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ABSTRACT 

 
Support Vector Regression (SVR) is a powerful machine learning technique widely applied in time series forecasting and 
various prediction tasks. However, its performance significantly hinges on the appropriate selection of crucial 
parameters: the regularization constant (C), the epsilon-insensitive loss function parameter (ϵ), and kernel-specific 
parameters such as gamma (γ) for Radial Basis Function (RBF) kernels. Traditional methods for parameter optimization, 
such as grid search, are computationally expensive and prone to local optima, while heuristic approaches like Genetic 
Algorithms (GAs) and Particle Swarm Optimization (PSO) can still face challenges in convergence speed and solution 
quality. This article introduces a novel approach for optimizing SVR parameters by leveraging the recently developed 
Harris Hawks Optimization (HHO) algorithm. HHO is a metaheuristic inspired by the cooperative behavior and hunting 
strategies of Harris' hawks in nature. The proposed HHO-SVR hybrid model aims to efficiently search for the optimal 
combination of SVR parameters, thereby enhancing its predictive accuracy and generalization capability. This paper 
details the theoretical foundations of SVR and HHO, the methodology for their integration, and hypothetical experimental 
results demonstrating the effectiveness of the HHO-SVR model compared to other established optimization techniques in 
improving forecasting performance metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). 
The findings suggest that HHO provides a robust and efficient mechanism for fine-tuning SVR, making it a promising tool 
for complex regression problems. 

Keywords: Support Vector Regression, Harris Hawks Optimization, Parameter Optimization, Machine Learning, Time Series 
Forecasting, Metaheuristic Algorithms. 

 

INTRODUCTION 

The Imperative of Accurate Forecasting and Regression 

In the rapidly evolving landscape of modern data science, 

the ability to accurately forecast future events and model 

complex relationships within data has become an 

indispensable asset across a multitude of disciplines [5, 

7, 8, 9]. From informing critical business decisions in 

financial markets [31] and optimizing energy resource 

allocation [13], to predicting environmental phenomena 

such as air quality [29] and managing engineering 

systems [9], reliable predictive models serve as the 

backbone for strategic planning and operational 

efficiency [32]. Forecasting, at its core, is the art and 

science of estimating future outcomes based on the 

careful analysis of past observations and inherent 

patterns [5, 32]. The quality of these forecasts directly 

impacts the effectiveness and sustainability of policies 

adopted by decision-makers, guiding them towards 

solutions that mitigate risks and capitalize on 

opportunities [1, 2, 3]. In a world characterized by highly 

dynamic and often non-linear changes, the demand for 

sophisticated forecasting tools that can capture intricate 

data behaviors has never been greater. 

1.2 Evolution of Predictive Modeling: From Statistical to 

Machine Learning Approaches 

Historically, forecasting relied heavily on classical 

statistical methods such as Autoregressive Integrated 

Moving Average (ARIMA) models, Exponential Smoothing, 

and Regression Analysis. While these models have proven 

effective for linear and stationary time series, they often 

struggle to capture the complex, non-linear, and non-

stationary dynamics prevalent in many real-world 

datasets. The advent of computational intelligence and 

machine learning (ML) has ushered in a new era of 

predictive modeling, offering more powerful paradigms to 

handle such complexities. 

Artificial Neural Networks (ANNs), inspired by the human 

brain's structure, emerged as a prominent ML technique 

capable of modeling highly non-linear relationships [6, 8, 

9]. Their ability to learn intricate patterns from vast 

amounts of data revolutionized fields like image 

recognition, natural language processing, and also time 
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series forecasting. However, ANNs are not without their 

drawbacks. They often require large datasets for 

effective training, are susceptible to overfitting, can 

converge to local minima during the training process, and 

their "black-box" nature can make interpretation 

challenging. These limitations necessitate extensive trial-

and-error in architecture design and hyperparameter 

tuning, adding to the complexity of their deployment. 

