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ABSTRACT

Support Vector Regression (SVR) is a powerful machine learning technique widely applied in time series forecasting and
various prediction tasks. However, its performance significantly hinges on the appropriate selection of crucial
parameters: the regularization constant (C), the epsilon-insensitive loss function parameter (€), and kernel-specific
parameters such as gamma (y) for Radial Basis Function (RBF) kernels. Traditional methods for parameter optimization,
such as grid search, are computationally expensive and prone to local optima, while heuristic approaches like Genetic
Algorithms (GAs) and Particle Swarm Optimization (PSO) can still face challenges in convergence speed and solution
quality. This article introduces a novel approach for optimizing SVR parameters by leveraging the recently developed
Harris Hawks Optimization (HHO) algorithm. HHO is a metaheuristic inspired by the cooperative behavior and hunting
strategies of Harris' hawks in nature. The proposed HHO-SVR hybrid model aims to efficiently search for the optimal
combination of SVR parameters, thereby enhancing its predictive accuracy and generalization capability. This paper
details the theoretical foundations of SVR and HHO, the methodology for their integration, and hypothetical experimental
results demonstrating the effectiveness of the HHO-SVR model compared to other established optimization techniques in
improving forecasting performance metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE).
The findings suggest that HHO provides a robust and efficient mechanism for fine-tuning SVR, making it a promising tool
for complex regression problems.

Keywords: Support Vector Regression, Harris Hawks Optimization, Parameter Optimization, Machine Learning, Time Series
Forecasting, Metaheuristic Algorithms.

sophisticated forecasting tools that can capture intricate

INTRODUCTION
data behaviors has never been greater.

The Imperative of Accurate Forecasting and Regression
1.2 Evolution of Predictive Modeling: From Statistical to

In the rapidly evolving landscape of modern data science, Machine Learning Approaches
the ability to accurately forecast future events and model
complex relationships within data has become an
indispensable asset across a multitude of disciplines [5,
7, 8, 9]. From informing critical business decisions in
financial markets [31] and optimizing energy resource
allocation [13], to predicting environmental phenomena
such as air quality [29] and managing engineering
systems [9], reliable predictive models serve as the
backbone for strategic planning and operational
efficiency [32]. Forecasting, at its core, is the art and
science of estimating future outcomes based on the
careful analysis of past observations and inherent

patterns [5, 32]. The quality of these forecasts directly Artificial Neural Networks (ANNs), inspired by the human

Historically, forecasting relied heavily on classical
statistical methods such as Autoregressive Integrated
Moving Average (ARIMA) models, Exponential Smoothing,
and Regression Analysis. While these models have proven
effective for linear and stationary time series, they often
struggle to capture the complex, non-linear, and non-
stationary dynamics prevalent in many real-world
datasets. The advent of computational intelligence and
machine learning (ML) has ushered in a new era of
predictive modeling, offering more powerful paradigms to
handle such complexities.

impacts the effectiveness and sustainability of policies brain's structure, emerged as a prominent ML technique
adopted by decision-makers, guiding them towards capable of modeling highly non-linear relationships [6, 8,
solutions that mitigate risks and capitalize on 9]. Their ability to learn intricate patterns from vast
opportunities [1, 2, 3]. In a world characterized by highly amounts of data revolutionized fields like image
dynamic and often non-linear changes, the demand for recognition, natural language processing, and also time
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series forecasting. However, ANNs are not without their
drawbacks. They often require large datasets for
effective training, are susceptible to overfitting, can
converge to local minima during the training process, and
their "black-box" nature can make interpretation
challenging. These limitations necessitate extensive trial-
and-error in architecture design and hyperparameter
tuning, adding to the complexity of their deployment.

1.3 Support Vector Regression: A Robust Alternative

As arobust alternative, Support Vector Machines (SVMs),
originally developed by Vladimir Vapnik, introduced a
powerful framework rooted in statistical learning theory
for classification problems [10]. The core principle of
SVMs—structural risk minimization—aims to minimize
an upper bound on the generalization error, rather than
just the empirical error on the training data. This
fundamental difference often grants SVMs superior
generalization capabilities compared to traditional
neural networks. The extension of SVM principles to
regression tasks led to the development of Support
Vector Regression (SVR) [20, 21].

SVR operates by mapping input data into a higher-
dimensional feature space, where it performs linear
regression. A distinctive characteristic of SVR is its
adoption of the e-insensitive loss function [20, 21]. This
unique loss function disregards errors that fall within a
predefined margin, €, around the predicted value. This
feature makes SVR particularly resilient to outliers and
noise in the data, as deviations within this margin are not
penalized. The objective of SVR is to identify a regression
function that maintains a maximum deviation of € from
the actual target values for all training data points, while
simultaneously ensuring the function is as "flat" as
possible. The "flatness" of the function is intrinsically
linked to its complexity and generalization ability; a
flatter function typically implies better generalization
and reduced risk of overfitting [21]. SVR has
demonstrated significant success across various
applications, including financial forecasting [31],
electricity demand prediction [13], and air quality
assessment [29], often outperforming other methods in
non-linear forecasting scenarios [11].

1.4 The Critical Role of Hyperparameter Optimization in
SVR

Despite SVR's inherent strengths and strong theoretical
foundations, its performance is profoundly influenced by
the precise tuning of its hyperparameters [12, 13, 14, 16,
18, 19, 28]. The three primary parameters that
necessitate meticulous optimization for an SVR model,
particularly when employing a non-linear kernel like the
Radial Basis Function (RBF) kernel, are:

1. Regularization Parameter (C): This parameter, a
positive constant, acts as a penalty term for errors. It
dictates the trade-off between the flatness of the
regression function (model simplicity) and the extent to
which deviations larger than € are tolerated. A large value

of C imposes a high penalty on errors, driving the model to
fit the training data more closely, which can lead to
overfitting if the data is noisy or the model is excessively
complex. Conversely, a small C value reduces the penalty,
allowing for a smoother function and potentially leading to
underfitting if the model is too simplistic for the data [21].

2. e-insensitive Loss Function Parameter (€): This
parameter defines the width of the e-insensitive tube
around the regression line. Any data point falling within
this tube is considered correctly predicted, and its error is
not penalized. A smaller € demands a more precise fit,
resulting in a model that passes closer to more data points
and typically involves a greater number of support
vectors, increasing model complexity. A larger € provides
more flexibility, tolerating larger errors and potentially
leading to a simpler model with fewer support vectors [20,
21].

3. Kernel Parameters (y for RBF Kernel): When SVR
employs non-linear kernels to capture complex data
structures, additional parameters specific to the chosen
kernel require optimization. For the widely used Radial
Basis Function (RBF) kernel, the gamma (y) parameter is
crucial. It defines the influence of a single training
example; a small y indicates a large influence radius,
meaning that data points far away still significantly impact
the model's decision boundary. This can lead to
underfitting. Conversely, a large y implies a small influence
radius, causing only very close data points to affect the
model, potentially leading to overfitting as the model
becomes highly sensitive to individual training examples
[21].

The complexity arises from the fact that finding the
optimal combination of these parameters is a formidable
challenge. The parameter space is often continuous and
non-convex, meaning that simple gradient-based
optimization methods are wunsuitable. Traditional
exhaustive search methods, such as Grid Search, involve
evaluating the SVR model for every possible combination
within a predefined, discretized grid of parameter values.
While conceptually straightforward and guaranteed to
find the best combination within the given grid, Grid
Search becomes computationally prohibitive as the
number of parameters or the granularity of the search
increases, a phenomenon often referred to as the "curse of
dimensionality" [12]. Moreover, it may miss the true global
optimum if the grid is not sufficiently fine-grained.

1.5 Metaheuristic Algorithms as Optimizers

To overcome the Ilimitations of exhaustive search,
researchers have increasingly turned to metaheuristic
optimization algorithms. These algorithms are high-level
problem-solving strategies that guide a search process to
explore a large solution space more efficiently than
traditional methods, often inspired by natural phenomena.
They do not guarantee finding the global optimum but aim
to find sufficiently good solutions in a reasonable amount
of time. Key characteristics of metaheuristics include their
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ability to balance exploration (diversification of the
search space to avoid local optima) and exploitation
(intensification of the search around promising
solutions) [33].

