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ABSTRACT 

 
Federated Learning (FL) offers a privacy-preserving paradigm for collaborative model training, particularly well-suited 
for edge computing. However, the inherent heterogeneity of edge clients—encompassing data distribution, 
computational capabilities, and reliability—poses significant challenges to FL's effectiveness, including performance 
degradation and vulnerability to malicious participants. This article proposes a novel trust-based incentive mechanism 
designed to address these issues by dynamically evaluating client trustworthiness and adjusting incentives accordingly. 
Our framework integrates a multi-faceted trust score that considers contribution quality, reliability, and the detection of 
malicious behavior. By rewarding trustworthy contributions and penalizing unreliable actions, the proposed mechanism 
aims to enhance global model accuracy, improve robustness against attacks, and foster fairness among diverse 
participants. This approach encourages consistent, high-quality contributions while mitigating risks from untrustworthy 
clients, paving the way for more resilient and efficient federated learning deployments in real-world edge environments. 

Keywords: Federated Learning, Edge Computing, Incentive Mechanism, Trust Management, Heterogeneous Clients, Data 
Heterogeneity, Model Poisoning, Client Selection. 

 

INTRODUCTION 

The rapid advancements in artificial intelligence (AI) and 

the proliferation of edge devices have ushered in an era 

where intelligent systems are increasingly deployed at 

the network's periphery. Concurrently, growing 

concerns over data privacy and stringent regulations, 

such as the General Data Protection Regulation (GDPR) 

and the Health Insurance Portability and Accountability 

Act (HIPAA), have made traditional centralized machine 

learning approaches less viable due to the necessity of 

collecting vast amounts of sensitive user data [1]. 

Federated Learning (FL) has emerged as a 

groundbreaking distributed machine learning paradigm 

that addresses these challenges by enabling collaborative 

model training without requiring raw data to leave the 

client devices [2]. This "data-at-source" principle 

significantly enhances data locality and privacy, making 

FL particularly appealing for sensitive applications in 

healthcare, finance, and smart city infrastructures [3]. 

Despite its immense potential, the real-world 

deployment of federated learning, especially in 

heterogeneous edge computing environments, faces a 

myriad of critical challenges. These challenges primarily 

stem from three fundamental types of heterogeneity: 

statistical, system, and behavioral [4, 5]. 

Firstly, statistical heterogeneity, often referred to as non-

Independent and Identically Distributed (non-IID) data, is 

a pervasive issue in FL. Data collected by diverse edge 

clients typically originates from distinct users, 

geographical locations, or operational contexts, leading to 

significant variations in data distributions. This can 

manifest as label skew (clients having data predominantly 

from certain classes), feature skew (different feature 

distributions), or quantity skew (imbalanced data sizes 

across clients) [6, 7]. Such non-IID data severely impedes 

the convergence rate and generalization capabilities of the 

global model, as local updates from disparate distributions 

may pull the global model in conflicting directions [8, 39, 

40]. 

Secondly, system heterogeneity arises from the vast 

differences in the computational capabilities, memory, 

battery life, and network bandwidth of edge devices [38]. 

Clients may experience varying communication delays, 

intermittent connectivity, or even training interruptions 

due to resource constraints or dynamic network 

conditions. These disparities create "stragglers"—clients 
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that are significantly slower than others—which can 

prolong training times and widen performance gaps at 

the system level, making it challenging to synchronize 

model updates efficiently [43]. 

Most critically, behavioral heterogeneity introduces a 

layer of complexity related to client motivations and 

trustworthiness. In an open and decentralized FL 

environment, clients are often self-interested entities 

that may prioritize their own utility (e.g., minimizing 

resource consumption) over the collective good of the 

global model [9]. This can lead to strategic participation, 

where clients contribute minimally (free-riding) or even 

upload perturbed gradients to reduce their 

computational burden while still benefiting from the 

aggregated model. Furthermore, the presence of 

malicious clients poses a severe threat, as they can 

intentionally inject corrupted data (data poisoning) or 

manipulate model updates (model poisoning, backdoor 

attacks) to degrade the global model's performance, 

compromise its integrity, or introduce specific 

vulnerabilities [10, 11, 12, 13, 14, 34, 35, 36]. The 

dynamic nature of these behaviors, including on-off 

attacks or mimicry attacks, makes them particularly 

difficult to detect and counter effectively [44, 45]. 

To address these multifaceted challenges, extensive 

research has been conducted across various domains, 

including robust aggregation algorithms, security 

mechanisms, trust management, and incentive design 

[11, 12]. While robust aggregation techniques like Krum 

[13] and Trimmed Mean [14] can filter outlier updates 

and enhance resilience, they often employ rigid filtering 

strategies that may inadvertently penalize benign but 

high-variance clients, thus sacrificing model diversity. 

Similarly, existing trust mechanisms, such as FedTrust 

[31] and TrustFL [32], assess client credibility based on 

model similarity or behavioral patterns but are 

frequently decoupled from the incentive schemes. 

Current incentive mechanisms typically allocate rewards 

based on static indicators like data volume or training 

time, which are susceptible to manipulation by strategic 

clients and can lead to unfair reward distribution and 

incentive abuse under adversarial conditions [17, 18]. 

A significant limitation in the current landscape is the 

lack of a unified, integrated approach where trust 

modeling, robust aggregation, and incentive mechanisms 

are systematically coupled. This decoupling often results 

in persistent internal incentive biases, distorted client 

behaviors, and a loss of control over the FL training 

process. Moreover, the inherently dynamic nature of 

client behaviors in edge environments means that one-

shot scoring or static thresholds are insufficient to 

capture long-term trends and fluctuations, leading to 

misjudgments and misallocated rewards that 

compromise overall fairness and stability. 

This article proposes a novel Trust-Aware Incentive 

Mechanism (TAIM) that unifies client trust modeling, 

incentive feedback, and robust aggregation within a 

single framework. Guided by the principle that "trust 

drives participation, incentive motivates resource 

investment, and aggregation ensures robustness," TAIM 

aims to achieve deep coupling between strategic and 

optimization layers. This integration is designed to 

enhance system robustness, ensure fairness in resource 

allocation, and promote sustainable, high-quality 

participation from diverse clients in heterogeneous edge 

computing environments. 

The main contributions of this paper are summarized as 

follows: 

● We develop a comprehensive dynamic trust 

modeling framework that integrates multiple behavioral 

indicators, including participation frequency, gradient 

consistency, and contribution effectiveness. This 

framework is designed to capture the dynamic behavioral 

trajectories of clients and quantify their stability and 

reliability over time. 

● We formulate a trust-driven incentive mechanism 

based on Stackelberg game theory. This mechanism allows 

the server (leader) to strategically allocate rewards, 

guiding clients (followers) to invest optimal resources and 

converge towards rational strategies that align with the 

system's objectives, ultimately enhancing their 

participation and resource commitment. 

● We introduce a confidence-aware smoothing 

aggregation algorithm that incorporates a novel soft 

filtering function. This function intelligently suppresses 

the influence of low-trust updates while allowing for their 

potential recovery, thereby striking a crucial balance 

between maintaining robustness against malicious attacks 

and preserving beneficial client diversity. 

● We conduct extensive experimental validation 

across multiple non-IID datasets (FEMNIST, CIFAR-10, 

Sent140) and various adversarial scenarios. Through 

comparative analysis against existing baselines, we 

demonstrate the superior robustness, fairness, and 

convergence performance of the proposed TAIM. 

The remainder of this paper is organized as follows: 

Section 2 provides a detailed review of related works and 

key methodologies in federated learning. Section 3 

formalizes the system model, characterizes client 

heterogeneity, and defines the problem formulation. 

Section 4 elaborates on the design, theoretical analysis, 

and algorithmic details of the proposed TAIM. Section 5 

presents the comprehensive experimental validation and 

comparative evaluation of TAIM's performance. Finally, 

Section 6 discusses the limitations of the current work and 

outlines promising directions for future research. 

2. RELATED WORK 

To construct a resilient and efficient federated learning 

system tailored for the complexities of heterogeneous 

edge environments, researchers have extensively 

explored three interconnected yet often 

compartmentalized research directions: client incentive 
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mechanisms, trust modeling, and robust aggregation 

algorithms. This section systematically reviews the state-

of-the-art in each of these areas, identifies their inherent 

limitations, and highlights the unique contributions and 

distinctiveness of our proposed unified framework. 

2.1. Incentive Mechanism Design in Federated Learning 

In practical FL deployments, the voluntary participation 

of numerous clients, each possessing varying resource 

capabilities and self-interests, is crucial. However, 

concerns regarding privacy, computational resource 

consumption, and communication overhead often make 

clients reluctant to participate consistently or contribute 

high-quality updates [19, 20]. Therefore, designing 

effective incentive mechanisms to enhance client 

participation, ensure the quality of their contributions, 

and prevent free-riding has become a paramount 

research challenge [21, 22]. Comprehensive surveys, 

such as that by Zhou [23], categorize these mechanisms, 

emphasizing the prominence of economic theories like 

game theory, auction theory, and contract theory in 

addressing the challenge of motivating self-interested 

clients. 

Early studies in FL incentive design primarily focused on 

resource-driven models. These models often rewarded 

clients based on quantifiable metrics like the volume of 

data contributed or the duration of training time. For 

instance, Zhang et al. [24] proposed an incentive model 

based on a Stackelberg game, where rewards were 

allocated based on the quality of uploaded models rather 

than merely data volume or training time. While such 

methods could improve system efficiency to some extent 

by encouraging resource commitment, they frequently 

overlooked the inherent heterogeneity in model quality 

and the strategic participation behaviors of clients. This 

oversight could lead to disproportionate rewards for 

strategically behaving clients who might appear to 

contribute significantly but whose updates offer minimal 

actual benefit to the global model. 