1.3 Support Vector Regression: A Robust Alternative 

As a robust alternative, Support Vector Machines (SVMs), 

originally developed by Vladimir Vapnik, introduced a 

powerful framework rooted in statistical learning theory 

for classification problems [10]. The core principle of 

SVMs—structural risk minimization—aims to minimize 

an upper bound on the generalization error, rather than 

just the empirical error on the training data. This 

fundamental difference often grants SVMs superior 

generalization capabilities compared to traditional 

neural networks. The extension of SVM principles to 

regression tasks led to the development of Support 

Vector Regression (SVR) [20, 21]. 

SVR operates by mapping input data into a higher-

dimensional feature space, where it performs linear 

regression. A distinctive characteristic of SVR is its 

adoption of the ϵ-insensitive loss function [20, 21]. This 

unique loss function disregards errors that fall within a 

predefined margin, ϵ, around the predicted value. This 

feature makes SVR particularly resilient to outliers and 

noise in the data, as deviations within this margin are not 

penalized. The objective of SVR is to identify a regression 

function that maintains a maximum deviation of ϵ from 

the actual target values for all training data points, while 

simultaneously ensuring the function is as "flat" as 

possible. The "flatness" of the function is intrinsically 

linked to its complexity and generalization ability; a 

flatter function typically implies better generalization 

and reduced risk of overfitting [21]. SVR has 

demonstrated significant success across various 

applications, including financial forecasting [31], 

electricity demand prediction [13], and air quality 

assessment [29], often outperforming other methods in 

non-linear forecasting scenarios [11]. 

1.4 The Critical Role of Hyperparameter Optimization in 

SVR 

Despite SVR's inherent strengths and strong theoretical 

foundations, its performance is profoundly influenced by 

the precise tuning of its hyperparameters [12, 13, 14, 16, 

18, 19, 28]. The three primary parameters that 

necessitate meticulous optimization for an SVR model, 

particularly when employing a non-linear kernel like the 

Radial Basis Function (RBF) kernel, are: 

1. Regularization Parameter (C): This parameter, a 

positive constant, acts as a penalty term for errors. It 

dictates the trade-off between the flatness of the 

regression function (model simplicity) and the extent to 

which deviations larger than ϵ are tolerated. A large value 

of C imposes a high penalty on errors, driving the model to 

fit the training data more closely, which can lead to 

overfitting if the data is noisy or the model is excessively 

complex. Conversely, a small C value reduces the penalty, 

allowing for a smoother function and potentially leading to 

underfitting if the model is too simplistic for the data [21]. 

2. ϵ-insensitive Loss Function Parameter (ϵ): This 

parameter defines the width of the ϵ-insensitive tube 

around the regression line. Any data point falling within 

this tube is considered correctly predicted, and its error is 

not penalized. A smaller ϵ demands a more precise fit, 

resulting in a model that passes closer to more data points 

and typically involves a greater number of support 

vectors, increasing model complexity. A larger ϵ provides 

more flexibility, tolerating larger errors and potentially 

leading to a simpler model with fewer support vectors [20, 

21]. 

3. Kernel Parameters (γ for RBF Kernel): When SVR 

employs non-linear kernels to capture complex data 

structures, additional parameters specific to the chosen 

kernel require optimization. For the widely used Radial 

Basis Function (RBF) kernel, the gamma (γ) parameter is 

crucial. It defines the influence of a single training 

example; a small γ indicates a large influence radius, 

meaning that data points far away still significantly impact 

the model's decision boundary. This can lead to 

underfitting. Conversely, a large γ implies a small influence 

radius, causing only very close data points to affect the 

model, potentially leading to overfitting as the model 

becomes highly sensitive to individual training examples 

[21]. 

The complexity arises from the fact that finding the 

optimal combination of these parameters is a formidable 

challenge. The parameter space is often continuous and 

non-convex, meaning that simple gradient-based 

optimization methods are unsuitable. Traditional 

exhaustive search methods, such as Grid Search, involve 

evaluating the SVR model for every possible combination 

within a predefined, discretized grid of parameter values. 

While conceptually straightforward and guaranteed to 

find the best combination within the given grid, Grid 

Search becomes computationally prohibitive as the 

number of parameters or the granularity of the search 

increases, a phenomenon often referred to as the "curse of 

dimensionality" [12]. Moreover, it may miss the true global 

optimum if the grid is not sufficiently fine-grained. 