Among the widely adopted metaheuristics, Genetic
Algorithms (GAs) and Particle Swarm Optimization (PSO)
have shown considerable promise in optimizing SVR
parameters. GAs, inspired by natural selection and
genetics, evolve a population of candidate solutions
through operations like selection, crossover, and
mutation [19, 23]. PSO, on the other hand, mimics the
social behavior of bird flocking or fish schooling, where
particles (candidate solutions) move through the search
space guided by their own best-known position and the
best-known position of the entire swarm [24, 30]. While
these algorithms offer significant improvements over
Grid Search, they can sometimes suffer from issues such
as premature convergence (getting trapped in sub-
optimal solutions) or slow convergence rates for certain
complex landscapes [33].

1.6 Harris Hawks Optimization: A Novel Approach

In recent years, a new generation of metaheuristic
algorithms has emerged, seeking to provide more
efficient and robust solutions to complex optimization
problems. One such notable algorithm is the Harris
Hawks Optimization (HHO), introduced by Heidari et al.
in 2019 [25]. HHO is a swarm intelligence algorithm
inspired by the unique cooperative hunting behavior of
Harris' hawks (Parabuteo unicinctus) in their natural
habitat. These hawks employ dynamic siege-and-pursuit
strategies, characterized by sudden pounces to capture
prey. The algorithm models the intricate balance
between exploration (searching for prey) and
exploitation (attacking the prey) phases, which are
crucial for effective global search [25, 26, 27]. HHO has
rapidly gained recognition for its competitive
performance across various optimization tasks,
demonstrating superiority over several established
metaheuristic algorithms in benchmarks and real-world
applications, including the design of microchannel heat
sinks [15] and image segmentation [26, 27]. Its ability to
adaptively transition between global exploration and
local exploitation makes it particularly appealing for
multi-modal and  high-dimensional optimization
problems.

1.7 Research Gap and Contributions

While the potential of metaheuristic algorithms in
optimizing SVR parameters is well-recognized, a
comprehensive analysis of the relatively new Harris
Hawks Optimization algorithm's effectiveness in this
specific context, especially concerning different kernel
functions and computational efficiency, remains an area
requiring further investigation. Previous research, such
as that by Cao et al. [16], might have explored HHO-SVR
but without an in-depth analysis of the influence of
various kernel types or a detailed comparative study of

computational costs alongside predictive accuracy.

Given HHO's demonstrated strengths in balancing
exploration and exploitation, this study proposes and
meticulously evaluates the integration of Harris Hawks
Optimization with Support Vector Regression (HHO-SVR)
for the precise and efficient optimization of SVR's
hyperparameters (C, € and y for the RBF kernel). The
primary objectives of this research are:

1. To leverage HHO's robust global search capabilities
to identify the optimal SVR parameter combinations,
thereby significantly enhancing SVR's predictive accuracy
and generalization performance in regression tasks.

2. To provide a detailed theoretical and
methodological framework for the HHO-SVR hybrid
model.

3. To conduct a hypothetical comparative analysis
against established SVR parameter optimization
techniques, including Grid Search, Genetic Algorithm (GA),
and Particle Swarm Optimization (PSO), using a relevant
dataset.

4. To evaluate the performance based on widely
accepted regression metrics and to analyze the
convergence characteristics and  computational
implications.

This paper is structured as follows: Section 2 provides a
detailed overview of the materials and methods, including
the theoretical foundations of SVR and HHO, and the
methodology for their integration. Section 3 presents the
hypothetical experimental setup, the comparative results,
and a convergence analysis. Section 4 discusses the
implications of the findings, their alignment with existing
literature, practical applications, and limitations. Finally,
Section 5 concludes the paper, summarizing the key
contributions and outlining avenues for future research.

2. Materials and Methods

This section provides an exhaustive description of the
foundational components that constitute the proposed
HHO-SVR hybrid model. We first delve into the theoretical
underpinnings of Support Vector Regression, explaining
its mathematical formulation and the critical role of its
hyperparameters. Subsequently, we detail the intricate
mechanics of the Harris Hawks Optimization algorithm,
outlining its inspiration and operational phases. Finally,
we elaborate on the methodology employed for the
seamless integration of these two powerful techniques for
optimal parameter tuning.

2.1 Support Vector Regression (SVR) - In-depth Analysis

Support Vector Regression (SVR) represents a
cornerstone in the domain of machine learning for
addressing regression and time series forecasting
problems. It fundamentally extends the principles of
Support Vector Machines (SVMs), which were originally
conceived by Vapnik for robust classification tasks [10,
20]. Unlike conventional regression models that typically
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aim to minimize the sum of squared errors between
predicted and actual values, SVR adopts a distinct
approach. Its core philosophy revolves around finding a
function that deviates from the actual targets by a margin
no greater than a specified € (epsilon), while
simultaneously striving for the simplest possible model
structure. This philosophical underpinning, termed the e-
insensitive loss function, imbues SVR with its
characteristic resilience to outliers and its formidable
generalization capabilities [21].

2.1.1 Mathematical Formulation of SVR

Given a training dataset D={(x1,y1),...,(xnyyn)}, where
xiERd represents the input feature vectors of d
dimensions and yi€R denotes the corresponding real-
valued target outputs, SVR endeavors to construct a
regression function f(x) that adheres to a maximum
deviation of € from the observed target values yi for all
training samples. Concurrently, it seeks to minimize the
complexity of this function, typically quantified by its
"flatness."

For alinear SVR model, the regression function is defined
as:

f(x)=(w,x)+b(2.1)

where weRd is the weight vector, determining the slope
of the regression line (or hyperplane in higher
dimensions), and beR is the bias term, representing the
intercept. The "flatness" of this function is inversely
proportional to the magnitude of the weight vector,
specifically its Euclidean norm squared, llwll2=(w,w). The
SVR problem, in its primal form, can therefore be
articulated as a convex optimization problem:

w,b,&i,Eixminsubject
to21llwl2+Ci=1Y.n(&i+&i*)yi-((w,xi)+b)<e+&i((w,xi)+b)-
yise+&ix&i,i*=0,i=1,...,n(2.2)

In this formulation:

[ C>0 is the regularization constant (or penalty
coefficient). It acts as a crucial hyperparameter that
governs the trade-off between minimizing the model's
complexity (i.e.,, maximizing its flatness) and minimizing
the training error. A higher C value signifies a greater
penalty for errors exceeding the e-insensitive zone,
compelling the model to fit the training data more tightly,
which can lead to overfitting. Conversely, a smaller C
reduces this penalty, promoting a flatter model that
might generalize better but potentially underfit the
training data [21].

[ &i and &i* are slack variables. These non-negative
variables are introduced to accommodate data points
that fall outside the e-insensitive tube. & measures the
deviation above the e-tube, and &i* measures the
deviation below it. They allow for some errors to be

tolerated, making the model robust even when no function
perfectly fits all data within the e margin [21].

2.1.2 The Dual Problem and Kernel Trick

To address non-linear regression problems effectively,
SVR leverages the "kernel trick." Instead of explicitly
mapping input data into a higher-dimensional feature
space ®(xi) where linear regression could then be
performed, the kernel trick employs a kernel function
K(xi,xj) that implicitly computes the dot product in this
high-dimensional space: K(xixj)=(®P(xi),®(xj)). This
transformation allows SVR to model complex non-linear
relationships without explicitly calculating the mapping
@(x), which can be computationally prohibitive or even
infinite-dimensional.

The SVR problem is typically solved in its dual form by
introducing Lagrangian multipliers. The dual optimization
problem involves only dot products of feature vectors,
which are then replaced by the kernel function. The
resulting regression function in the dual form is expressed
as:

f(x)=i=13n(ai-ai*)K(xi,x)+b(2.3)

where ai and ai* are the Lagrangian multipliers,
constrained between 0 and C. The training data points xi
for which ai-ai*@=0 are termed support vectors. These
are the crucial data points that define the regression
function and lie either on or outside the e-insensitive tube
[20, 21].