To enhance fairness and robustness, some works 

introduced more sophisticated economic frameworks, 

particularly game theory and marginal contribution 

analysis. Huang et al. [25] and Xia et al. [26] designed 

demand-based reward allocation strategies that 

leveraged Shapley value estimation. The Shapley value, a 

concept from cooperative game theory, provides a fair 

way to distribute the total gains from a cooperative 

endeavor among its participants, based on their marginal 

contributions. In FL, it quantifies each client's marginal 

improvement to the global model's performance. While 

theoretically sound for fairness, computing exact Shapley 

values is computationally intensive (NP-hard) for large 

numbers of clients, necessitating approximations that 

can introduce their own biases or computational 

overhead. Different game-theoretic approaches have also 

been explored; for example, Pang et al. [27] designed an 

incentive auction specifically for heterogeneous client 

selection, aiming to create a market-based environment 

for efficient resource allocation. Auction mechanisms, 

while effective in competitive bidding scenarios, differ 

from our approach by emphasizing short-term 

competitive bidding rather than fostering long-term trust 

and collaborative behavior. 

Recognizing the limitations of static or purely 

contribution-based metrics, recent works have shifted 

towards evaluating client behavior over time. For example, 

Al-Saedi et al. [28] proposed a method to predict client 

contributions by evaluating their past behaviors, with the 

goal of proactively selecting more reliable participants for 

future rounds. This predictive approach offers a valuable 

complement to reactive trust-scoring mechanisms, which 

assess credibility after each round to dynamically adjust 

rewards and aggregation weights. Furthermore, some 

research has ventured into using reinforcement learning 

(RL) for dynamic incentive strategy generation. Ma et al. 

[29] introduced a deep reinforcement learning algorithm 

for incentive-based demand response, which continuously 

optimizes interaction strategies using client states and 

feedback signals, even under conditions of incomplete 

information. While RL-based approaches improve 

adaptability by learning optimal incentive policies, they 

often rely on global reward signals and may struggle to 

capture fine-grained individual trustworthiness or defend 

against sophisticated strategic manipulation attempts by 

individual clients. The increasing complexity and diversity 

of these mechanisms also highlight the growing need for 

standardized evaluation frameworks, a gap addressed by 

platforms like FLWB [30], which facilitate reproducible 

performance comparisons of FL algorithms. 

In summary, a critical limitation of current incentive 

mechanisms is their insufficient modeling and utilization 

of client behavioral credibility. This deficiency often 

results in misallocated or abused rewards, leading to 

suboptimal global model performance and reduced client 

retention. Our study aims to overcome this by deeply 

embedding dynamic trust scores into the game-theoretic 

incentive function, thereby constructing a behavior-driven 

resource allocation mechanism that enhances system 

security and participation stability. 

2.2. Trust Modeling and Robust Aggregation in Federated 

Learning 

Security threats in federated learning are a major concern, 

primarily stemming from clients uploading malicious or 

low-quality updates that can significantly degrade global 

model performance, introduce backdoors, or compromise 

data privacy. To mitigate these pervasive threats, trust 

modeling and robust aggregation have emerged as central 

research topics. 

In the realm of trust modeling, various methods have been 

proposed to evaluate client credibility from different 

perspectives. FedTrust [31] calculates trust scores based 

on the similarity among uploaded models, adjusting 

aggregation weights accordingly. The underlying 

assumption is that benign clients will produce similar 
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model updates, whereas malicious ones will deviate 

significantly. TrustFL [32] takes a more dynamic 

approach, adjusting client weights based on performance 

fluctuations observed on a public validation set and the 

consistency of feature representations learned by local 

models. This allows for a more direct assessment of a 

client's actual impact on model utility. Lyubchyk et al. 

[33] further advanced this by constructing a composite 

trust scoring system that leverages multi-dimensional 

indicators to reflect a client's long-term behavioral 

stability and reliability, moving beyond single-metric 

assessments. These approaches aim to identify and 

isolate untrustworthy participants before their updates 

can harm the global model. 

Concurrently, robust aggregation algorithms provide a 

crucial line of defense against various poisoning attacks. 

Methods such as Krum [34] and Trimmed Mean [35] are 

designed to eliminate outlier gradients or select 

consistent subsets of updates to enhance robustness. 

Krum, for instance, selects the update that is closest to its 

k-nearest neighbors in the gradient space, effectively 

discarding outliers. Trimmed Mean, as its name suggests, 

sorts the gradients and discards a certain percentage of 

the largest and smallest values before averaging. While 

these methods offer effective defenses against simple 

poisoning attacks, most rely on static thresholds or 

distance-based filtering, which struggle to adapt to 

dynamic client behaviors and often overlook the strategic 

interactions among participants. More sophisticated 

attacks, like those that mimic benign behavior or operate 

intermittently, can often bypass these rigid filtering 

strategies. 

Recently, some works have attempted to couple trust 

mechanisms with robust aggregation to create more 

adaptive defense systems. Perry et al. [36] introduced 

update correlation analysis for dynamic detection of 

collusive poisoning attacks, where multiple malicious 

clients coordinate their actions. Abri et al. [37] modeled 

the trust learning process as a Markov decision process 

to recognize potential attack states and adapt defense 

strategies. However, a persistent limitation in these 

integrated approaches is their neglect of client responses 

to incentive feedback. Without a proper incentive 

regulation mechanism that encourages honest behavior 

and penalizes malicious acts, the effectiveness of even 

sophisticated trust scoring and aggregation strategies 

can be compromised in the long run. Malicious clients, if 

not appropriately disincentivized, may continue to find 

new ways to exploit the system. 

This work distinguishes itself by proposing a soft trust 

filtering mechanism that introduces a smoothing 

suppression function during aggregation. This function 

intelligently attenuates the impact of low-trust updates 

without completely discarding them, thereby avoiding 

overly harsh penalties for edge clients with transient 

behavioral fluctuations. More importantly, our trust 

evaluation is deeply coupled with the incentive allocation 

function, forming a "high trust-high incentive-high 

participation" positive feedback loop. This holistic 

integration enhances adaptive defense capabilities and 

promotes long-term strategy stability within the FL 

ecosystem. 

2.3. Federated Modeling Mechanisms for Heterogeneous 

Edge Environments 

The deployment of federated systems in real-world, 

heterogeneous edge environments presents unique 

challenges that go beyond statistical and behavioral 

aspects. These challenges encompass non-ideal conditions 

such as diverse device capabilities, resource imbalances, 

frequent communication disruptions, and highly dynamic 

client availability [38, 39, 40]. These factors significantly 

amplify the complexities related to fairness, robustness, 

and overall system efficiency. 

To address system-level heterogeneity, various FL 

algorithms have been proposed. FedProx [41] introduces 

a proximal regularization term into the local training 

objective function. This term penalizes local model 

updates that deviate significantly from the global model, 

thereby limiting model divergence and improving global 

convergence, especially in non-IID settings. FedNova [42] 

focuses on normalizing updates to unify contribution 

scales across clients, ensuring that clients with varying 

computational speeds or local training steps contribute 

proportionally to the global model. FedCS [43] proposes a 

bandwidth-aware client selection strategy, optimizing 

training efficiency by prioritizing clients with better 

network connectivity under communication constraints. 

Other works have concentrated on the timeliness of 

information, proposing Age of Information (AoI)-aware 

client selection or update weighting schemes to prioritize 

fresher updates from clients with better connectivity, 

thereby mitigating the negative impact of stragglers (slow 

clients) and stale models [22]. While these approaches 

have achieved notable progress in system optimization 

and efficiency, they largely ignore the dynamic nature of 

client participation and the strategic evolution of client 

behaviors. This oversight makes them less effective in 

open edge environments characterized by frequent 

malicious behaviors and self-interested participants. 

In particular, under the presence of strategic participants, 

clients may actively seek to evade detection and 

manipulate rewards through sophisticated tactics. These 

tactics include mimicry attacks, where malicious clients 

attempt to imitate the gradients of high-trust benign 

clients to evade detection [44], or intermittent poisoning, 

where attacks are launched sporadically to avoid 

consistent detection patterns. Clients might also engage in 

frequent switching between honest and malicious 

behaviors, or between different attack types, ultimately 

undermining the long-term stability and trustworthiness 

of the FL system [45]. Therefore, "behavioral 

trustworthiness" must be considered a core constraint and 

an integral component in federated learning systems to 

enable multi-objective optimization under trustworthy 
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guidance. 

Our work integrates edge heterogeneity modeling, 

dynamic trust evaluation, and incentive-response 

mechanisms to construct a comprehensive trust-driven 

game-theoretic regulation framework at the strategic 

level. By incorporating a soft suppression strategy during 

aggregation, our approach achieves a delicate balance 

between robustness, incentive compatibility, and 

resource adaptation. This provides a systematic 

modeling paradigm for building secure, controllable, and 

truly trustworthy federated learning systems at the edge, 

capable of operating effectively in dynamic and untrusted 

open environments. 

3. SYSTEM MODEL AND PROBLEM FORMULATION 

In this section, we lay the foundational groundwork for 

our proposed Trust-Aware Incentive Mechanism (TAIM). 

We begin by formalizing the basic structure of a 

federated learning system. Subsequently, we construct a 

comprehensive system modeling framework specifically 

tailored to capture the multifaceted heterogeneity 

prevalent in edge computing environments, introducing 

the concepts of dynamic trust modeling and incentive 

allocation mechanisms. Finally, we define a unified 

optimization objective that TAIM aims to achieve. 

3.1. Federated Learning Task Modeling 

We consider a cross-device federated learning scenario 

comprising a central server and a set of N edge clients, 

denoted as C={c1,c2,…,cN}. Each client ci possesses a 

local dataset Di, which is typically characterized by a high 

degree of non-Independent and Identically Distributed 

(non-IID) properties. The overarching objective of the 

system is to collaboratively train a robust and high-

performing global machine learning model, denoted as w, 

without requiring any client to directly share its raw, 

sensitive data with the central server or other clients. 

The global optimization problem in federated learning 

can be formulated as minimizing a global loss function 

F(w): 

wminF(w)=i=1∑N∣D∣∣Di∣Fi(w) 

where D=⋃i=1NDi represents the total dataset across all 

clients, ∣Di∣ is the size of client ci's local dataset, and Fi(w) 

is the local loss function for client ci, typically defined as 

Fi(w)=∣Di∣1∑(x,y)∈Diℓ(w;x,y), where ℓ is the loss 

incurred on a single data sample (x,y). 

The collaborative training process unfolds over a series 

of discrete communication rounds, denoted by t. During 

each round t, the central server orchestrates the 

following sequence of steps: 

1. Client Selection: The server selects a subset of 

clients, St⊆C, to participate in the current training round. 

