. YARA’s Documentation. 2025. Available online:

https://yara.readthedocs.io/en/v4.4.0/index.ht

ml (accessed on 16 April 2025).

18. PeStudio Overview: Setup, Tutorial and Tips.

2025. Available online:

https://www.varonis.com/blog/pestudio

(accessed on 16 April 2025).

19. Decalage2/Oletools. 2024. Available online:

https://github.com/decalage2/oletools

(accessed on 19 June 2024).

20. REMnux: A Linux Toolkit for Malware Analysis.

2025. Available online:

https://remnux.org/#home (accessed on 16 April

2025).

21. LetsDefend: Dynamic Malware Analysis Part 1.

2025. Available online:

https://infosecwriteups.com/letsdefend-

dynamicmalware-analysis-part-1-1ce35ff5b59f

(accessed on 16 April 2025).

22. What Is Endpoint Detection and Response? 2025.

Available online:

https://www.trellix.com/security-

awareness/endpoint/what-is-endpoint-

detection-and-response/ (accessed on 16 April

2025).

23. What Are Metamorphic and Polymorphic

Malware? 2024. Available online:

https://www.techtarget.com/searchsecurity/def

inition/metamorphic-and-polymorphic-malware

(accessed on 28 June 2024).

24. Naidu, V.; Narayanan, A. A Syntactic Approach for

Detecting Viral Polymorphic Malware Variants. In

Proceedings of the Intelligence and Security

Informatics, Auckland, New Zealand, 19 April

2016; Volume 9650.

25. Protect a Document with a Password. 2025.

Available online:

https://support.microsoft.com/en-

us/office/protect-a-documentwith-a-password-

05084cc3-300d-4c1a-8416-38d3e37d6826

(accessed on 16 April 2025).

26. Pleshakova, E.; Osipov, A.; Gataullin, S.; Gataullin, T.;

Vasilakos, A. Next gen cybersecurity paradigm

towards artificial general intelligence: Russian

market challenges and future global technological

trends. J. Comput. Virol. Hacking Tech. 2024, 20,

429–440.

27. Minaee, S.; Mikolov, T.; Nikzad, N.; Chenaghlu, M.;

Socher, R.; Amatriain, X.; Gao, J. Large Language

Models—A Survey. arXiv 2024, arXiv:2402.06196.

28. GPQA: A Graduate-Level Google-Proof Q&A

Benchmark. 2025. Available online:

https://klu.ai/glossary/gpqa-eval (accessed on 14

April 2025).

29. LLM Leaderboard. 2025. Available online:

https://klu.ai/llm-leaderboard (accessed on 14

April 2025).

30. Sanchez, P.M.S.; Celdran, A.H.; Bovet, G.; Perez, G.M.

Transfer Learning in Pre-Trained Large Language

Models for Malware Detection Based on System

Calls. arXiv 2024, arXiv:2405.09318.

31. Singh, P. Detection of Malicious OOXML Documents

Using Domain Specific Features. Ph.D. Thesis,

Indian Institute of Information Technology and

Management Gwalior, Gwalior, India, 2017.

32. Zahan, N.; Burckhardt, P.; Lysenko, M.;

Aboukhadijeh, F.; Williams, L. Shifting the Lens:

Detecting Malicious npm Packages using Large

Language Models. arXiv 2025, arXiv:2403.12196.

33. Patsakis, C.; Casino, F.; Lykousas, N. Assessing LLMs

in Malicious Code Deobfuscation of Real-world

Malware Campaigns. arXiv 2025,

arXiv:2404.19715.

34. Müller, J.; Ising, F.; Mainka, C.; Mladenov, V.;

Schinzel, S.; Schwenk, J. Office Document Security

and Privacy. In Proceedings of the 14th USENIX

Workshop on Offensive Technologies (WOOT 20),

Boston, MA, USA, 10–11 August 2020.