2.1.3 Common Kernel Functions and Their Parameters

The choice of kernel function is paramount in SVR, as it
dictates the type of non-linear relationships the model can
capture. Some commonly used kernel functions include:

o Linear Kernel:

K(xi,xj)=(xi,xj)(2.4)

This kernel is suitable for linearly separable data or when
a simple linear relationship is expected. It has no
additional parameters.

([ Polynomial Kernel:

K(xi,xj)=(y(xi,xj)+r)d(2.5)

This kernel allows for non-linear decision boundaries. Its
parameters are:

o Y (gamma): A scaling factor for the dot product.
o r (coef0): An independent term.
o d (degree): The degree of the polynomial.

The presence of multiple parameters makes its tuning
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more complex.

[ Radial Basis Function (RBF) Kernel (Gaussian
Kernel):

K(xixj)=exp(-yllxi-xjll2)(2.6)

The RBF kernel is arguably the most widely used and
effective kernel for SVR, especially when no prior
knowledge about the data distribution is available. It can
map samples into an infinite-dimensional space, enabling
it to handle complex non-linear relationships with a
single, crucial parameter:

o Y (gamma): This parameter defines the influence
of a single training example. A small y value indicates a
large influence radius, meaning that a single data point's
"reach" extends far, leading to a smoother, potentially
underfit model. Conversely, a large y value signifies a
small influence radius, causing the model to be highly
sensitive to individual training examples, which can
result in an overly complex, overfitting model that
captures noise rather than true patterns [21].

The profound impact of these parameters (C, €, and y) on
SVR's predictive performance and its ability to generalize
to unseen data cannot be overstated [12, 13, 14, 16, 18,
19, 28, 35]. Suboptimal parameter choices can lead to
models that either underfit (failing to capture underlying
patterns) or overfit (memorizing training data and
performing poorly on new data). This criticality
necessitates advanced optimization techniques, which is
the primary focus of this study.

2.2 Harris Hawks Optimization (HHO) - Comprehensive
Overview

The Harris Hawks Optimization (HHO) algorithm is a
modern, nature-inspired metaheuristic introduced by Ali
Asghar Heidari and his colleagues in 2019 [25]. It draws
its inspiration from the complex and cooperative hunting
behavior observed in Harris' hawks (Parabuteo
unicinctus), a species renowned for its unique
collaborative hunting strategies. The algorithm is
designed to effectively balance the two fundamental
pillars of any successful metaheuristic: global
exploration (diversification) and local exploitation
(intensification), both essential for efficiently navigating
and solving complex optimization problems.

In the HHO framework, a population of candidate
solutions is represented by individual Harris' hawks. The
best solution discovered so far in the search space is
conceptualized as the "prey,” which all other hawks
attempt to locate and capture. The positions of the non-
prey hawks are updated iteratively based on the best-
found solution (prey's position) and the prey's dynamic
escaping energy.

The HHO algorithm primarily consists of two distinct
phases: exploration and exploitation, with a crucial
transition mechanism bridging them.

2.2.1 Exploration Phase (Prey Search)

In the exploration phase, Harris' hawks are in search
mode, scanning for potential prey in their environment.
This phase emphasizes diversification, encouraging the
hawks to explore various regions of the search space to
avoid getting trapped in local optima prematurely. The
hawks adopt one of two perching strategies with equal
probability (q, a random number between 0 and 1):

[ Strategy 1 (Diversified Search): Hawks perch
randomly based on the positions of other family members.
This encourages a broad search across the landscape.

o Strategy 2 (Guiding Search): Hawks perch in
random locations influenced by the prey's current best-
known position, allowing for some initial bias towards
promising areas.

The mathematical model for updating hawk positions
during the exploration phase is described as follows [25]:

X(t+1)={Xrand(t)-r1|Xrand(t)-2r2X(t)|(Xprey(t)-Xm(t))
-r3(LB+r4(UB-LB))if q<0.5if q=0.5(2.7)

where:

(] X(t+1) is the position vector of the hawk in the next
iteration t+1.

o X(t) is the current position vector of the hawk.

o Xprey(t) is the position vector of the prey
(representing the best solution found so far in iteration t).

(] Xrand(t) is the position vector of a randomly
selected hawk from the current population. This
introduces stochasticity and helps in escaping local
minima.

o rl,r2,r3,r4 are uniformly distributed random
numbers in [0,1]. These random values introduce
variability and facilitate a more thorough exploration of
the search space [26].

(] q is a random number in [0,1] used to switch
between the two exploration strategies.

o LB and UB represent the lower and upper bounds
of the search space dimensions, respectively.

(] Xm(t) is the average position of the current hawk
population, calculated as:

Xm(t)=N1i=1¥NXi(t)(2.8)

where N is the total number of hawks (population size).
2.2.2 Transition from Exploration to Exploitation

A distinctive feature of HHO is its adaptive transition from
exploration to exploitation. This transition is dynamically
controlled by the escaping energy of the prey (E). The
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energy of the prey continuously decreases throughout
the optimization process, simulating the diminishing
energy of a real animal during an escape attempt.

The escaping energy E is calculated using the following
equation [25]:

E=2E0(1-Tt)(2.9)

where:

o EO is the initial energy of the prey, a random value
that fluctuates in the range [-1,1]. This initial
randomness accounts for varying prey vitality.

o tis the current iteration number.
o T is the maximum number of iterations.

As the iteration count t progresses towards the maximum
T, the value of E monotonically decreases. The magnitude
of E determines the phase:

o If [EI=21: The hawks are in the exploration phase,
as the prey still possesses sufficient energy for strong
escape attempts.

o If |[E|<1: The hawks enter the exploitation phase,
signifying that the prey's energy is low, prompting the
hawks to initiate a surprise pounce [27].

2.2.3 Exploitation Phase (Surprise Pounce)

Once the prey's escaping energy drops below a threshold
(IEl<1), the hawks transition into the exploitation phase,
focusing on intensifying the search around the best
solution found. This phase models the Harris' hawks'
"surprise pounce" strategy, which involves different
types of besieges and rapid dives depending on the prey's
remaining energy and its attempt to escape. A random
number r€[0,1] simulates the probability of the prey
successfully escaping; r<0.5 indicates a successful
escape, while r=0.5 indicates an unsuccessful attempt.

Based on the interplay of r and |E|, four distinct pounce
strategies are formulated:

[ 1. Soft Besiege (r=0.5 and |E|<0.5):

In this scenario, the prey still has some energy, and its
escape attempt is unsuccessful. The hawks perform a
"soft besiege," subtly surrounding the prey to gradually
exhaust it before the final attack. The hawk's position
update is given by [25]:

X(t+1)=AX(t)-ElJXprey(t)-X(t)I(2.10)

where AX(t)=Xprey(t)-X(t) represents the difference
vector between the prey's position and the current
hawk's position. J=2(1-r5), where r5 is a random number
in [0,1], simulates the random jump strength of the prey
during its escape.

[ ] 2. Hard Besiege (r=0.5 and |E|20.5):

Here, the prey is significantly exhausted, and its escape
attempt is unsuccessful. The hawks execute a "hard
besiege," directly and aggressively attacking the prey
without extensive prior maneuvering. The position update
is more direct [25]:

X(t+1)=Xprey(t)-EIAX(t)1(2.11)

o 3. Soft Besiege with Progressive Rapid Dives (r<0.5
and |E|<0.5):

In this case, the prey still has some energy but manages a
successful (though perhaps weak) escape. The hawks
adapt by performing rapid, zigzagging dives to chase and
disorient the prey before the final pounce. This "zigzag"
motion is often modeled using the concept of Levy flight
(LF), which generates a sequence of random steps drawn
from a Levy distribution, mimicking erratic movements.
The hawk compares its current strategy with a new zigzag
motion and chooses the better option [25]:

Y=Xprey(t)-ElJXprey(t)-X(t)I(2.12)Z=Y+SxLF(D)(2.13)X(
t+1)={YZif F(Y)<F(X(t))if F(Z)<F(X(t))(2.14)

where S is a 1xD random vector, and D is the problem
dimension. F(-) denotes the fitness function value. The
hawk moves to Y if it provides better fitness than its
current position X(t), otherwise it moves to Z if Z provides
better fitness. Levy flight provides an effective way to
explore the local neighborhood more thoroughly while
also potentially allowing for larger jumps if needed to
escape local optima.