This selection can be random or based on specific criteria 

(e.g., client availability, historical performance, or as we 

propose, trust scores). 

2. Global Model Broadcast: The server broadcasts the 

current global model parameters, wt, to all selected clients 

in St. 

3. Local Training: Each selected client ci∈St 

downloads wt and performs local model training using its 

private dataset Di. This typically involves several epochs of 

stochastic gradient descent (SGD) or a similar 

optimization algorithm to minimize its local loss function 

Fi(w). 

wit+1=wt−η∇Fi(wt) 

where η is the local learning rate. The client then computes 

its local model update, Δwit=wit+1−wt (or often, the local 

gradient ∇Fi(wt)). 

4. Local Update Upload: Each client ci∈St uploads its 

computed model update Δwit (or its local model wit+1) to 

the central server. 

5. Server Aggregation: Upon receiving updates from 

all participating clients in St, the server aggregates these 

updates to produce a new global model for the next round, 

wt+1. The most common aggregation method is Federated 

Averaging (FedAvg), which performs a weighted average 

of the local updates: 

wt+1=wt+i∈St∑∑j∈St∣Dj∣∣Di∣Δwit 

This new global model wt+1 is then ready for the next 

communication round. 

3.2. Heterogeneity and Behavior Modeling 

The inherent characteristics of edge computing 

environments introduce significant complexities to the 

standard FL paradigm, primarily due to various forms of 

heterogeneity. To accurately model and address these 

challenges, we categorize client states and behaviors from 

three critical perspectives: 

1. Statistical Heterogeneity: 

This refers to the variations in data distributions across 

different clients' local datasets (Di). Unlike the idealized 

Independent and Identically Distributed (IID) assumption 

in traditional distributed learning, real-world FL datasets 

are almost always non-IID. This heterogeneity can 

manifest in several ways: 

● Label Skew (Concept Drift): Clients may have data 

predominantly from a subset of classes. For example, in an 

image classification task, one mobile phone user might 

primarily take pictures of pets, while another takes 

pictures of landscapes. This leads to local models 

specializing in different classes, potentially hindering 

global generalization. 

● Feature Skew (Covariate Shift): Even if label 

distributions are similar, the feature distributions for a 

given label might vary. For instance, images of the same 

object taken under different lighting conditions or from 

different angles by various devices. 

● Quantity Skew (Data Imbalance): Clients may 
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possess vastly different amounts of local data. Some edge 

devices might have extensive historical data, while others 

have very limited samples, leading to varying 

contributions in terms of data volume. 

● Concept Shift: The relationship between features 

and labels might change across clients or over time. For 

example, the definition of "spam" might evolve 

differently for different users. 

These disparities can cause local models to diverge 

significantly, making global model convergence slow, 

unstable, or leading to a poorly generalized model that 

performs suboptimally on unseen data. 

2. System Heterogeneity: 

This encompasses the variations in hardware capabilities 

and network conditions among edge devices. 

● Computational Capabilities (ρi): Clients differ 

widely in their processing power (CPU/GPU), memory 

capacity, and battery life. A high-end smartphone can 

train a local model much faster than a low-power IoT 

sensor. This leads to varying local training times. 

● Communication Latency (li): Network conditions 

(Wi-Fi, 5G, cellular) and geographical locations introduce 

varying communication delays and bandwidth 

constraints. Some clients might be connected via high-

speed, low-latency networks, while others operate on 

unstable or congested links. 

● Availability and Connectivity: Edge devices are 

often mobile and may experience intermittent 

connectivity or go offline frequently. This dynamic 

availability means that the set of active clients can change 

unpredictably from round to round, leading to 

"stragglers" (clients that are too slow to complete their 

updates within the round deadline) or complete 

dropouts. 

These system-level heterogeneities can significantly 

impact the efficiency and synchronization of the FL 

process, leading to delays, resource underutilization, or 

even system failures if not properly managed. 

3. Behavioral Heterogeneity: 

This refers to the diverse motivations and potential 

anomalies in client behavior within an open FL 

environment. This is particularly critical as clients are not 

necessarily benevolent and may act strategically. 

● Strategic Participation: Clients are rational agents 

aiming to maximize their utility. This utility is often a 

trade-off between the incentives received (e.g., 

computational resources, monetary rewards, improved 

model performance) and the costs incurred (e.g., 

computational effort, energy consumption, 

communication bandwidth). This can lead to: 

○ Free-riding: Clients participate but contribute 

minimal effort or low-quality updates to benefit from the 

global model without incurring significant costs. 

○ Opportunistic Behavior: Clients might strategically 

adjust their contribution level based on perceived rewards 

or system state. 

● Malicious Behavior (Adversarial Attacks): Beyond 

mere self-interest, some clients might be actively 

malicious, aiming to sabotage the FL process. Common 

attack types include: 

○ Data Poisoning: Injecting corrupted or mislabeled 

data into their local datasets to degrade the global model's 

performance or introduce specific vulnerabilities. 

○ Model Poisoning (Backdoor Attacks): Uploading 

maliciously crafted model updates (gradients) that, when 

aggregated, degrade the global model's accuracy, cause it 

to misclassify specific inputs (backdoors), or lead to 

convergence to a suboptimal state. 

○ Sybil Attacks: A single malicious entity controls 

multiple client identities to amplify its influence on the 

aggregation process. 

○ Mimicry Attacks: Malicious clients attempt to 

imitate the behavior of benign, high-trust clients to evade 

detection, while still subtly perturbing the global model. 

○ On-Off Attacks: Malicious clients alternate between 

honest and malicious behavior to make detection more 

difficult and to accumulate trust over time, only to launch 

a significant attack later. 

These behavioral anomalies, especially malicious ones, can 

destabilize FL training, significantly degrade the global 

model's performance, or even cause it to crash. To 

effectively manage these dynamic and often adversarial 

characteristics, we introduce a Trust-Aware Incentive 

Mechanism designed to enable continuous behavior 

perception and adaptive regulation throughout the 

training process. 

3.3. Dynamic Trust Score Modeling 

To capture the evolving and dynamic behavioral 

characteristics of each client, we assign a trust score 

τit∈[0,1] to each client ci at the beginning of each round t. 

This score quantitatively represents the overall reliability 

and trustworthiness of client ci's recent behavior, with 1 

indicating perfect trust and 0 indicating complete 

untrustworthiness. 

The trust score is not static but dynamically updated in 

each round using an exponential decay rule: 

τit=γ⋅τit−1+(1−γ)⋅τ~it(1) 

where γ∈[0,1) is the memory decay coefficient. This 

coefficient determines the influence of past trust scores on 

the current score. A higher γ implies a longer memory, 

meaning past behavior has a more lasting impact, while a 

lower γ emphasizes recent behavior. This allows the 

system to adapt to changes in client behavior over time. 

τ~it is the instantaneous trust score for client ci in round 

t, reflecting its behavior in the most recent round. 
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The instantaneous trust score τ~it is defined as a 

weighted sum of multiple behavioral indicators, 

providing a multi-dimensional assessment of 

trustworthiness: 

τ~it=λ1ϕit+λ2ψit+λ3ωit,j=1∑3λj=1(2) 

Here, λ1,λ2,λ3 are non-negative weighting coefficients 

that sum to 1, allowing the system to prioritize different 

aspects of trust based on the application's requirements. 

The individual behavioral indicators are: 

● Participation Frequency (ϕit): This metric 

quantifies the consistency of client ci's participation. It is 

typically defined as the proportion of active rounds 

(where the client successfully submitted an update) 

within a predefined sliding window of the past Twindow 

rounds. A higher ϕit indicates a more reliable and 

consistently available client, crucial for maintaining the 

FL process's continuity. 

● Gradient Consistency (ψit): This measures how 

consistent a client's local model update is with the 

aggregated global direction of updates. It is calculated as 

the cosine similarity between the local update Δwit and 

the global average update direction Δwt (or the global 

model's gradient). 

ψit=∣∣Δwit∣∣2⋅∣∣Δwt∣∣2Δwit⋅Δwt 

A high cosine similarity (close to 1) suggests that the 

client's update aligns with the general consensus, 

indicating benign behavior. A low or negative similarity 

might signal a malicious update or a significantly 

divergent data distribution. 

● Contribution Effectiveness (ωit): This metric 

directly assesses the positive impact of client ci's update 

on the global model's performance. It is quantified as the 

improvement in validation error (or reduction in loss) 

brought about by the client's update. This can be 

measured by applying the client's local model (or a 

hypothetical global model incorporating only its update) 

on a small, publicly available validation dataset. 

ωit=L(wt)L(wt)−L(wt+Δwit) 

where L(wt) is the loss of the global model wt on the 

validation set, and L(wt+Δwit) is the hypothetical loss if 

only client i's update were applied. A higher ωit implies a 

more beneficial contribution to the global model's 

learning objective. 

The dynamic trust score τit serves a dual purpose: it acts 

as a descriptive indicator of client behavior and, more 

importantly, as a crucial control variable that influences 

both the aggregation process and the incentive allocation 

mechanism. 

3.4. Incentive Mechanism and Optimization Objective 

The design of an effective incentive mechanism is 

paramount for motivating clients to participate actively 

and ensure the quality of their contributions in FL. The 

server, as the orchestrator, allocates incentives to 

participating clients. Let rit denote the incentive allocated 

by the server to client ci in round t. This allocation is 

subject to a total budget constraint for each round: 

i∈St∑rit≤Rt,rit≥0(3) 

where Rt is the total incentive budget available to the 

server in round t. 

Each client, in response to the incentives, decides on its 

local resource investment, xi, to complete the training task. 

This resource investment could represent computational 

cycles, energy consumption, or the duration of local 

training. The client's utility function, Ui(xi), is defined to 

capture the trade-off between the benefits received 

(incentives) and the costs incurred (resource 

consumption): 

Ui(xi)=η⋅τit⋅∑j∈Stxjxi−(aixi2+bixi)(4) 

In this utility function: 

● The first term, η⋅τit⋅∑j∈Stxjxi, represents the trust-

weighted share of incentives. η is a scaling factor for the 

incentive. This term signifies that the incentive received by 

client ci is proportional to its resource investment xi 

relative to the total investment of all participating clients, 

and is weighted by its current trust score τit. This 

weighting ensures that clients with higher trust receive a 

larger share of the incentive pool for the same level of 

resource investment, thus encouraging trustworthy 

behavior. 