1.5 Metaheuristic Algorithms as Optimizers 

To overcome the limitations of exhaustive search, 

researchers have increasingly turned to metaheuristic 

optimization algorithms. These algorithms are high-level 

problem-solving strategies that guide a search process to 

explore a large solution space more efficiently than 

traditional methods, often inspired by natural phenomena. 

They do not guarantee finding the global optimum but aim 

to find sufficiently good solutions in a reasonable amount 

of time. Key characteristics of metaheuristics include their 
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ability to balance exploration (diversification of the 

search space to avoid local optima) and exploitation 

(intensification of the search around promising 

solutions) [33]. 

Among the widely adopted metaheuristics, Genetic 

Algorithms (GAs) and Particle Swarm Optimization (PSO) 

have shown considerable promise in optimizing SVR 

parameters. GAs, inspired by natural selection and 

genetics, evolve a population of candidate solutions 

through operations like selection, crossover, and 

mutation [19, 23]. PSO, on the other hand, mimics the 

social behavior of bird flocking or fish schooling, where 

particles (candidate solutions) move through the search 

space guided by their own best-known position and the 

best-known position of the entire swarm [24, 30]. While 

these algorithms offer significant improvements over 

Grid Search, they can sometimes suffer from issues such 

as premature convergence (getting trapped in sub-

optimal solutions) or slow convergence rates for certain 

complex landscapes [33]. 

1.6 Harris Hawks Optimization: A Novel Approach 

In recent years, a new generation of metaheuristic 

algorithms has emerged, seeking to provide more 

efficient and robust solutions to complex optimization 

problems. One such notable algorithm is the Harris 

Hawks Optimization (HHO), introduced by Heidari et al. 

in 2019 [25]. HHO is a swarm intelligence algorithm 

inspired by the unique cooperative hunting behavior of 

Harris' hawks (Parabuteo unicinctus) in their natural 

habitat. These hawks employ dynamic siege-and-pursuit 

strategies, characterized by sudden pounces to capture 

prey. The algorithm models the intricate balance 

between exploration (searching for prey) and 

exploitation (attacking the prey) phases, which are 

crucial for effective global search [25, 26, 27]. HHO has 

rapidly gained recognition for its competitive 

performance across various optimization tasks, 

demonstrating superiority over several established 

metaheuristic algorithms in benchmarks and real-world 

applications, including the design of microchannel heat 

sinks [15] and image segmentation [26, 27]. Its ability to 

adaptively transition between global exploration and 

local exploitation makes it particularly appealing for 

multi-modal and high-dimensional optimization 

problems. 

1.7 Research Gap and Contributions 

While the potential of metaheuristic algorithms in 

optimizing SVR parameters is well-recognized, a 

comprehensive analysis of the relatively new Harris 

Hawks Optimization algorithm's effectiveness in this 

specific context, especially concerning different kernel 

functions and computational efficiency, remains an area 

requiring further investigation. Previous research, such 

as that by Cao et al. [16], might have explored HHO-SVR 

but without an in-depth analysis of the influence of 

various kernel types or a detailed comparative study of 

computational costs alongside predictive accuracy. 

Given HHO's demonstrated strengths in balancing 

exploration and exploitation, this study proposes and 

meticulously evaluates the integration of Harris Hawks 

Optimization with Support Vector Regression (HHO-SVR) 

for the precise and efficient optimization of SVR's 

hyperparameters (C, ϵ, and γ for the RBF kernel). The 

primary objectives of this research are: 

1. To leverage HHO's robust global search capabilities 

to identify the optimal SVR parameter combinations, 

thereby significantly enhancing SVR's predictive accuracy 

and generalization performance in regression tasks. 

2. To provide a detailed theoretical and 

methodological framework for the HHO-SVR hybrid 

model. 

3. To conduct a hypothetical comparative analysis 

against established SVR parameter optimization 

techniques, including Grid Search, Genetic Algorithm (GA), 

and Particle Swarm Optimization (PSO), using a relevant 

dataset. 

4. To evaluate the performance based on widely 

accepted regression metrics and to analyze the 

convergence characteristics and computational 

implications. 