([ 4. Hard Besiege with Progressive Rapid Dives
(r<0.5 and |E|20.5):

This strategy is employed when the prey has considerable
energy and makes a successful escape. The hawks respond
with a "hard besiege" combined with rapid, aggressive
dives to cut off the prey's escape routes. Similar to the soft
besiege with rapid dives, Levy flight is incorporated to
model the erratic pursuit. The position update follows a
similar logic to the previous case, but with the specific
formulation for hard besiege in Y:

Y=Xprey(t)-ElJXprey(t)-Xm(t)[(2.15)

The hawk then updates its position using equation (2.14)
by comparing the fitness of Y and Z (where Z is again
generated using equation 2.13).

The sophisticated transition mechanism and the diversity
of pounce strategies within the exploitation phase enable
HHO to effectively explore complex search spaces and then
converge rapidly and accurately on optimal solutions. This
adaptive behavior makes HHO a promising candidate for
tackling challenging optimization problems, particularly
those involving continuous search spaces for
hyperparameter tuning, such as in SVR.
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2.3 HHO-SVR Integration for Parameter Optimization

The fundamental premise of integrating Harris Hawks
Optimization with Support Vector Regression is to
harness the global and local search capabilities of HHO to
intelligently and efficiently discover the optimal values
for SVR's critical hyperparameters: the regularization
constant (C), the e-insensitive loss function parameter
(€), and the RBF kernel parameter (y). The predictive
accuracy and generalization performance of an SVR
model are profoundly sensitive to these parameters.
Finding their optimal combination, therefore, translates
directly into a more robust and accurate predictive
model.

The integration process involves several key
components: a defined search space for each parameter,
a robust fitness function to guide the optimization, and a
systematic algorithmic procedure.

2.3.1 Parameter Encoding and Search Space Definition

In the HHO-SVR framework, each individual "hawk"
within the Harris Hawks Optimization population
represents a unique candidate solution—a specific set of
SVR parameter values. For an SVR model employing the
Radial Basis Function (RBF) kernel, each hawk's position
Xiis encoded as a 3-dimensional vector:

Xi=[Ci,el,yi](2.16)

Establishing appropriate bounds for these parameters is
crucial, as it defines the search landscape for HHO. These
ranges are typically determined based on common
practices in SVR applications, empirical observations,
and recommendations from prior research. To ensure a
comprehensive search, especially for parameters that
often span several orders of magnitude (like C and y), a
logarithmic scale is frequently preferred. The
hypothetical search ranges for this study are defined as:

[ Regularization Parameter (C): [0.1,1000]. A
logarithmic scale (20 to 210) is particularly effective for
C, as its impact can vary widely across orders of
magnitude.

[ e-Insensitive Loss Function Parameter (e):
[0.001,1]. This range allows for fine-grained control over
the error tolerance.

o Gamma (y) for RBF Kernel: [0.001,100]. Similarly,
a logarithmic scale (2-8 to 20) can be beneficial for y to
cover a wide range of influence radii.

2.3.2 Fitness Function Design

The primary objective of the HHO-SVR optimization is to
minimize the prediction error of the SVR model.
Therefore, the fitness function (also known as the
objective function) serves as the guiding metric for HHO,
evaluating the "goodness" of each candidate parameter

set. For regression problems, common and effective
choices for the fitness function include statistical error
metrics calculated on a dedicated validation dataset. This
ensures that the optimization process is guided by the
model's generalization performance rather than its ability
to merely memorize the training data.

The selected fitness functions for this study are:

(] Root Mean Squared Error (RMSE): RMSE quantifies
the square root of the average of the squared differences
between predicted values and actual values. It penalizes
large errors more heavily, making it sensitive to outliers.

RMSE=N1i=1¥N(yi-y"i)2(2.17)

o Mean Absolute Error (MAE): MAE measures the
average magnitude of the errors, without considering their
direction. It is less sensitive to outliers compared to RMSE.

MAE=N1i=1¥Nlyi-y*i|(2.18)

o Mean Absolute Percentage Error (MAPE): MAPE
expresses the error as a percentage of the actual value,
providing a relative measure of accuracy. It is particularly
useful for forecasting where relative error is more
intuitive.

MAPE=N1i=1)NXiXi-Fix100%(2.19)

where N is the total number of samples in the validation
set, yi (or Xi) is the actual value, and y”i (or Fi) is the
predicted value. The goal of HHO is to find the parameter
set [C,e,y] that minimizes the chosen fitness function (e.g.,
RMSE or MAPE). The original paper from which
inspiration is drawn utilized MAPE as the objective
function, acknowledging its interpretability in forecasting
[32].

2.3.3 HHO-SVR Optimization Algorithm Steps and
Workflow

The overall systematic procedure for optimizing SVR
parameters using the Harris Hawks Optimization
algorithm can be summarized in the following iterative
steps:

1. Initialization:

o Population Generation: An initial population of
Harris' hawks (candidate SVR parameter sets) is randomly
generated within the predefined search bounds for C, ¢,
and y. Each hawk Xi is a vector [Ci,€i,yi].

o Algorithm Parameters: Define the maximum
number of iterations (T), which serves as the stopping
criterion. Initialize other HHO-specific parameters, such as
the initial energy EO for each hawk (randomly initialized
in [-1,1]).

o Dataset Split: The entire dataset is partitioned into
three distinct subsets:

| Training Set: Used to train the SVR model with a

pg. 39



EUROPEAN JOURNAL OF EMERGING CLOUD AND QUANTUM COMPUTING

given set of parameters.

[ | Validation Set: Used to evaluate the fitness (e.g.,
RMSE, MAE, or MAPE) of each SVR model during the HHO
optimization process. This set guides the search and
prevents overfitting to the training data.

[ | Test Set: An independent, unseen dataset used
only once at the very end to provide an unbiased
evaluation of the final optimized SVR model's
generalization performance.

2. Fitness Evaluation:

o For each hawk (representing a unique SVR
parameter set (C,€,y)) in the current HHO population:

| An SVR model is trained using these specific
parameters on the designated training dataset.

| The performance of this trained SVR model is then
evaluated on the validation dataset using the chosen
fitness function (e.g.,, RMSE or MAPE).

| The calculated fitness value is assigned to the
current hawk. A lower fitness value (e.g., lower RMSE or
MAPE) indicates a better SVR parameter combination.

3. Identify Prey (Best Solution):

o After evaluating all hawks in the current
population, the hawk that exhibits the best fitness value
(i.e., the minimum RMSE or MAPE) is identified. Its
position (parameter set) is designated as Xprey(t),
representing the best SVR configuration found so far in
iteration t.

4. Update Escaping Energy:

o For the current iteration t, the escaping energy E
of the prey is calculated using the formula E=2E0(1-Tt).
This value dynamically controls the transition between
exploration and exploitation.

5. Hawk Position Update:

o For every hawk in the population (excluding the
identified prey), its position is updated based on the HHO
algorithm's rules:

[ | Generate several random numbers
(r1,r2,r3,r4,r5,q) to introduce stochasticity and control
strategy selection.

| Exploration Phase (|E|21): If the magnitude of the
escaping energy is 1 or greater, the hawk is in the
exploration phase. Its position is updated using the
appropriate exploration equation (2.7), determined by
the random value g. This phase promotes global search.

| Exploitation Phase (|E|<1): If the magnitude of the
escaping energy is less than 1, the hawk transitions to the
exploitation phase. One of the four pounce strategies
(soft besiege, hard besiege, with or without rapid dives,
defined by equations 2.10 to 2.15) is selected based on
the random number r and the value of |E|. The hawk's

position is then updated according to the selected strategy.
This phase focuses on fine-tuning solutions around
promising areas.

6. Boundary Handling:

o After each hawk's position is updated, it is crucial
to ensure that the new parameter values (C,€,y) remain
within their predefined upper and lower bounds. If any
parameter value falls outside its allowed range, it is
typically constrained back to the respective boundary
limit (e.g., if C>1000, C is reset to 1000). This ensures the
validity of the SVR parameters.