● The second term, (aixi2+bixi), captures the cost of 

resource consumption. This quadratic cost function is 

widely adopted in economics and resource allocation 

models [46]. It ensures convexity, which facilitates 

mathematical analysis, and realistically reflects 

diminishing returns—meaning the cost per unit of 

resource consumption increases as more resources are 

invested. This accurately models the non-linear 

relationship between energy expenditure, training time, 

and performance on resource-constrained edge devices. 

A critical aspect of this formulation is that each client's 

best response (optimal xi) depends on the global term 

∑jxj, which represents the total resource investment of all 

clients. In decentralized settings, this total sum is generally 

unknown to individual clients. We address this by 

assuming that the server provides an aggregated signal 

(e.g., an estimate of total resource investment from the 

previous round) during each communication round. This 

approximation is consistent with many Stackelberg-based 

FL mechanisms [47], where clients respond based on 

coarse-grained information rather than full observability 

of all other clients' actions. Future work could explore 

more sophisticated distributed best-response estimation 

or local belief updates to relax this assumption. 

The server's objective is to design the incentive allocation 

{rit} and the aggregation weights {αit} in each round t to 

achieve a dual goal: 

1. Ensure high model quality and convergence: This 
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implies minimizing the global loss and achieving robust 

performance. 

2. Promote high-trust participation and suppress 

malicious updates: This involves incentivizing reliable 

clients and effectively mitigating the impact of 

untrustworthy ones. 

The server's utility function, US, is defined as the net 

benefit derived from the improved model accuracy 

minus the total incentive cost: 

US=ΔL(wt)−λ⋅Rt(10) 

Here, ΔL(wt) represents the reduction in global model 

loss (or improvement in accuracy) after the aggregation 

of client updates in round t. λ is a balancing coefficient 

that controls the server's sensitivity to the total incentive 

budget Rt. A higher λ means the server is more cost-

averse. The server's ultimate objective is to choose the 

optimal total budget Rt and the individual incentive 

allocations {rit} such that US is maximized, while 

simultaneously encouraging high-trust participation 

from clients. By using backward induction in the 

Stackelberg game, the server can derive its optimal 

reward strategy, thereby establishing a closed-loop 

linkage between incentive allocation and adaptive client 

behavior. 

4. Trust-Driven Incentive and Aggregation Mechanism 

In this section, we systematically present the proposed 

Trust-Aware Incentive Mechanism (TAIM) and its 

accompanying robust aggregation algorithm. The 

fundamental objective of TAIM is to establish a triple 

control logic within the federated learning ecosystem: 

incentives must be guided by trust, aggregation 

processes must enhance robustness, and client behaviors 

should be driven by incentives to form a positive-

feedback convergence loop. Unlike traditional methods 

that often decouple trust modeling, incentive 

mechanisms, and aggregation strategies, our design 

achieves a unified modeling of these three critical 

components. We also introduce corresponding game-

theoretic solution strategies and adaptive weight 

adjustment mechanisms to realize this integrated 

control. 

4.1. Trust-Aware Incentive Allocation Modeling 

The design of an effective incentive mechanism is 

paramount for motivating clients to participate diligently 

and ensuring the quality of their behavioral 

contributions in federated learning systems. Building 

upon our dynamic trust modeling, we utilize the trust 

score τit and a refined measure of the client's 

contribution, vit, as the primary factors in reward 

allocation. This approach aims to circumvent the 

manipulation that can arise from using static or easily 

falsifiable metrics, such as declared data volume or 

reported training epochs. 

First, we define the raw contribution vit of client ci in 

round t as the normalized L2 norm of its uploaded model 

update Δwit: 

vit=∑j∈St∣∣Δwjt∣∣2∣∣Δwit∣∣2(5) 

This metric reflects the magnitude of the change a client's 

update introduces to the global model space. A larger 

norm might indicate a more significant update. However, 

relying solely on this raw contribution can be problematic, 

as malicious clients might inflate their update norms (e.g., 

by adding noise) to appear more active, even if their 

updates are detrimental. 

To counteract such potential manipulations and ensure 

that incentives are tied to genuinely beneficial 

contributions, we introduce a validation-based actual gain 

function, git. This function quantifies the true positive 

impact of a client's update on the global model's 

performance. It is calculated as the reduction in the global 

model's loss (or improvement in accuracy) on a small, 

representative public validation dataset if only client ci's 

update were hypothetically applied: 

git=L(wt)−L(wt+Δwit)(7) 

Here, L(wt) is the loss of the global model wt on the 

validation set before aggregation, and L(wt+Δwit) is the 

loss after hypothetically applying only client ci's update. A 

higher git indicates a more effective contribution. This 

validation-based approach ensures that clients are 

rewarded for updates that actually improve the model's 

generalization, rather than just for their size. 

Using this actual gain, the corrected contribution v^it is 

then computed by scaling the raw contribution vit by the 

relative actual gain: 

v^it=vit⋅L(wt)git 

This corrected contribution v^it serves as a more reliable 

indicator of a client's value and is used in both the 

incentive allocation and aggregation processes. 

Finally, the incentive reward function rit for client ci in 

round t is defined as follows: 

rit=∑j∈Stτjt⋅v^jtRt⋅τit⋅v^it(6) 

This function ensures incentive compatibility and 

prioritizes clients that demonstrate both high trust and 

high corrected contribution under the total budget 

constraint Rt. Clients with higher trust scores and more 

effective updates receive a proportionally larger share of 

the available incentive budget. This mechanism directly 

links rewards to verifiable, beneficial behavior, 

discouraging free-riding and malicious activities that do 

not result in actual model improvement. 

4.2. Stackelberg Game-Based Solution Strategy 

To formally model the strategic interaction between the 

central server and the participating clients, we adopt a 

Stackelberg game formulation. In this hierarchical game, 

the server acts as the leader, making its decisions (total 

budget Rt and reward strategy {rit}) first. The clients, as 
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followers, then observe the server's decisions and choose 

their optimal resource investment xi to maximize their 

individual utility. This leader-follower dynamic is a 

common and effective way to model such interactions in 

decentralized systems [47]. 

Each client ci's utility function, as introduced in Equation 

(8), is given by: 

Ui(xi)=η⋅τit⋅∑j∈Stxjxi−(aixi2+bixi)(8) 

To find the client's best-response function, each client 

aims to maximize its utility Ui(xi) by choosing its optimal 

resource investment xi. Since the utility function is 

concave with respect to xi (due to the quadratic cost 

term), we can find the optimal xi∗ by taking the first-

order derivative of Ui(xi) with respect to xi and setting it 

to zero: 

∂xi∂Ui(xi)=η⋅τit⋅((∑j∈Stxj)2∑j∈Stxj−xi)−(2aixi+bi)=0 

Solving this equation for xi (assuming ∑j∈Stxj is treated 

as a constant by client i for its local optimization, as is 

typical in Stackelberg follower problems), we obtain the 

closed-form best-response function for client ci: 

xi∗=2ai⋅∑j∈Stxjη⋅τit−bi⋅∑j∈Stxj(9) 

This equation reveals that a client's optimal resource 

investment xi∗ is directly proportional to its trust score 

τit and inversely related to its cost parameters (ai,bi) and 

the total resource investment of other clients. This 

implies that clients with higher trust scores or lower 

resource costs will be incentivized to contribute more. 

For the server, its utility function is defined as the net 

benefit of model improvement minus the incentive cost: 

US=ΔL(wt)−λ⋅Rt(10) 

where ΔL(wt) is the loss reduction after aggregation 

(reflecting model quality improvement), and λ is the 

server's cost sensitivity. The server's objective is to 

choose the optimal total budget Rt and the reward 

distribution {rit} that maximize US, while simultaneously 

encouraging high-trust participation from clients. 

To solve this Stackelberg game, the server employs 

backward induction. First, it determines the clients' best 

responses (as derived above). Then, it substitutes these 

best responses into its own utility function. This allows 

the server to anticipate how clients will react to its 

incentive strategy. The server then optimizes its own 

decisions (budget and reward allocation) to maximize its 

utility, knowing the clients' rational responses. This 

establishes a closed-loop linkage between the server's 

incentive allocation and the clients' adaptive behavior, 

driving the system towards an equilibrium where both 

server and clients optimize their objectives. While 

solving this non-linear optimization problem can be 

complex, iterative algorithms or approximations can be 

employed for practical deployment. 

4.3. Trust-Guided Soft Aggregation Mechanism 

Traditional robust aggregation methods, such as Krum or 

Trimmed Mean, often employ rigid techniques like outlier 

removal or hard thresholds. While effective against blatant 

attacks, these methods can inadvertently harm model 

diversity and inclusiveness by discarding updates from 

benign clients with highly non-IID data distributions or 

those experiencing temporary network fluctuations. Such 

rigid filtering might also excessively penalize edge clients 

with legitimate behavioral fluctuations, hindering long-

term trust evolution. 

To address these limitations, we propose a trust-guided 

non-linear soft suppression strategy. This approach 

attenuates the impact of low-trust updates using a 

continuous weighting function, rather than completely 

discarding them. This allows for a more nuanced control 

over the influence of each client's update. 

We define a sigmoid-based suppression function σ(τ) as 

follows: 

σ(τ)=1+e−k(τ−μ)1(11) 

where: 

● τ is the client's trust score. 

● k controls the steepness of the sigmoid curve. A 

larger k results in a steeper curve, leading to a more 

aggressive suppression of updates from clients with trust 

scores below the threshold. 

● μ controls the suppression threshold. Clients with 

trust scores significantly below μ will have their updates 

heavily suppressed, while those above μ will have their 

updates weighted more favorably. 

This sigmoid function ensures that the suppression is 

continuous and smooth. Updates from highly trusted 

clients (τ≫μ) receive a weight close to 1, while updates 

from very low-trust clients (τ≪μ) receive a weight close to 

0. Clients with trust scores around μ experience a gradual 

suppression, allowing for potential re-evaluation and 

recovery of their influence if their trust score improves in 

subsequent rounds. 