This paper is structured as follows: Section 2 provides a 

detailed overview of the materials and methods, including 

the theoretical foundations of SVR and HHO, and the 

methodology for their integration. Section 3 presents the 

hypothetical experimental setup, the comparative results, 

and a convergence analysis. Section 4 discusses the 

implications of the findings, their alignment with existing 

literature, practical applications, and limitations. Finally, 

Section 5 concludes the paper, summarizing the key 

contributions and outlining avenues for future research. 

2. Materials and Methods 

This section provides an exhaustive description of the 

foundational components that constitute the proposed 

HHO-SVR hybrid model. We first delve into the theoretical 

underpinnings of Support Vector Regression, explaining 

its mathematical formulation and the critical role of its 

hyperparameters. Subsequently, we detail the intricate 

mechanics of the Harris Hawks Optimization algorithm, 

outlining its inspiration and operational phases. Finally, 

we elaborate on the methodology employed for the 

seamless integration of these two powerful techniques for 

optimal parameter tuning. 

2.1 Support Vector Regression (SVR) – In-depth Analysis 

Support Vector Regression (SVR) represents a 

cornerstone in the domain of machine learning for 

addressing regression and time series forecasting 

problems. It fundamentally extends the principles of 

Support Vector Machines (SVMs), which were originally 

conceived by Vapnik for robust classification tasks [10, 

20]. Unlike conventional regression models that typically 
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aim to minimize the sum of squared errors between 

predicted and actual values, SVR adopts a distinct 

approach. Its core philosophy revolves around finding a 

function that deviates from the actual targets by a margin 

no greater than a specified ϵ (epsilon), while 

simultaneously striving for the simplest possible model 

structure. This philosophical underpinning, termed the ϵ-

insensitive loss function, imbues SVR with its 

characteristic resilience to outliers and its formidable 

generalization capabilities [21]. 

2.1.1 Mathematical Formulation of SVR 

Given a training dataset D={(x1,y1),…,(xn,yn)}, where 

xi∈Rd represents the input feature vectors of d 

dimensions and yi∈R denotes the corresponding real-

valued target outputs, SVR endeavors to construct a 

regression function f(x) that adheres to a maximum 

deviation of ϵ from the observed target values yi for all 

training samples. Concurrently, it seeks to minimize the 

complexity of this function, typically quantified by its 

"flatness." 

For a linear SVR model, the regression function is defined 

as: 

 

f(x)=⟨w,x⟩+b(2.1) 

 

where w∈Rd is the weight vector, determining the slope 

of the regression line (or hyperplane in higher 

dimensions), and b∈R is the bias term, representing the 

intercept. The "flatness" of this function is inversely 

proportional to the magnitude of the weight vector, 

specifically its Euclidean norm squared, ∥w∥2=⟨w,w⟩. The 

SVR problem, in its primal form, can therefore be 

articulated as a convex optimization problem: 

w,b,ξi,ξi∗minsubject 

to21∥w∥2+Ci=1∑n(ξi+ξi∗)yi−(⟨w,xi⟩+b)≤ϵ+ξi(⟨w,xi⟩+b)−

yi≤ϵ+ξi∗ξi,ξi∗≥0,i=1,…,n(2.2) 

In this formulation: 

● C>0 is the regularization constant (or penalty 

coefficient). It acts as a crucial hyperparameter that 

governs the trade-off between minimizing the model's 

complexity (i.e., maximizing its flatness) and minimizing 

the training error. A higher C value signifies a greater 

penalty for errors exceeding the ϵ-insensitive zone, 

compelling the model to fit the training data more tightly, 

which can lead to overfitting. Conversely, a smaller C 

reduces this penalty, promoting a flatter model that 

might generalize better but potentially underfit the 

training data [21]. 

● ξi and ξi∗ are slack variables. These non-negative 

variables are introduced to accommodate data points 

that fall outside the ϵ-insensitive tube. ξi measures the 

deviation above the ϵ-tube, and ξi∗ measures the 

deviation below it. They allow for some errors to be 

tolerated, making the model robust even when no function 

perfectly fits all data within the ϵ margin [21]. 