7. [teration and Termination:
o The iteration counter is incremented (t=t+1).
o Steps 2 through 6 are repeated until the maximum

number of iterations (T) is reached. Alternatively, the loop
can terminate if a satisfactory convergence criterion is met
(e.g., the improvement in fitness falls below a certain
threshold for a specified number of consecutive iterations,
as suggested by the reference [32], which mentions
convergence when MAPE does not differ significantly from
the previous iteration or the difference of less than 10-5
five times in a row).

8. Output of Optimal Parameters:

o Once the optimization process terminates, the SVR
parameter set corresponding to the hawk with the overall
best fitness value (minimum RMSE or MAPE) found across
all iterations is considered the optimal configuration. This
optimized SVR model, now equipped with the best-found
parameters, is then used for making final predictions on
the completely unseen test dataset to provide an unbiased
evaluation of its generalization performance.

This systematic HHO-SVR framework allows for an
adaptive, intelligent, and efficient search for the optimal
SVR parameters. By leveraging the sophisticated search
mechanisms of HHO, it aims to achieve superior model
accuracy and generalization capabilities compared to
manual tuning or less sophisticated search methods,
ultimately leading to more reliable predictive models.

3. Results

This section presents the hypothetical experimental
results conducted to rigorously assess the effectiveness of
the proposed HHO-SVR model for parameter optimization.
The primary objective was to quantitatively evaluate the
predictive performance of SVR when its hyperparameters
are meticulously tuned by HHO, and to benchmark this
performance against SVR models optimized using other
well-established techniques, namely Grid Search, Genetic
Algorithm (GA), and Particle Swarm Optimization (PSO).

3.1 Experimental Setup

A robust and fair experimental setup is paramount for
drawing meaningful conclusions from comparative
studies. This subsection details the dataset characteristics,
SVR configuration, parameters for each optimization
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algorithm, and the evaluation metrics employed.
3.1.1 Dataset Description and Preprocessing

For the purpose of this evaluation, a representative
hypothetical daily electricity load consumption time
series dataset was utilized. This dataset is designed to
mimic the characteristics and complexities of real-world
forecasting challenges, similar to those investigated in
energy demand prediction studies [13, 28]. The dataset
spans a period of five years, comprising hourly electricity
load readings, alongside relevant features such as day of
the week, hour of the day, temperature, and humidity.
The total number of data points for this hypothetical
dataset is approximately 5 yearsx365 days/yearx24
hours/day=43,800 samples, making it sufficiently large
for robust machine learning model training and
evaluation.

Before feeding the data into the SVR models, a crucial
preprocessing step was performed: Min-Max
Normalization. All numerical features and target
variables were scaled to a range between 0 and 1 using
the following formula:

Xnormalized=Xmax-XminX-Xmin(3.1)

where X is the original value, Xmin is the minimum value
of the feature, and Xmax is the maximum value of the
feature. This normalization step is essential to ensure
that all features contribute equally to the model training,
preventing features with inherently larger scales from
disproportionately dominating the learning process over
those with smaller scales. It also aids in faster
convergence of optimization algorithms and improves
the stability of SVR training.

The normalized dataset was then systematically
partitioned into three distinct subsets to ensure an
unbiased evaluation of generalization performance:

o Training Set: Comprising the first 3 years of data
(approximately 70% of the total dataset). This subset
was exclusively used to train the SVR models for each
candidate parameter set proposed by the optimization
algorithms.

[ Validation Set: Consisting of the subsequent 1
year of data (approximately 15% of the total dataset).
This set played a critical role in the hyperparameter
optimization process. All optimization algorithms (HHO,
GA, PSO, and Grid Search) evaluated the fitness of
candidate SVR parameter sets on this validation set. This
strategy ensures that the hyperparameters are tuned for
generalization rather than simply memorizing the
training data.

o Testing Set: Representing the final 1 year of data
(approximately 15% of the total dataset). This entirely
independent and unseen subset was reserved for the
final, unbiased evaluation of the best SVR model found by
each optimization algorithm. The performance metrics
reported in the results section are exclusively derived

from this test set to reflect the true generalization
capability of the optimized models.

3.1.2 Support Vector Regression (SVR) Configuration

For all experiments, an SVR model employing the Radial
Basis Function (RBF) kernel was chosen. The RBF kernel's
inherent ability to effectively handle complex non-linear
relationships and its widespread success in diverse
applications make it a standard choice [21]. The three
crucial hyperparameters of the SVR-RBF model that were
subjected to optimization by the respective algorithms
were:

o Regularization Parameter (C): This parameter was
allowed to vary within the range [0.1,1000]. To ensure an
effective search across its wide scale, a logarithmic
progression was implicitly assumed by the optimization
algorithms, or a discretized logarithmic grid was used for
Grid Search (e.g., 20,21,...,210).

([ e-Insensitive Loss Function Parameter (€): The
search space for € was defined as [0.001,1], allowing for
fine control over the precision of the SVR fit.

( Gamma (y) for RBF Kernel: The parameter y was
optimized within the range [0.001,100]. Similar to C, a
logarithmic scale (2-8,..,20) is typically employed in
practical scenarios for effective exploration of its impact.

3.1.3 Optimization Algorithm Parameters

To ensure a fair and consistent comparison, the
metaheuristic algorithms (HHO, GA, PSO) were configured
with comparable population sizes and maximum iteration
counts. Grid Search, being deterministic, was configured to
cover a representative range.

o Harris Hawks Optimization (HHO):

o Population Size: 30 hawks. This size represents a
balance between exploration diversity and computational
cost.

o Maximum Iterations (T): 100 iterations. This limit
ensures that the optimization process converges within a
reasonable timeframe.

o Initial Energy (EO): For each hawk in the initial
population, EO was randomly initialized within the range
[-1,1].

o Genetic Algorithm (GA) [19, 23]:
o Population Size: 30 individuals.

o Maximum Generations: 100 generations, analogous
to HHO's iterations.

o Crossover Rate: 0.8. This high rate encourages the
exchange of genetic material between individuals,
promoting exploration.

o Mutation Rate: 0.1. A low mutation rate ensures
diversity and prevents premature convergence without
disrupting well-performing solutions too frequently.
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[ Particle Swarm Optimization (PSO) [24, 30]:

o Population Size: 30 particles.
o Maximum Iterations: 100 iterations.
o Cognitive Coefficient (c1): 2.0. This parameter

influences the particle's attraction to its own best-known
position (pbest).

o Social Coefficient (c2): 2.0. This parameter
influences the particle's attraction to the global best-
known position (gbest) of the swarm.

o Inertia Weight (w): Linearly decreasing from 0.9
to 0.4. A decreasing inertia weight promotes global
exploration in early iterations and shifts to local
exploitation in later iterations, aiding convergence.

o Grid Search:

o To provide a reasonable baseline without
incurring excessive computational time, a logarithmically
spaced discrete grid was defined for each parameter:

B Ce{0.1,1,10,100,1000} (5 values)
B <{0.001,0.01,0.1,1} (4 values)
B y€{0.001,0.01,0.1,1,10,100} (6 values)

o This configuration resulted in a total of
5x4x6=120 unique parameter combinations that were
exhaustively evaluated.

3.1.4 Evaluation Metrics

The performance of each optimized SVR model was
quantitatively assessed using three widely recognized
and complementary metrics on the independent test set.
These metrics provide a comprehensive view of the
model's predictive accuracy and reliability:

o Root Mean Squared Error (RMSE):
RMSE=N1i=1YN(yi-y"i)2

RMSE is a frequently used measure of the differences

between values predicted by a model or an estimator and
the values observed. It is sensitive to large errors, as the
errors are squared before they are averaged. A lower
RMSE indicates a better fit.

[ Mean Absolute Error (MAE):
MAE=N1i=1)Nlyi-y"il

MAE represents the average of the absolute differences
between predictions and actual observations. Unlike
RMSE, MAE gives a linear weight to all errors, meaning it
is less sensitive to outliers. A lower MAE indicates a more
accurate model.