35. Nath, H.V.; Mehtre, B. Static Malware Analysis Using

Machine Learning Methods. In Proceedings of the

International Conference on Security in Computer

Networks and Distributed Systems (SNDS-2014),

Trivandrum, India, 13–14 March 2014.

36. Khan, B.; Arshad, M. Comparative Analysis of

Machine Learning Models for PDF Malware

Detection: Evaluating Different Training and

Testing Criteria. J. Cyber Secur. 2023, 5, 1–11.

37. Ucci, D.; Aniello, L.; Baldoni, R. Survey of Machine

Learning Techniques for Malware Analysis. arXiv

2017, arXiv:1710.08189.

EUROPEAN JOURNAL OF EMERGING CYBERSECURITY AND INFORMATION PROTECTION

pg. 13

38. Shalaginov, A.; Banin, S.; Dehghantanha, A.;

Franke, K. Machine Learning Aided Static

Malware Analysis: A Survey and Tutorial. arXiv

2025, arXiv:1808.01201.

39. PEP 8—Style Guide for Python Code. 2025.

Available online: https://peps.python.org/pep-

0008/ (accessed on 10 April 2025).

40. Mandiant/Flare-vm. 2025. Available online:

https://github.com/mandiant/flare-vm

(accessed on 17 April 2025).

41. Heß, J. LLM-Sentinel. 2025. Available online:

https://github.com/RuntimeException420/LLM-

Sentinel (accessed on 10 April 2025).

42. Generate Better Prompts in the Developer

Console. 2025. Available online:

https://www.anthropic.com/news/prompt-

generator (accessed on 10 April 2025).

43. Using the API—Client SDKs. 2025. Available

online:

https://docs.anthropic.com/en/api/client-

sdks#python (accessed on 11 April 2025).

44. Prompt Engineering Overview. 2025. Available

online:

https://docs.anthropic.com/en/docs/build-with-

claude/promptengineering/overview (accessed

on 10 April 2025).

45. A Guide to Prompt Engineering: Enhancing the

Performance of Large Language Models (LLMs).

2025. Available online:

https://roboticsbiz.com/a-guide-to-prompt-

engineering-enhancing-the-performance-of-

large-language-models-llms/ (accessed on 20

May 2025).

46. Zhan, Q.; Liang, Z.; Ying, Z.; Kang, D. INJECAGENT:

Benchmarking Indirect Prompt Injections in Tool-

Integrated Large Language Model Agents. arXiv

2024, arXiv:2403.02691.

47. Learn About Claude—Models. 2025. Available

online:

https://docs.anthropic.com/en/docs/about-

claude/models (accessed on 10 April 2025).

48. Introducing the Next Generation of Claude. 2025.

Available online:

https://www.anthropic.com/news/claude-3-

family (accessed on 10 April 2025).

49. Naik, N.; Jenkins, P.; Savage, N.; Yang, L.;

Boongeon, T.; Iam-On, N.; Naik, K.; Song, J.

Embedded YARA rules: Strengthening YARA

Rules Utilising Fuzzy Hashing and Fuzzy Rules for

Malware Analysis. 2020. Available online:

https://link.springer.com/article/10.1007/s407

47-020-00233-5 (accessed on 27 May 2025).

50. Anthropic—Pricing. 2025. Available online:

https://www.anthropic.com/pricing#anthropic-

api (accessed on 5 April 2025).

51. Regulation (EU) 2024/1689 of the European

Parliament and of the Council of 13 June 2024

Laying Down Harmonised Rules on Artificial

Intelligence and Amending Regulations. 2025.

Available online: https://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX%3A32024R1689

(accessed on 14 April 2025).

52. Commercial Terms of Service. 2025. Available

online:

https://www.anthropic.com/legal/commercial-

terms (accessed on 14 April 2025).

53. Introducing Llama 3.1: Our Most Capable Models to

Date. 2025. Available online:

https://ai.meta.com/blog/meta-llama-3-1/

(accessed on 6 April 2025).

54. Gemma Open Models. 2025. Available online:

https://ai.google.dev/gemma (accessed on 6 April

2025).