2.1.2 The Dual Problem and Kernel Trick 

To address non-linear regression problems effectively, 

SVR leverages the "kernel trick." Instead of explicitly 

mapping input data into a higher-dimensional feature 

space Φ(xi) where linear regression could then be 

performed, the kernel trick employs a kernel function 

K(xi,xj) that implicitly computes the dot product in this 

high-dimensional space: K(xi,xj)=⟨Φ(xi),Φ(xj)⟩. This 

transformation allows SVR to model complex non-linear 

relationships without explicitly calculating the mapping 

Φ(x), which can be computationally prohibitive or even 

infinite-dimensional. 

The SVR problem is typically solved in its dual form by 

introducing Lagrangian multipliers. The dual optimization 

problem involves only dot products of feature vectors, 

which are then replaced by the kernel function. The 

resulting regression function in the dual form is expressed 

as: 

 

f(x)=i=1∑n(αi−αi∗)K(xi,x)+b(2.3) 

 

where αi and αi∗ are the Lagrangian multipliers, 

constrained between 0 and C. The training data points xi 

for which αi−αi∗ =0 are termed support vectors. These 

are the crucial data points that define the regression 

function and lie either on or outside the ϵ-insensitive tube 

[20, 21]. 

2.1.3 Common Kernel Functions and Their Parameters 

The choice of kernel function is paramount in SVR, as it 

dictates the type of non-linear relationships the model can 

capture. Some commonly used kernel functions include: 

● Linear Kernel: 

K(xi,xj)=⟨xi,xj⟩(2.4) 

 

This kernel is suitable for linearly separable data or when 

a simple linear relationship is expected. It has no 

additional parameters. 

● Polynomial Kernel: 

K(xi,xj)=(γ⟨xi,xj⟩+r)d(2.5) 

 

This kernel allows for non-linear decision boundaries. Its 

parameters are: 

○ γ (gamma): A scaling factor for the dot product. 

○ r (coef0): An independent term. 

○ d (degree): The degree of the polynomial. 

The presence of multiple parameters makes its tuning 
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more complex. 

● Radial Basis Function (RBF) Kernel (Gaussian 

Kernel): 

K(xi,xj)=exp(−γ∥xi−xj∥2)(2.6) 

 

The RBF kernel is arguably the most widely used and 

effective kernel for SVR, especially when no prior 

knowledge about the data distribution is available. It can 

map samples into an infinite-dimensional space, enabling 

it to handle complex non-linear relationships with a 

single, crucial parameter: 

○ γ (gamma): This parameter defines the influence 

of a single training example. A small γ value indicates a 

large influence radius, meaning that a single data point's 

"reach" extends far, leading to a smoother, potentially 

underfit model. Conversely, a large γ value signifies a 

small influence radius, causing the model to be highly 

sensitive to individual training examples, which can 

result in an overly complex, overfitting model that 

captures noise rather than true patterns [21]. 

The profound impact of these parameters (C, ϵ, and γ) on 

SVR's predictive performance and its ability to generalize 

to unseen data cannot be overstated [12, 13, 14, 16, 18, 

19, 28, 35]. Suboptimal parameter choices can lead to 

models that either underfit (failing to capture underlying 

patterns) or overfit (memorizing training data and 

performing poorly on new data). This criticality 

necessitates advanced optimization techniques, which is 

the primary focus of this study. 

2.2 Harris Hawks Optimization (HHO) – Comprehensive 

Overview 

The Harris Hawks Optimization (HHO) algorithm is a 

modern, nature-inspired metaheuristic introduced by Ali 

Asghar Heidari and his colleagues in 2019 [25]. It draws 

its inspiration from the complex and cooperative hunting 

behavior observed in Harris' hawks (Parabuteo 

unicinctus), a species renowned for its unique 

collaborative hunting strategies. The algorithm is 

designed to effectively balance the two fundamental 

pillars of any successful metaheuristic: global 

exploration (diversification) and local exploitation 

(intensification), both essential for efficiently navigating 

and solving complex optimization problems. 

In the HHO framework, a population of candidate 

solutions is represented by individual Harris' hawks. The 

best solution discovered so far in the search space is 

conceptualized as the "prey," which all other hawks 

attempt to locate and capture. The positions of the non-

prey hawks are updated iteratively based on the best-

found solution (prey's position) and the prey's dynamic 

escaping energy. 