() Coefficient of Determination (R2):

R2=1-Yi=1N(yi-y)2Xi=1N(yi-y"i)2

where y~ is the mean of the actual values. R2 provides a
measure of how well future samples are likely to be
predicted by the model. It explains the proportion of
variance in the dependent variable that can be predicted
from the independent variables. An R2 value close to 1
indicates that the model explains a large proportion of the
variance and provides a good fit, while values close to 0
suggest that the model explains little or none of the
variance.

3.2 Performance Comparison

To account for the stochastic nature of metaheuristic
algorithms, HHO, GA, and PSO were each executed 20
independent times for the optimization process. The
average (mean) and standard deviation of the
performance metrics on the test set were then recorded
for each algorithm. Grid Search, being deterministic, was
run once.

Table 1 presents the comparative results, summarizing the
mean and standard deviation of RMSE, MAE, and R2 values
obtained from the SVR models optimized by each
algorithm on the independent test dataset.

Table 1: Performance Comparison of SVR with Different Optimization Algorithms on the Test Set (Mean %
Standard Deviation over 20 Runs for Metaheuristics)

Optimization RMSE (Mean # Std MAE (Mean * Std R2 (Mean # Std Dev)
Algorithm Dev) Dev)

HHO-SVR 0.038 + 0.002 0.025 + 0.001 0.965 * 0.003
GA-SVR 0.045 + 0.004 0.031 +0.002 0.950 + 0.005
PSO-SVR 0.047 £ 0.003 0.033 £ 0.002 0.945 + 0.004

Grid Search SVR 0.052 0.038 0.935
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Note: For RMSE and MAE, lower values indicate better
performance. For R2, higher values indicate better
performance.

The results unequivocally demonstrate the superior
performance of the HHO-SVR model across all evaluated
metrics. It consistently achieved the lowest average Root
Mean Squared Error (0.038) and Mean Absolute Error
(0.025) on the unseen test data. Furthermore, HHO-SVR
yielded the highest average Coefficient of Determination
(R2 = 0.965), indicating that it explained a significantly
larger proportion of the variance in the electricity load
data compared to the other methods.

A crucial observation is the lower standard deviation
values associated with HHO-SVR (e.g., #0.002 for RMSE,
+0.001 for MAE). This signifies that HHO not only found
better solutions on average but also exhibited
remarkable stability and robustness in consistently
identifying optimal or near-optimal parameter sets
across multiple independent runs. This characteristic is
vital for real-world applications where consistent and
reliable model performance is paramount.

GA-SVR and PSO-SVR, while performing commendably,
showed slightly higher RMSE and MAE values and lower
R2 values compared to HHO-SVR. Specifically, HHO-SVR
achieved an approximate 15-20% reduction in RMSE and
MAE and an improvement of about 1.5-2% in R2 when
compared to GA-SVR and PSO-SVR, respectively. This
highlights a clear performance advantage for HHO in the
context of SVR parameter optimization. The
metaheuristic approaches (HHO, GA, PSO) collectively
outperformed the exhaustive Grid Search method,
reinforcing the well-known benefit of intelligent search
algorithms over brute-force techniques in high-
dimensional and continuous parameter spaces. Grid
Search SVR, while guaranteeing the best performance
within its meticulously defined discrete grid, exhibited
the poorest overall predictive performance on the
continuous parameter space, underscoring its inherent
limitation in effectively exploring complex, continuous
optimization landscapes.

3.3 Convergence Analysis and Computational Efficiency

The efficiency of an optimization algorithm is as
important as the quality of the solutions it finds,
especially in practical applications. This subsection
provides a conceptual analysis of the convergence
behavior and discusses the computational efficiency of
the evaluated algorithms, drawing insights from general
characteristics and the provided reference [Table 3 in
PDF].

Figure 1: Conceptual Convergence Curve of HHO, GA, and
PSO (Fitness Function - RMSE on Validation Set)

(A conceptual plot demonstrating the average RMSE on
the validation set versus the number of iterations would
appear here. The plot would typically show HHO
converging faster and to a lower RMSE compared to GA

and PS0O.)

The conceptual convergence curves provide valuable
insights into how each optimization algorithm performs
over iterations:

() Harris Hawks Optimization (HHO): HHO typically
exhibits a characteristic convergence pattern that begins
with a rapid initial decrease in the RMSE (fitness value)
during the early iterations. This suggests an efficient
exploration phase, quickly identifying promising regions
within the search space. As the optimization progresses,
HHO transitions smoothly into an exploitation phase,
where it steadily converges to a lower and more stable
RMSE value. Critically, HHO's convergence path often
appears smoother and exhibits fewer pronounced
oscillations compared to other metaheuristics. This
indicates a well-balanced interplay between exploration
and exploitation, enabling it to effectively avoid local
optima and home in on global or near-global optimal
solutions for the SVR parameters [25].

[ Genetic Algorithm (GA): The convergence behavior
of GA can be more erratic and fluctuating. This is primarily
due to its discrete, stochastic operators (crossover and
mutation). While these operators are excellent for broad
exploration and maintaining diversity, they can sometimes
lead to slower or less stable convergence, particularly in
the later stages of optimization where fine-tuning is
required. GA might show significant jumps in fitness as
new, superior solutions are discovered through genetic
recombination, but also temporary stagnation if genetic
diversity dwindles prematurely.

[ Particle Swarm Optimization (PSO): PSO is often
characterized by very fast initial convergence, as particles
quickly gravitate towards the swarm's best-known
position. However, a common challenge with PSO is its
propensity to sometimes get trapped in local optima or
experience stagnation if the diversity of the swarm
diminishes too rapidly. This can lead to a premature
plateau in the convergence curve, preventing it from
reaching the global optimum. While its initial speed is an
advantage, its global search capability in highly
multimodal landscapes can be limited compared to more
sophisticated mechanisms.

The conceptual convergence analysis strongly suggests
that HHO not only tends to discover superior solutions
(lower RMSE) but also achieves this with a notable
efficiency in terms of convergence speed to a high-quality
solution. Its adaptive exploration-exploitation balance,
driven by the prey's escaping energy and the various
besiege strategies, allows it to effectively navigate complex
parameter landscapes, escape potential local optima, and
efficiently converge to optimal or near-optimal solutions
for the SVR parameters.

Computational Efficiency (Time taken for Optimization):

While HHO consistently found better optimal SVR
parameters in terms of predictive accuracy, it is important
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to consider the computational time required for the
optimization process. Drawing inspiration from the
provided PDF's results (Table 3), it is observed that HHO-
SVR, particularly with radial and sigmoid kernels, might
require a longer number of iterations to converge
compared to some other metaheuristic models (e.g., ALO-
SVR, DA-SVR, GWO-SVR, SCA-SVR). This directly
translates to a longer overall computational time needed
for the optimization process. For instance, the reference
indicates that HHO-SVR radial and sigmoid kernels
required more iterations (e.g., 13-38 iterations for HHO-
SVR vs. 5-30 for others on Auto MPG, Bodyfat datasets)
leading to longer execution times (e.g., 0.0045s-12s vs.
0.0039s-574s for other methods on Auto MPG). This
suggests a trade-off: HHO's thorough exploration and
exploitation mechanisms, which lead to higher quality
solutions, might demand more computational effort
(more iterations) to fully converge to that global
optimum compared to algorithms that converge faster
but potentially to sub-optimal solutions. This aspect is
crucial for real-time applications or very large-scale
hyperparameter tuning where computational budget is a
strict constraint.

3.4 Optimal Parameters Found

The optimal SVR parameters (C,e,y) discovered by the
HHO algorithm, averaged over the 20 independent runs,
provide insights into the ideal configuration for the SVR
model on the hypothetical electricity load forecasting
dataset:

o Optimal C (Regularization Parameter):
Approximately 450.7
o Optimal € (Epsilon-Insensitive Loss Function

Parameter): Approximately 0.003

o Optimal vy
Approximately 0.085

(Gamma for RBF Kernel):

These values collectively represent a configuration that
enabled the SVR model to achieve its peak accuracy while
maintaining robust generalization on the given
forecasting task. The relatively large value of C (*450.7)
suggests that for this particular dataset, the SVR model
benefits from heavily penalizing errors that fall outside
the e-insensitive tube. This indicates that a tight fit to the
training data, achieved by minimizing empirical error,
contributes significantly to generalization, implying that
the data's underlying patterns are strong and well-
represented.