The final aggregation weight αit for client ci's update in 

round t is then determined by combining its trust score 

(via the sigmoid suppression function) and its corrected 

contribution v^it: 

αit=∑j∈Stσ(τjt)⋅v^jtσ(τit)⋅v^it(12) 

This formula ensures that the aggregation weight is not 

only proportional to a client's effective contribution but 

also modulated by its trustworthiness. High-trust, high-

contribution clients receive larger weights, while low-

trust clients have their influence reduced. The sum of all 

aggregation weights αit for i∈St equals 1. 

Finally, the global model update for the next round wt+1 is 

computed by applying these trust-guided soft aggregation 

weights to the local model updates: 

wt+1=wt+i∈St∑αit⋅Δwit(13) 
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This aggregation scheme effectively suppresses the 

influence of malicious or unreliable updates while still 

allowing low-trust clients to be re-evaluated and 

potentially regain weight if their behavior improves. This 

enhances long-term fairness, maintains client diversity, 

and promotes robust convergence of the global model. 

To ensure practical deployability and minimize 

computational overhead, the sigmoid-based suppression 

function can be implemented using precomputed lookup 

tables or efficient approximate activation functions, 

avoiding expensive real-time exponential calculations. 

Similarly, trust score updates, being server-side vector 

operations, introduce minimal computational cost 

compared to the overall model training and 

communication. These design choices ensure that the 

trust-aware mechanism does not introduce significant 

delays compared to standard aggregation methods, 

making TAIM practical for large-scale deployments. 

4.4. Robustness Enhancement and Anomaly Detection 

Mechanisms 

While the dynamic trust score and soft aggregation 

provide a strong foundation for robustness, sophisticated 

adversaries might attempt to mimic trustworthy 

patterns or frequently switch their strategies to evade 

detection and manipulate the system. To counter such 

advanced attacks and further enhance the behavioral 

sensitivity and anomaly adaptability of our trust model, 

we introduce two additional robustness enhancement 

modules, forming a layered defense framework. 

1. The Deviation Penalty Mechanism: 

This mechanism is designed to immediately penalize 

clients whose updates significantly deviate from the 

expected global trend, which is a common characteristic 

of poisoning attacks. We define the relative deviation ζit 

of client ci's update Δwit from the average global update 

direction Δwt (or the global model's gradient) as: 

ζit=∣∣Δwt∣∣2∣∣Δwit−Δwt∣∣2(14) 

This metric quantifies how far a client's update is from 

the collective movement of the global model. If this 

relative deviation ζit exceeds a predefined threshold ϵ, it 

indicates a potentially anomalous or malicious update. In 

such cases, the client's trust score is immediately 

penalized using an exponential decay factor: 

τit←τit⋅exp(−β⋅ζit)(15) 

Here, β is a positive penalty coefficient. This exponential 

penalty ensures that larger deviations lead to a more 

severe and immediate reduction in the trust score. This 

mechanism acts as a rapid response system, quickly 

reducing the influence of potentially harmful updates and 

discouraging clients from submitting drastically 

perturbed gradients. 

2. Sliding Window-Based Trust Correction: 

This module addresses the challenge of strategic clients 

who might exhibit drastic, non-monotonic variations in 

their behavior (e.g., alternating between honest and 

malicious, or suddenly improving their trust to gain 

rewards). A sliding window mechanism is employed to 

track the historical fluctuations of each client's trust scores 

over a longer period. 

If a client's trust score exhibits sudden, significant, and 

non-monotonic increases (e.g., rapidly jumping from very 

low to very high trust without a consistent history of good 

behavior), we introduce a mechanism to slow down the 

growth of its aggregation weight. This prevents short-term 

strategic speculation from immediately receiving high 

incentives and disproportionate influence. For instance, 

instead of directly using the newly updated τit for 

aggregation weight calculation, a smoothed version or a 

lower bound derived from its historical window might be 

used if suspicious patterns are detected. This adds a layer 

of memory and cautiousness to the system, making it 

harder for "on-off" attackers or those attempting to 

"mimic" good behavior for a short period to gain undue 

influence. This mechanism improves the behavioral 

sensitivity and anomaly adaptability of the trust model, 

contributing to a robust and multi-layered defense 

framework for the FL system. 

4.5. Integrated Federated Training Procedure 

By seamlessly combining the dynamic trust modeling, the 

game-theoretic incentive allocation, and the trust-guided 

soft aggregation mechanism, the overall TAIM training 

process forms a comprehensive and adaptive federated 

learning framework. The integrated procedure is 

summarized in Algorithm 1 (from the provided PDF): 

Algorithm 1 TAIM: Trust-Aware Incentive and Robust 

Aggregation Algorithm 

Require: Initial global model w0, total training rounds T, 

initialize client trust scores τi0=0.5 for all i∈C. 

1: for each round t=1 to T do 

2:     Server selects client set St (e.g., randomly or based on 

previous trust scores) and broadcasts current global 

model wt. 

3:     for each client ci∈St do in parallel 

4:         Client ci downloads wt. 

5:         Client ci trains locally on its dataset Di to obtain local 

model update Δwit. 

6:         Client ci uploads Δwit to the server. 

7:     end for 

8:     Server receives updates {Δwit}i∈St from selected 

clients. 

9:     Server computes raw contribution vit for each client 

ci∈St using Equation (5). 

10:     Server computes contribution effectiveness git for 

each client ci∈St using Equation (7). 
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11:     Server computes corrected contribution v^it for 

each client ci∈St. 

12:     Server updates trust score τit for each client ci∈St 

using Equations (1) and (2), incorporating ϕit,ψit,ωit. 

13:     Server applies Deviation Penalty Mechanism 

(Equation (15)) and Sliding Window-Based Trust 

Correction to τit if anomalies are detected. 

14:     Server computes incentive reward rit for each client 

ci∈St using Equation (6). 

15:     Server computes aggregation weight αit for each 

client ci∈St using Equation (12). 

16:     Server aggregates local updates: 

wt+1=wt+∑i∈Stαit⋅Δwit (Equation (13)). 

17:     Server broadcasts incentives {rit} to participating 

clients (and potentially updated trust scores for 

transparency). 

18: end for 

19: return wT (the final global model). 

This integrated training process maintains the 

fundamental deployability of the standard FedAvg 

framework while constructing a complete and dynamic 

trust-incentive-aggregation feedback loop. This loop 

ensures that client behavior directly influences their 

trust, which in turn dictates their incentives and their 

impact on the global model. This adaptive system offers 

enhanced security and strategy adaptiveness, making it 

particularly suitable for heterogeneous, dynamic, and 

untrusted open edge environments. 

Complexity Analysis: 

The computational overhead introduced by TAIM is 

manageable and does not fundamentally alter the overall 

complexity of the federated learning process. Let ∣St∣ be 

the number of selected clients per round and d be the 

dimensionality of the model parameters (i.e., the number 

of weights in the model). The primary computations 

introduced by TAIM, executed on the server-side, include 

the following: 

1. Trust Score Update (Lines 9-13): 

○ Raw Contribution (vit): Calculating the L2 norm 

and normalization for each client requires O(d) 

operations per client, totaling O(∣St∣⋅d). 

○ Contribution Effectiveness (git): This involves 

running a forward pass of the model on a small public 

validation set. If the validation set size is Dval and the 

model inference complexity is O(d), then this is O(Dval⋅d) 

per client, totaling O(∣St∣⋅Dval⋅d). However, typically Dval 

is very small, or a proxy is used, making this overhead 

minimal. 

○ Gradient Consistency (ψit): Calculating the cosine 

similarity between a client's update and the global 

average update requires a dot product and two norm 

calculations, which is O(d) operations per client. Summing 

over all clients, this is O(∣St∣⋅d). 

○ Exponential Decay and Weighting: These are 

constant time operations per client, O(∣St∣). 

○ Deviation Penalty: Similar to gradient consistency, 

involves norm calculations, O(∣St∣⋅d). 

○ Sliding Window Correction: Primarily involves 

array manipulations, O(∣St∣) or O(∣St∣⋅Twindow). 

2. Incentive Allocation (Line 14): This step involves 

summations and divisions over ∣St∣ clients, resulting in an 

overhead of O(∣St∣). 

3. Soft Aggregation (Line 15): Computing the 

aggregation weights using the sigmoid function and 

normalization also requires O(∣St∣) operations. The 

sigmoid function itself can be implemented efficiently 

using precomputed lookup tables or fast approximations, 

adding negligible overhead. 

4. Global Model Aggregation (Line 16): The final 

weighted aggregation of the model updates remains 

O(∣St∣⋅d), which is the dominant operation in standard 

FedAvg as well. 

Therefore, the total computational complexity per round 

for TAIM remains dominated by the model-related vector 

operations, which is O(∣St∣⋅d). The additional trust and 

incentive calculations introduce a constant factor increase 

in server-side computation but do not scale with model 

dimensionality or client count in a prohibitive way. This 

makes TAIM practical for large-scale deployments, as 

further supported by the empirical overhead analysis in 

Section 5.5. The client-side overhead for generating Δwit 

is unchanged from standard FL. 

5. EXPERIMENTAL EVALUATION 

To rigorously validate the effectiveness and robustness of 

the proposed Trust-Aware Incentive Mechanism (TAIM) in 

realistic federated learning environments, this section 

presents a comprehensive empirical study. The 

experiments are conducted across multiple representative 

datasets, various attack types, and against several 

established baseline methods. The evaluation primarily 

focuses on answering the following key research 

questions: 

1. Accuracy and Convergence: Can TAIM significantly 

improve the global model's accuracy and accelerate its 

convergence efficiency, especially under conditions of 

heterogeneous client participation? 

2. Robustness: Is TAIM more robust against a diverse 

range of attack types, including sophisticated adaptive 

adversaries, and is it capable of accurately identifying 

malicious client behaviors? 

3. Fairness and Overhead: Does TAIM ensure a fairer 

distribution of incentives among clients, and is its 

computational and communication overhead acceptable 

under realistic edge computing constraints? 
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To ensure the reproducibility and credibility of our 

findings, we provide detailed descriptions of the 

experimental setup, attack modeling strategies, 

evaluation metrics, and the baseline methods used for 

comparison. The subsequent subsections present a 

thorough analysis of the experimental results. 