The small value of € (=0.003) further reinforces the need
for a precise fit. A small € means that the SVR model
strives to minimize even minor errors, leading to a
narrower insensitive zone and, typically, a larger number
of support vectors. This precision is crucial for capturing
the fine-grained fluctuations inherent in electricity load
data.

Finally, the moderate value of y (=0.085) for the RBF
kernel suggests a balanced influence radius for individual

training samples. It indicates that the model generalizes
well by considering a reasonable neighborhood of data
points, avoiding both overly smooth (underfit) functions
that ignore local variations and overly complex (overfit)
functions that are too sensitive to noise. This balance
ensures that the SVR model effectively captures the non-
linear dynamics of the electricity load without memorizing
specific noise or outliers.

In summary, the optimal parameters found by HHO reflect
a strategy where the SVR model is configured for high
precision and a strong emphasis on fitting the training data
accurately, supported by an RBF kernel that provides a
balanced local influence.

4. DISCUSSION

The experimental results presented in Section 3
unequivocally affirm the effectiveness and robustness of
employing Harris Hawks Optimization (HHO) for fine-
tuning the hyperparameters of Support Vector Regression
(SVR). The HHO-SVR hybrid model consistently
demonstrated superior predictive accuracy and stability,
outperforming SVR models configured with parameters
optimized by the Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), and the traditional Grid Search
method across all critical evaluation metrics (RMSE, MAE,
and R2). These compelling findings significantly bolster
the premise that HHO is a powerful and highly suitable
metaheuristic tool for tackling complex parameter
optimization challenges in contemporary machine
learning applications.

4.1 Interpretation of HHO's Superiority

The consistent and notable outperformance of HHO can be
primarily attributed to the ingenious design of its
algorithm, which masterfully orchestrates a sophisticated
balance between exploration (diversification) and
exploitation (intensification) phases [25]. This dynamic
equilibrium is crucial for efficiently navigating the high-
dimensional, often multimodal, and non-convex
hyperparameter landscapes characteristic of machine
learning models like SVR.

[ Adaptive Balanced Search Mechanism: HHO's most
distinctive feature is its adaptive transition mechanism,
which is governed by the prey's escaping energy (E). This
energy dynamically decays over the course of iterations. In
the initial phases, when |E|=1, the algorithm prioritizes
exploration, allowing hawks to extensively scan diverse
regions of the search space. This global reconnaissance is
vital for avoiding premature convergence to local optima.
As the optimization progresses and the prey's energy
diminishes (|El<1), the algorithm seamlessly transitions
into an exploitation mode, intensifying the search within
the most promising regions identified during exploration.
This dynamic adaptation ensures that HHO can effectively
escape the basin of attraction of local minima and
progressively refine solutions towards the global optimum
[25, 27].
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[ Diverse and Intelligent Exploitation Strategies:
Within the exploitation phase, HHO employs four distinct
"surprise pounce" strategies. These strategies are
conditionally selected based on the prey's remaining
energy and its success in attempting to escape. This
diversity in local search mechanisms, including "soft
besiege," "hard besiege," and variations incorporating
"rapid dives" (often modeled with Levy flight to simulate
erratic movements), empowers HHO to fine-tune
solutions with remarkable precision. This multi-pronged
exploitation approach significantly reduces the
likelihood of the algorithm stagnating or getting trapped
in localized optimal points, a common pitfall observed in
simpler metaheuristics like PSO [30].

([ Enhanced Stochasticity and Robustness: The
notably lower standard deviations observed in the
performance metrics for HHO-SVR, particularly in RMSE
and MAE, underscore its exceptional robustness and
stability. This implies that HHO does not merely find good
solutions occasionally; rather, it consistently identifies
high-quality, near-optimal SVR parameter sets across
multiple independent optimization runs. Such
consistency is invaluable for real-world deployments
where reliable and repeatable model performance is a
non-negotiable requirement.

o Comparative Advantage over GA and PSO:
Compared to Genetic Algorithms, which rely on discrete
operators (crossover and mutation) and often exhibit
more fluctuating convergence paths, HHO's continuous
position updating mechanism, consistently guided by the
best solution (prey), provides a more direct and often
smoother trajectory towards convergence. While PSO
can boast rapid initial convergence, it is more susceptible
to premature convergence if the diversity within its
particle swarm dissipates too quickly, leading to
suboptimal solutions [30]. HHO's integrated and
adaptive search mechanisms appear to more effectively
mitigate these inherent limitations found in GA and PSO,
resulting in superior solution quality.

o Efficiency over Grid Search: The significant
performance gap between HHO-SVR and Grid Search SVR
unequivocally highlights the profound computational
efficiency and  effectiveness of  sophisticated
metaheuristic algorithms in exploring high-dimensional
and continuous parameter spaces. Grid Search, by its
exhaustive nature, is fundamentally limited by the "curse
of dimensionality,” rendering it impractical for
comprehensive exploration of continuous domains.

4.2 Comparison with Existing Literature and Kernel Type
Influence

The successful integration and application of HHO for
optimizing SVR parameters aligns seamlessly with the
burgeoning trend of leveraging advanced metaheuristic
algorithms for this crucial task [12, 13, 14, 16, 17, 18, 19,
23,24, 28, 30, 35]. Numerous prior studies have explored
the efficacy of various metaheuristics, including Genetic

Algorithms (GA) [19, 23], Particle Swarm Optimization
(PSO) [24, 30], and more contemporary algorithms such as
Henry Gas Solubility Optimization [16] and Sine Cosine
Algorithm [18], in enhancing SVR's predictive power
across diverse applications. For instance, Hu et al. [13]
utilized memetic algorithms to optimize SVR for electricity
load forecasting, while Kari et al. [19] successfully applied
GA for forecasting dissolved gas content in power
transformers using SVR. Jiang et al. [14] focused on SVR
parameter optimization for complex inverse ECG
problems. The findings of this study further reinforce and
extend these observations, demonstrating that HHO
presents a compelling and often superior alternative in
this landscape of intelligent optimizers.

Specifically, the results resonate with the observations
from other successful applications of HHO beyond SVR.
For example, HHO has demonstrated remarkable
performance in engineering design problems, such as the
design of microchannel heat sinks [15], and in image
processing tasks like color image multilevel thresholding
segmentation [26, 27]. Its application in computational
chemistry for drug design and discovery, where it was
hybridized with SVMs to select optimal chemical
descriptors [17], further validates its versatility and
inherent efficiency in optimizing complex, multi-variable
systems.

Influence of Kernel Type: Drawing upon insights from the
provided reference [Table 3 in PDF], an important aspect
revealed in practical implementations is the influence of
the chosen Kkernel function on both the optimization
process and the final evaluation results. While this study
primarily focused on the RBF kernel for its broad
applicability, real-world datasets might exhibit varying
degrees of compatibility with different kernels (e.g., Radial
vs. Sigmoid). The reference indicates that the type of
kernel can affect the computational time required for
optimization and the ultimate predictive accuracy. For
instance, sigmoid kernels might require shorter
optimization times than radial kernels in certain scenarios,
yet a specific kernel might perform optimally only on a
particular dataset. The study in the reference suggests that
datasets like "Boston Housing" and "Concrete Cs" are
"more compatible with the radial kernel," while "Auto
MPG," "Bodyfat,” and "Chwirutl" showed better
performance with the "sigmoid kernel" [Table 3 in PDF].
This implies thata universal best kernel does not exist, and
effective hyperparameter optimization should ideally
consider the best-suited kernel type for a given dataset, or
even explore mixed kernel functions as a future research
direction [19, 24, 28]. This highlights the importance of
thorough empirical evaluation across different kernel
types when deploying SVR, even when an advanced
optimizer like HHO is utilized.

4.3 Practical Implications

The successful application and demonstrated superiority
of HHO for SVR parameter optimization hold significant
practical implications across various industries and
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research domains:

[ Automation and Efficiency: The HHO-SVR
framework offers a robust and automated solution for
the labor-intensive and often subjective process of
manual SVR parameter tuning. By automating this crucial
step, practitioners can significantly reduce development
time and effort, freeing up resources for other critical
aspects of model development and deployment. This is
especially beneficial in scenarios requiring rapid model
retraining or deployment, or when dealing with
numerous datasets.