5.1. Experimental Setup and Datasets 

We select three distinct and representative federated 

learning tasks to validate TAIM's effectiveness across 

diverse data modalities and types of heterogeneity that 

mirror real-world challenges. This selection ensures a 

comprehensive assessment of the framework's 

generalizability. 

1. FEMNIST (Federated Extended MNIST): This 

dataset is derived from the LEAF benchmark suite and 

involves handwritten character recognition (digits and 

English letters). It is characterized by a highly non-IID 

user-based split, where each client corresponds to a 

single writer. This inherent partitioning naturally models 

the significant statistical heterogeneity (label and feature 

skew) found in real-world user-generated data, where 

individuals have distinct writing styles and character 

frequencies. 

2. CIFAR-10: A classical image classification dataset 

consisting of 60,000 32x32 color images in 10 classes. To 

simulate non-IID conditions, we generate partitions 

using a Dirichlet distribution with parameter α=0.3. A 

smaller α value leads to a higher degree of non-IIDness, 

meaning clients will have more imbalanced class 

distributions. This systematic partitioning allows us to 

precisely control and evaluate the impact of statistical 

heterogeneity on model performance. 

3. Sent140: A large-scale Twitter sentiment analysis 

task, comprising 1.6 million tweets. Each client in this 

dataset reflects individual language styles, vocabulary 

choices, and sentiment expression patterns. This makes 

Sent140 an ideal testbed for modeling and evaluating the 

behavioral heterogeneity that TAIM is specifically 

designed to manage, as client contributions can vary 

significantly in quality and consistency. 

For all experiments, the datasets are consistently split 

into training, validation, and test sets with a ratio of 

80:10:10, respectively, unless otherwise specified. This 

standardized split ensures fair and consistent evaluation 

across all baseline and proposed methods. 

Model Configuration and Training Details: 

To ensure a fair comparison and isolate the effects of 

TAIM, we adopt standard neural network architectures 

commonly used for these tasks: 

● For CIFAR-10, we employ a Convolutional Neural 

Network (CNN) consisting of two convolutional layers 

(e.g., 32 filters, 64 filters, each followed by ReLU 

activation and max-pooling), followed by two fully 

connected layers. 

● For FEMNIST, a two-layer CNN architecture is used, 

similar to the CIFAR-10 model but adapted for the 

grayscale and character-specific features. 

● For Sent140, a Long Short-Term Memory (LSTM) 

network is utilized, which is well-suited for sequential text 

data. The LSTM model typically includes an embedding 

layer, one or more LSTM layers, and a final dense layer for 

classification. 

The training process for all methods adheres to the 

following parameters: 

● In each communication round, 10% of the total 

clients are randomly selected to participate. This simulates 

a realistic FL scenario where only a subset of devices is 

active at any given time. 

● Local training on each selected client runs for five 

epochs using the Stochastic Gradient Descent (SGD) 

optimizer. 

● The learning rate for SGD is set to 0.01, with a 

momentum of 0.9 to accelerate convergence. 

● The trust parameters for TAIM are carefully tuned 

based on preliminary experiments and set as follows: 

memory decay coefficient γ=0.8, and instantaneous trust 

score weights λ1=0.3 (for participation frequency), λ2=0.4 

(for gradient consistency), and λ3=0.3 (for contribution 

effectiveness). This configuration emphasizes gradient 

consistency slightly more, reflecting its direct link to 

model quality. 

● The sigmoid suppression function parameters for 

soft aggregation are set to steepness k=10 and threshold 

μ=0.5. These values ensure a balance between aggressive 

suppression of very low-trust updates and a smooth 

transition for moderately trusted clients. 

5.2. Attack Modeling and Client Behavior Settings 

To simulate realistic and challenging threats in federated 

environments, we inject a varying proportion of malicious 

clients per round and implement four distinct types of 

adversarial behaviors. The client composition in our 

simulations is designed to reflect a diverse real-world 

scenario: 

● Malicious Clients: Between 10% and 30% of the 

total client pool are designated as malicious. The specific 

attack types are evenly distributed among these malicious 

clients. 

● Resource-Constrained Clients: 20% of the clients 

are modeled as resource-constrained. These clients have 

reduced upload frequency (e.g., they only participate and 

upload updates every 2 or 3 rounds, simulating 

intermittent connectivity or energy-saving modes). 

● Benign Clients: The remaining clients are 

considered benign and contribute honestly to the FL 

process. 

The four types of adversarial behaviors implemented are: 



EUROPEAN JOURNAL OF EMERGING CYBERSECURITY AND INFORMATION PROTECTION 

pg. 26  

1. Label Flip Attack: This is a common data 

poisoning attack where a portion of labels in the 

malicious client's local dataset are flipped to incorrect 

classes. For instance, in CIFAR-10, a malicious client 

might flip 20% of images labeled "cat" to "dog." This 

attack aims to mislead the global model's convergence by 

introducing erroneous gradients. 

2. Gaussian Noise Attack: Malicious clients add 

Gaussian noise (with a mean of 0 and a standard 

deviation of 5, for example) directly to their computed 

gradients before uploading them. This attack aims to 

degrade the global model's performance by injecting 

random, high-variance updates, hindering stable 

convergence. 

3. On-Off Attack: This is a behavioral attack designed 

to evade trust accumulation mechanisms. Malicious 

clients alternate between honest behavior (uploading 

benign updates) and malicious behavior (e.g., performing 

a label flip or Gaussian noise attack). For example, a client 

might behave honestly for 5 rounds, then maliciously for 

2 rounds, and then honestly again. This makes it difficult 

for trust models with short memory spans to consistently 

identify them as malicious. 

4. Mimic Attack: This is a sophisticated attack where 

malicious clients attempt to imitate the gradients of high-

trust benign clients to evade detection. They might 

calculate their malicious gradient, then scale or shift it to 

resemble the average or a specific benign client's 

gradient, while still subtly disturbing the aggregation. 

This attack specifically targets trust mechanisms that 

rely heavily on gradient similarity for detection. 

By incorporating these diverse attack types and client 

behaviors, our experimental setup rigorously tests 

TAIM's ability to maintain performance and security in 

challenging, heterogeneous FL environments. 

5.3. Evaluation Metrics 

To provide a comprehensive assessment of TAIM's 

performance, we evaluate all methods from four critical 

perspectives: accuracy, robustness, fairness, and 

detection ability. We also consider system-level 

overhead. 

1. Final Accuracy (Acc): This refers to the test 

accuracy achieved by the global model on the unseen test 

set after the federated learning process has converged. It 

is the primary indicator of the model's overall predictive 

performance. 

2. Robustness Drop (RD): This metric quantifies the 

performance degradation caused by the presence of 

adversarial clients. It is calculated as the percentage drop 

in accuracy compared to a baseline scenario where no 

attacks are present (i.e., only benign clients). 

RD=AccuracybenignAccuracybenign−Accuracyattack×1

00% 

A lower Robustness Drop indicates a more resilient and 

robust FL system. 

3. Fairness (Gini Coefficient): The Gini coefficient is a 

widely used measure of statistical dispersion intended to 

represent the income or wealth distribution within a 

nation or any other group. In our context, it quantifies the 

inequality in the cumulative reward distribution among 

clients. 

G=2n∑i=1nri∑i=1n∑j=1n∣ri−rj∣(16) 

where ri is the cumulative reward received by client i over 

all training rounds, and n is the total number of clients. 

○ A Gini coefficient of 0 indicates perfect equality (all 

clients receive the same reward). 

○ A Gini coefficient of 1 (or 100%) indicates 

maximum inequality (one client receives all the reward). 

A lower Gini value signifies a more balanced and equitable 

incentive distribution, which is crucial for fostering long-

term client participation and preventing resentment 

among contributors. 

4. Detection Ability: This assesses how effectively the 

system identifies malicious clients. We use two standard 

classification metrics: 

○ Recall (%): Also known as sensitivity or true 

positive rate. It measures the proportion of actual 

malicious clients that were correctly identified as 

malicious. 

Recall=TruePositives+FalseNegativesTruePositives 

where True Positives (TP) are malicious clients correctly 

identified, and False Negatives (FN) are malicious clients 

incorrectly classified as benign. 

○ False-Positive Rate (FPR) (%): It measures the 

proportion of benign clients that were incorrectly 

identified as malicious. 

FPR=FalsePositives+TrueNegativesFalsePositives 

where False Positives (FP) are benign clients incorrectly 

classified as malicious, and True Negatives (TN) are benign 

clients correctly classified as benign. 

High recall is desirable to catch most attackers, while low 

FPR is crucial to avoid penalizing honest clients. 

5. System-level Overhead: We report the total 

Training Time (s) and Communication Volume (MB) to 

assess the practical feasibility and scalability of the 

proposed method. 

○ Local Training Time (s): Average time spent by 

clients on local model training per round. 

○ Communication Volume (MB): Total data 

transferred between clients and the server (upload and 

download) over all rounds. 

○ Server Aggregation Time (s): Time taken by the 

server to perform aggregation and trust calculations per 
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round. 

These comprehensive metrics enable a thorough 

assessment of whether TAIM's trust-guided reward 

allocation and robust aggregation contribute to reducing 

reward centralization, enhancing security, and 

maintaining fairness among heterogeneous clients 

without imposing excessive computational or 

communication burdens. 

5.4. Baseline Methods 

To provide a robust comparative analysis, we evaluate 

TAIM against several mainstream federated learning 

strategies that represent different approaches to 

handling heterogeneity and robustness: 

1. FedAvg (Federated Averaging) [48]: This is the 

foundational and most widely used FL algorithm. It 

performs a simple weighted average of client model 

updates, where weights are typically proportional to the 

size of client datasets. FedAvg serves as a crucial baseline 

to demonstrate the performance improvements achieved 

by more advanced mechanisms, especially under non-IID 

data and adversarial conditions. It does not inherently 

handle heterogeneity or malicious clients. 

2. FedProx [49]: This method extends FedAvg by 

introducing a proximal term to the local objective 

function during client training. This term penalizes local 

model updates that deviate significantly from the global 

model, aiming to mitigate the effects of statistical 

heterogeneity (non-IID data) and improve global 

convergence. While it addresses data heterogeneity, it 

does not explicitly account for behavioral heterogeneity 

or malicious attacks. 