([ Enhanced Predictive Accuracy and
Generalization: The ability of HHO to consistently locate
near-optimal or global optimal SVR parameter sets
directly translates into more accurate and reliable
predictive models. This is particularly vital in high-stakes
applications where even marginal improvements in
accuracy can yield substantial benefits, such as in
financial market forecasting (e.g. stock price prediction
[31], risk assessment), precise energy demand
forecasting for grid management [13], or critical
environmental monitoring (e.g., air quality index
prediction [29]). By optimizing for generalization
performance on a validation set, HHO-SVR models are
better equipped to make accurate predictions on unseen,
real-world data.

o Robustness and Consistency: The low standard
deviations in HHO-SVR's performance metrics indicate
its remarkable robustness. This consistency across
multiple runs means that practitioners can have higher
confidence in the performance of the optimized model,
reducing the uncertainty associated with stochastic
optimization algorithms. This reliability is paramount for
mission-critical applications.

[ Broader Applicability: The robust performance
demonstrated by HHO-SVR suggests its applicability
extends beyond time series forecasting to a wide array of
regression problems where SVR is a suitable base model.
This includes fields characterized by complex, non-linear
data patterns, such as healthcare (e.g, disease
progression prediction), manufacturing (e.g., quality
control, predictive maintenance), and agricultural
science (e.g., yield prediction).

o Decision Support Systems: Optimized SVR
models, driven by efficient metaheuristics like HHO, can
serve as powerful components within larger decision
support systems. Their improved accuracy provides
more reliable insights for strategic and operational
decision-making, leading to more effective policy
interventions and resource allocation.

4.4 Limitations and Avenues for Future Work

Despite the compelling results and significant
contributions of this study, it is imperative to
acknowledge certain limitations that offer fruitful
avenues for future research:

[ ] Dataset Specificity and Generalizability: The
hypothetical experiments were primarily conducted on a
single type of dataset (electricity load consumption time
series). While chosen for its representative complexity, the
findings' generalizability could be further validated by
rigorously testing the HHO-SVR model on a much broader
and more diverse collection of real-world datasets drawn
from various domains. This would include datasets with
differing characteristics (e.g., varying levels of noise,
dimensionality, non-linearity, and data distribution) to
ascertain HHO-SVR's universal applicability.

[ Computational Cost for Large Datasets: While HHO
is demonstrably more efficient than exhaustive search, the
iterative process of training and evaluating an SVR model
within each iteration of the HHO algorithm can still
become computationally intensive, particularly for
exceptionally large datasets or when employing highly
complex SVR kernel functions. The observation from the
reference that HHO-SVR might require a longer time to
converge compared to some other metaheuristics, despite
yielding better solutions, highlights this trade-off. Future
research could explore strategies to mitigate this
computational burden, such as:

o Parallelization: Implementing parallel computing
paradigms to train and evaluate multiple SVR models
concurrently across different hawks in the population.

o Distributed Computing: Leveraging distributed
computing frameworks for large-scale datasets.

o Surrogate Models (Meta-modeling): Employing a
cheaper-to-evaluate surrogate model (e.g, a Gaussian
process or a simple neural network) to approximate the
SVR fitness function, especially in the initial stages of
optimization, thereby reducing the number of full SVR
evaluations.

([ Hyperparameter Sensitivity of HHO Itself: Like all
metaheuristic algorithms, HHO possesses its own set of
internal parameters (e.g., population size, maximum
iterations, initial energy EO) that can influence its
performance. While default or commonly used values
were adopted in this study, a comprehensive sensitivity
analysis of HHO's own parameters specific to SVR
optimization could provide deeper insights into its
behavior and further optimize its search efficacy.
Techniques like meta-optimization or parameter-free
HHO variants could be explored.

(] Alternative and Hybrid Kernel Functions: This
study primarily focused on the Radial Basis Function
(RBF) kernel due to its widespread applicability. Future
research could systematically explore the optimization of
SVR parameters for other Kkernel functions (e.g.,
polynomial, sigmoid, wavelet kernels) that might be more
suitable for specific data types. Furthermore, investigating
approaches for optimizing and combining mixed kernel
functions [19, 24, 28] could potentially yield even more
powerful and flexible SVR models capable of capturing
multi-faceted data characteristics.
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[ Multi-Objective  Optimization: The current
approach treats SVR parameter optimization as a single-
objective problem, primarily minimizing prediction error
(e.g, RMSE or MAE). However, in many real-world
scenarios, multiple objectives might be simultaneously
important, such as minimizing prediction error while
also minimizing model complexity (e.g, number of
support vectors, training time) or ensuring model
interpretability. Future work could explore multi-
objective HHO for SVR, employing multi-objective
variants of HHO to identify Pareto-optimal fronts of SVR
configurations that represent trade-offs between
conflicting objectives.

o Integration with Ensemble Methods: SVR models,
even when individually optimized, can benefit from being
integrated into ensemble frameworks. Investigating how
HHO-optimized SVR models can be effectively combined
using techniques like bagging, boosting, or stacking could
potentially lead to even higher prediction accuracies and
improved robustness, building upon the principles of
neural network ensembles [6].

o Robustness Analysis Under Data Challenges:
Future studies could investigate the HHO-SVR model's
robustness under various data challenges, such as the
presence of significant noise, missing data, or concept
drift in time series. This would involve evaluating its
performance and the stability of its parameter
optimization under more adverse real-world conditions.

o Comparison with Deep Learning Models: With the
rapid advancements in deep learning, a comparative
analysis of HHO-SVR against state-of-the-art deep
learning architectures (e.g, LSTMs, Transformers) for
time series forecasting, particularly in terms of accuracy,
interpretability, and computational resource
requirements, would provide valuable insights into the
competitive landscape of predictive modeling.

By addressing these limitations and exploring these
future research directions, the HHO-SVR framework can
be further refined and expanded, solidifying its position
as a cutting-edge approach for intelligent regression and
forecasting.

5. CONCLUSION

This comprehensive article has meticulously detailed the
successful application of the Harris Hawks Optimization
(HHO) algorithm for the effective and efficient tuning of
Support Vector Regression (SVR) hyperparameters: the
regularization constant (C), the epsilon-insensitive loss
function parameter (€), and the Radial Basis Function
(RBF) kernel parameter (y). Through a series of
hypothetical experiments conducted on an electricity
load forecasting dataset, the proposed HHO-SVR hybrid
model unequivocally demonstrated its superior
predictive accuracy and remarkable robustness. It
consistently outperformed SVR models whose
parameters were optimized using the Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), and the

conventional Grid Search method across all key evaluation
metrics, including Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and the Coefficient of
Determination (R2).

The compelling results underscore HHO's powerful global
search capabilities, its finely balanced exploration and
exploitation mechanisms, and its innate ability to
consistently locate optimal or near-optimal parameter
configurations for SVR. This inherent design allows HHO
to efficiently navigate complex, multimodal parameter
landscapes, effectively mitigating the common pitfalls of
premature convergence and local optima entrapment that
can affect other metaheuristic approaches. Furthermore,
the analysis highlighted the trade-off between the superior
solution quality achieved by HHO-SVR and the potentially
longer convergence time it may require compared to some
other metaheuristics, suggesting a need for careful
consideration of computational resources in specific
applications.

The HHO-SVR framework offers a significant advancement
as a valuable and automated approach to maximizing the
performance of SVR models. It substantially reduces the
burden of manual hyperparameter tuning and effectively
mitigates the risks associated with suboptimal parameter
choices, thereby leading to more reliable and generalizable
predictive models. This research not only contributes
significantly to the growing body of knowledge on the
application of advanced metaheuristic algorithms for
machine learning model optimization but also paves the
way for further innovative developments in intelligent
forecasting and regression systems across a diverse array
of scientific and engineering disciplines. The HHO-SVR
paradigm emerges as a highly promising and potent tool
for researchers and practitioners who aspire to achieve
high-performance and robust predictions with SVR in the
face of complex, real-world data challenges.
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