3. FedTrust [50]: This algorithm incorporates a 

basic trust-weighted aggregation mechanism. It 

calculates trust scores based on the similarity of 

uploaded models (e.g., cosine similarity of gradients) and 

adjusts aggregation weights accordingly. It is designed to 

give more influence to seemingly trustworthy clients and 

less to outliers. However, its trust model is often simpler 

and may not be robust against sophisticated, adaptive 

attacks that mimic benign behavior. 

4. Krum [51]: This is a well-known robust 

aggregation algorithm designed to defend against 

Byzantine attacks (including model poisoning). Krum 

selects a subset of client updates that are "closest" to each 

other in the parameter space, effectively discarding 

outlier updates that are likely to be malicious. While 

effective against certain types of attacks, Krum can be 

computationally intensive due to distance calculations 

and may be overly aggressive in filtering, potentially 

discarding valuable updates from benign clients with 

highly non-IID data. It also does not incorporate an 

incentive mechanism. 

These baselines collectively serve as the foundation for 

our comprehensive comparison and analysis, allowing us 

to highlight TAIM's advantages in integrating trust, 

incentives, and robustness within a unified framework. 

5.5. Overall Performance Comparison 

Our extensive experimental results clearly demonstrate 

the superior performance of TAIM across various metrics, 

particularly under challenging conditions of high 

heterogeneity and adversarial attacks. 

1. Final Accuracy and Convergence (Figure 5): 

Figure 5 illustrates the final test accuracy achieved by each 

method on FEMNIST and CIFAR-10 datasets under both 

10% and 30% attacker ratios. 

● As expected, all methods experience a significant 

drop in accuracy when the proportion of attackers 

increases from 10% to 30%, highlighting the severe 

impact of adversarial clients. 

● TAIM consistently achieves the best performance 

across all scenarios. On FEMNIST, TAIM reaches 79.5% 

accuracy with 10% attackers and a robust 76.1% with 

30% attackers. On CIFAR-10, it achieves 75.2% with 10% 

attackers and 71.9% with 30% attackers. 

● Compared to FedAvg and FedProx, which show 

significant degradation under attacks, TAIM demonstrates 

up to 9.2% higher accuracy under heavy attack conditions 

(e.g., FEMNIST with 30% attackers, FedAvg at 65.5% vs. 

TAIM at 76.1%). This substantial improvement 

underscores TAIM's effectiveness in suppressing 

adversarial disturbances through its integrated trust 

modeling and incentive mechanisms. 

● Even against robust baselines like FedTrust and 

Krum, TAIM maintains a noticeable edge (e.g., 79.5% vs. 

Krum's 77.9% on FEMNIST with 10% attackers). This 

suggests that TAIM's multi-dimensional trust assessment 

and soft aggregation are more effective at discerning and 

mitigating the impact of sophisticated adversaries 

compared to methods relying on simpler trust models or 

rigid filtering. 

2. Model Robustness Under Adaptive Attacks (Figure 6): 

Figure 6 quantifies the model robustness, measured as 

performance drop (lower is better), under various 

adaptive attack types on CIFAR-10. 

● Traditional methods like FedAvg and FedProx 

exhibit severe performance fluctuations and significant 

accuracy drops across all attack types, confirming their 

vulnerability. 

● Even robust methods like FedTrust and Krum are 

significantly affected by Mimic attacks (22.5% drop for 

FedAvg, 19.8% for FedProx, 14.9% for FedTrust, 12.1% for 

Krum). This highlights the challenge posed by adversaries 

that attempt to blend in with benign clients. 

● In stark contrast, TAIM maintains stable accuracy 

with minimal performance drop across all attack types. 

Notably, under Mimic attacks, TAIM's performance drop is 

only 8.4%, outperforming Krum by a substantial 3.7% 
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(12.1% vs. 8.4%). 

● TAIM also shows superior resilience against On-

Off attacks (4.9% drop), which are designed to evade 

trust accumulation. This indicates that the multi-

dimensional trust model in TAIM, with its memory decay 

and anomaly detection mechanisms, effectively filters 

disguised adversaries and adapts to dynamic attack 

strategies. The consistent low performance drop across 

diverse attacks confirms TAIM's enhanced robustness. 

3. Malicious Client Detection Performance: 

● Traditional methods like FedAvg and FedProx are 

not designed for explicit malicious client detection, hence 

their performance is denoted by "-". 

● FedTrust and Krum achieve reasonable detection 

capabilities, with FedTrust showing 82.4% Recall and 

9.6% FPR, and Krum achieving 85.7% Recall with 12.1% 

FPR. 

● TAIM significantly outperforms these baselines 

with a Recall of 91.3% and a remarkably low FPR of only 

5.8%. This superior detection capability is directly 

attributable to TAIM's comprehensive trust modeling, 

which integrates participation frequency, gradient 

consistency, and contribution effectiveness. By 

leveraging these multiple dimensions, TAIM can more 

accurately distinguish between benign clients (even 

those with non-IID data) and malicious ones, minimizing 

both missed detections and false alarms. 

4. Fairness of Incentive Distribution: 

Figure 7 presents the Gini coefficient during training, 

which reflects the fairness of incentive distribution 

among clients. A lower Gini coefficient indicates a more 

balanced and equitable reward allocation. 

● FedAvg and FedProx exhibit high Gini values (0.52 

and 0.48 respectively), indicating significant reward 

centralization and unfairness. This is expected as they do 

not explicitly consider contribution quality or trust, 

potentially rewarding free-riders or clients with large 

datasets disproportionately. 

● FedTrust and Krum show some improvement 

(0.35 and 0.33), but still indicate a degree of inequality. 

● TAIM consistently maintains a Gini coefficient 

below 0.3 throughout the training process. This 

remarkable fairness is a direct result of TAIM's balanced 

trust design, which considers both consistent 

participation and verifiable contribution quality. By 

linking incentives directly to trustworthiness and 

effective updates, TAIM prevents reward centralization 

and ensures a more equitable distribution, fostering 

long-term engagement from all types of heterogeneous 

clients. 

5. System Resource Overhead Comparison (Table 3): 

Table 3 compares the system resource overhead of TAIM 

against the baselines, focusing on local training time, 

communication volume, and server aggregation time. 

● Despite integrating additional trust computation 

and soft aggregation mechanisms, TAIM's overhead 

remains highly comparable and acceptable. 

● The communication volume for TAIM is only 

marginally higher (9.0 MB) compared to baselines (8.5 

MB), a negligible increase given the significant 

performance gains. This is because TAIM does not require 

additional communication rounds or large data transfers. 

● The server aggregation time for TAIM (0.16 s) is 

slightly higher than FedAvg (0.03 s) and FedProx (0.05 s), 

but it is comparable to Krum (0.15 s), which also involves 

additional computations (distance calculations). 

● The local training time for TAIM (3.9 s) is similar to 

FedTrust and well within acceptable limits. 

This analysis confirms that the computational overhead 

introduced by TAIM is manageable and does not introduce 

significant delays compared to standard aggregation, 

making TAIM practical for large-scale deployments. The 

efficiency stems from the lightweight nature of trust score 

updates and the optimized implementation of the soft 

aggregation function. 

6. Accuracy Comparison under Unified Model 

Architecture: 

To eliminate any confounding effects caused by 

differences in model architecture across datasets, we 

conducted a control experiment. For FEMNIST and CIFAR-

10, we used a unified lightweight CNN (two convolutional 

layers and two fully connected layers, approximately 0.5 M 

parameters). For Sent140, we retained the LSTM-based 

model for all methods due to the inherent sequential 

nature of the data, ensuring consistency and fairness in 

comparison. 

● presents these results, showing that TAIM 

consistently outperforms other methods across all three 

datasets even under unified or consistent model settings. 

For instance, on FEMNIST, TAIM achieves 78.5% 

compared to Krum's 75.6%; on CIFAR-10, TAIM reaches 

74.9% against FedTrust's 71.0%; and on Sent140, TAIM 

scores 75.8% compared to FedProx's 72.3%. 

● This crucial control experiment confirms that the 

observed performance gains are directly attributable to 

the effectiveness of TAIM's trust-aware incentive and 

aggregation mechanisms, rather than being influenced by 

specific model architecture advantages. This strengthens 

the validity and generalizability of our conclusions. 

5.6. Ablation Study and Parameter Sensitivity 

To understand the individual contributions of TAIM's 

components and evaluate its robustness to 

hyperparameter settings, we conducted an ablation study 

and parameter sensitivity analysis. 

1. Ablation Study on Trust Dimensions: 



EUROPEAN JOURNAL OF EMERGING CYBERSECURITY AND INFORMATION PROTECTION 

pg. 29  

● Full TAIM (with all three components) achieves 

the highest accuracy of 75.2%. 

● Removing participation frequency (ϕ) (denoted 

as "w/o ϕ") drops the accuracy to 70.5%. This indicates 

that consistent participation is a vital indicator of client 

reliability and its absence significantly degrades 

performance. 

● Removing gradient consistency (ψ) (denoted as 

"w/o ψ") further lowers the accuracy to 67.9%. This 

highlights the critical role of gradient alignment in 

identifying benign updates and suppressing malicious 

ones. Without this component, the model becomes highly 

susceptible to attacks that perturb gradients. 

● Excluding contribution effectiveness (ω) 

(denoted as "w/o ω") results in an accuracy of 69.4%. 

This shows that directly measuring the positive impact of 

an update on model performance is essential for ensuring 

that incentives are tied to valuable contributions and for 

filtering out updates that might look benign but are 

ineffective. 

This ablation study unequivocally confirms the 

complementary and crucial roles of all three components 

(ϕ, ψ, ω) in achieving accurate trust assessment and, 

consequently, the overall superior performance of TAIM. 

Each dimension captures a distinct aspect of client 

behavior, and their synergistic combination provides a 

robust and comprehensive trust score. 

2. Sensitivity to Hyperparameter Configurations (Figure 

8): 

Figure 8 illustrates the sensitivity of the TAIM model to 

two key hyperparameter configurations: the sigmoid 

suppression steepness parameter k and the weighting 

coefficients of the trust components (λ1,λ2,λ3). 

● Sensitivity to k Parameter (Sigmoid Steepness) - 

Left Subfigure: 

○ The graph shows how the steepness parameter k 

in the sigmoid suppression function (Equation 11) affects 

the final model accuracy. 

○ When k is set to a small value (e.g., k=2.5), the 

model accuracy drops to 70.8%. This is because a small k 

results in an overly smooth sigmoid function, which fails 

to effectively differentiate between high-trust and low-

trust clients. The suppression is too weak to mitigate 

malicious updates. 

○ As k increases, the accuracy gradually improves, 

reaching a peak of 75.2% at k=10. This suggests that a 

moderately enhanced steepness helps amplify trust-

based differentiation in the aggregation process, allowing 

TAIM to effectively suppress detrimental updates 

without being too rigid. 

○ Beyond k=10, the accuracy slightly decreases but 

remains relatively high (e.g., 74.6% at k=15, 73.9% at 

k=20). This indicates that excessively steep functions 

might overfit to the trust estimates or become too 

sensitive to minor trust fluctuations, potentially impairing 

generalization or discarding updates that are only slightly 

below the threshold but still beneficial. 

○ Overall, the system demonstrates robustness to a 

wide range of k values around the optimal point, implying 

that precise tuning is not overly burdensome. 

● Sensitivity to Trust Component Weights (λ1,λ2,λ3) 

- Right Subfigure: 

○ This bar chart examines the influence of different 

trust component weight configurations on accuracy. 

○ With an equal weight setting (Equal: 

λ1=0.33,λ2=0.33,λ3=0.33), the model achieves 73.8% 

accuracy. This confirms that each trust dimension 

independently contributes to performance, and even a 

simple equal weighting provides reasonable results. 

○ However, when one dimension is overly 

emphasized, the accuracy can significantly drop. For 

instance, emphasizing participation frequency (Freq. 

Heavy: λ1=0.6,λ2=0.2,λ3=0.2) leads to a lower accuracy of 

72.1%. This suggests that while participation is important, 

over-relying on it without considering quality or 

consistency can be detrimental. 

○ In contrast, emphasizing gradient consistency 

(Consist. Heavy: λ1=0.2,λ2=0.6,λ3=0.2) leads to a better 

result of 74.3%. This highlights the crucial importance of 

gradient-level behaviors in robust modeling, as it directly 

reflects the alignment of updates with the global objective. 

○ Similarly, emphasizing contribution effectiveness 

(Contrib. Heavy: λ1=0.2,λ2=0.2,λ3=0.6) yields 73.6%. 

○ TAIM's default setting (λ1=0.3,λ2=0.4,λ3=0.3) 

achieves the highest accuracy of 75.2%. This empirically 

confirms the effectiveness of our proposed joint modeling 

strategy in balancing the influence of different trust 

dimensions, leading to optimal performance. 

These sensitivity analyses demonstrate that TAIM's 

performance is robust across a reasonable range of 

hyperparameters, and the chosen default settings 

effectively leverage the complementary nature of the trust 

components. 

6. Conclusions and Future Work 

6.1. Conclusions 

The increasing adoption of federated learning in edge 

computing environments, while promising for privacy-

preserving collaborative AI, introduces significant 

complexities stemming from client heterogeneity, 

incentive imbalances, and the pervasive threat of 

adversarial attacks. This paper has addressed these critical 

challenges by proposing a novel and unified framework 

called the Trust-Aware Incentive Mechanism (TAIM). 

TAIM's core innovation lies in its integrated approach, 

which jointly models dynamic multi-dimensional client 
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trust, leverages game theory for incentive allocation, and 

employs a trust-guided soft aggregation algorithm. 

Specifically, our framework meticulously evaluates client 

reliability by incorporating three key behavioral 

indicators: participation frequency, gradient consistency, 

and contribution effectiveness. This comprehensive trust 

assessment provides a nuanced understanding of each 

client's value and potential risk. Building upon these 

dynamic trust scores, we formulated a Stackelberg game-

based incentive allocation strategy that strategically 

guides clients to optimize their resource investment, 

fostering a rational and self-sustaining participation 

ecosystem. Furthermore, the introduction of a 

confidence-aware smoothing aggregation algorithm, 

featuring a soft filtering function, enables TAIM to 

intelligently attenuate the influence of low-trust updates 

without resorting to rigid, diversity-harming filtering. 

Our extensive experimental evaluations, conducted 

across diverse non-IID datasets (FEMNIST, CIFAR-10, 

Sent140) and various adversarial scenarios (including 

label flip, Gaussian noise, on-off, and mimic attacks), 

unequivocally demonstrate TAIM's superior 

performance compared to mainstream baseline methods. 

The results consistently show that TAIM significantly 

improves global model accuracy (achieving up to +9.2% 

higher accuracy under heavy attacks), substantially 

reduces performance degradation under adaptive 

attacks (maintaining robustness degradation within 3%), 

and ensures a remarkably fairer incentive distribution 

among clients (consistently achieving a Gini coefficient 

below 0.3). Moreover, TAIM exhibits high malicious 

client detection capabilities (over 91% recall with low 

false positives) while maintaining acceptable 

computational and communication overhead, confirming 

its practical deployability in resource-constrained edge 

environments. 

In essence, TAIM achieves a crucial balance between 

incentive rationality, fairness, and system robustness. 

The proposed soft filtering strategy not only enhances 

system security but also preserves client diversity, 

enabling a dynamic long-term trust evolution and 

potential reputation recovery for clients whose behavior 

improves. This holistic framework provides a robust and 

equitable solution for building future-ready federated 

learning systems characterized by openness, dynamism, 

and strategic participation. 

6.2. Future Work 

Despite the significant advancements offered by TAIM, 

several promising avenues for future research remain to 

further enhance its capabilities and address lingering 

challenges: 

1. Decentralized Trust Evaluation and Management: 

The current trust evaluation process in TAIM primarily 

relies on centralized server control. While efficient, this 

poses potential risks of data linkage leakage (if the server 

is compromised) and represents a single point of failure. 

Future research should explore decentralized 

technologies to enhance privacy and system resilience. 

○ Blockchain Integration: Utilizing blockchain as a 

distributed, immutable ledger for storing and managing 

client trust scores could eliminate the need for a 

centralized trust authority, enhancing transparency and 

auditability. This would require designing efficient 

consensus mechanisms for trust updates. 

○ Secure Multi-Party Computation (SMC): 

Investigating SMC techniques for privacy-preserving trust 

score computation would allow multiple parties (e.g., 

other trusted clients or intermediate edge servers) to 

jointly compute a client's trust score without revealing 

their private data or individual contributions. 

○ Federated Trust Learning: Developing a federated 

approach to learning the trust model itself, where clients 

collaboratively train a trust prediction model without 

sharing raw behavioral data, could further decentralize 

the trust mechanism. 

2. Sophisticated Client Response Modeling and Game 

Learning: Our current Stackelberg game formulation 

simplifies client responses, assuming fully rational and 

immediate reactions. This might not fully capture the 

complexities of real-world client dynamics, which can 

involve constrained strategy spaces, delayed behavioral 

adaptations, or even irrational decisions. 

○ Evolutionary Game Theory: Incorporating 

evolutionary game theory could model how client 

strategies evolve over time based on past rewards and 

observations of other clients' behaviors, leading to more 

realistic and adaptive incentive designs. 

○ Reinforcement Learning for Client Behavior: Using 

Q-learning or other reinforcement learning techniques 

within the Stackelberg framework could allow the server 

to learn optimal incentive policies by observing client 

responses, even without a predefined utility function for 

clients. 

○ Bounded Rationality: Exploring models that 

account for clients' bounded rationality, where they make 

decisions based on simplified heuristics rather than 

perfect optimization, could lead to more practical 

incentive mechanisms. 

3. Multi-Modal and Multi-Task Federated Learning: 

This work primarily focuses on single-task, unimodal 

scenarios. The applicability and effectiveness of TAIM in 

more complex settings remain largely unexplored. 

○ Cross-Modal Trust: Investigating how to define and 

measure trust when clients contribute data from different 

modalities (e.g., joint modeling of vision and language, or 

audio and sensor data). This would require developing 

modality-specific trust indicators and aggregation 

strategies. 

○ Multi-Task FL: Extending TAIM to scenarios where 

clients participate in multiple federated learning tasks 
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simultaneously. How does trust in one task influence 

participation or incentives in another? This could involve 

transfer learning for trust or shared trust 

representations. 

4. Integration with Differential Privacy (DP): The 

current trust mechanism is not explicitly integrated with 

differential privacy (DP), which is a strong privacy-

preserving technique that adds noise to data or 

gradients. This raises potential concerns about privacy 

leakage during trust computation, or conversely, how 

DP's noise might impact the accuracy of trust assessment. 

○ Privacy-Preserving Trust Metrics: Researching 

methods to compute trust indicators (e.g., gradient 

consistency, contribution effectiveness) under DP budget 

constraints. This would involve understanding the trade-

offs between the level of privacy guaranteed and the 

accuracy of the trust score. 

○ Joint Optimization: Developing frameworks that 

jointly optimize for model utility, trust, and differential 

privacy, considering how each component influences the 

others. 

5. Real-world Deployment and Long-term 

Evaluation: While our simulations provide strong 

evidence, deploying TAIM in real-world edge 

environments and conducting long-term evaluations 

would be crucial. 

○ Resource Management: Addressing practical 

challenges related to dynamic resource management, 

energy consumption, and network fluctuations in live 

edge deployments. 

○ User Interface and Transparency: Designing user 

interfaces that clearly communicate trust scores and 

incentive mechanisms to clients, fostering greater 

transparency and encouraging honest participation. 

○ Scalability to Massive Clients: Further optimizing 

the server-side computations and communication 

protocols to handle millions of clients, as envisioned in 

large-scale IoT deployments. 

In summary, TAIM provides an effective trust-driven 

solution for building future-ready federated learning 

systems characterized by openness, dynamism, and 

strategic participation. Ongoing efforts will focus on 

enhancing the generality, security, and distributed 

capability of the mechanism to enable wide deployment 

of trustworthy federated intelligence across an even 

broader spectrum of applications. 
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