The HHO algorithm primarily consists of two distinct 

phases: exploration and exploitation, with a crucial 

transition mechanism bridging them. 

2.2.1 Exploration Phase (Prey Search) 

In the exploration phase, Harris' hawks are in search 

mode, scanning for potential prey in their environment. 

This phase emphasizes diversification, encouraging the 

hawks to explore various regions of the search space to 

avoid getting trapped in local optima prematurely. The 

hawks adopt one of two perching strategies with equal 

probability (q, a random number between 0 and 1): 

● Strategy 1 (Diversified Search): Hawks perch 

randomly based on the positions of other family members. 

This encourages a broad search across the landscape. 

● Strategy 2 (Guiding Search): Hawks perch in 

random locations influenced by the prey's current best-

known position, allowing for some initial bias towards 

promising areas. 

The mathematical model for updating hawk positions 

during the exploration phase is described as follows [25]: 

 

X(t+1)={Xrand(t)−r1∣Xrand(t)−2r2X(t)∣(Xprey(t)−Xm(t))

−r3(LB+r4(UB−LB))if q<0.5if q≥0.5(2.7) 

 

where: 

● X(t+1) is the position vector of the hawk in the next 

iteration t+1. 

● X(t) is the current position vector of the hawk. 

● Xprey(t) is the position vector of the prey 

(representing the best solution found so far in iteration t). 

● Xrand(t) is the position vector of a randomly 

selected hawk from the current population. This 

introduces stochasticity and helps in escaping local 

minima. 

● r1,r2,r3,r4 are uniformly distributed random 

numbers in [0,1]. These random values introduce 

variability and facilitate a more thorough exploration of 

the search space [26]. 

● q is a random number in [0,1] used to switch 

between the two exploration strategies. 

● LB and UB represent the lower and upper bounds 

of the search space dimensions, respectively. 

● Xm(t) is the average position of the current hawk 

population, calculated as: 

Xm(t)=N1i=1∑NXi(t)(2.8) 

 

where N is the total number of hawks (population size). 

2.2.2 Transition from Exploration to Exploitation 

A distinctive feature of HHO is its adaptive transition from 

exploration to exploitation. This transition is dynamically 

controlled by the escaping energy of the prey (E). The 
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energy of the prey continuously decreases throughout 

the optimization process, simulating the diminishing 

energy of a real animal during an escape attempt. 

The escaping energy E is calculated using the following 

equation [25]: 

 

E=2E0(1−Tt)(2.9) 

 

where: 

● E0 is the initial energy of the prey, a random value 

that fluctuates in the range [−1,1]. This initial 

randomness accounts for varying prey vitality. 

● t is the current iteration number. 

● T is the maximum number of iterations. 

As the iteration count t progresses towards the maximum 

T, the value of E monotonically decreases. The magnitude 

of E determines the phase: 

● If ∣E∣≥1: The hawks are in the exploration phase, 

as the prey still possesses sufficient energy for strong 

escape attempts. 

● If ∣E∣<1: The hawks enter the exploitation phase, 

signifying that the prey's energy is low, prompting the 

hawks to initiate a surprise pounce [27]. 

2.2.3 Exploitation Phase (Surprise Pounce) 

Once the prey's escaping energy drops below a threshold 

(∣E∣<1), the hawks transition into the exploitation phase, 

focusing on intensifying the search around the best 

solution found. This phase models the Harris' hawks' 

"surprise pounce" strategy, which involves different 

types of besieges and rapid dives depending on the prey's 

remaining energy and its attempt to escape. A random 

number r∈[0,1] simulates the probability of the prey 

successfully escaping; r<0.5 indicates a successful 

escape, while r≥0.5 indicates an unsuccessful attempt. 

Based on the interplay of r and ∣E∣, four distinct pounce 

strategies are formulated: 

● 1. Soft Besiege (r≥0.5 and ∣E∣<0.5): 

In this scenario, the prey still has some energy, and its 

escape attempt is unsuccessful. The hawks perform a 

"soft besiege," subtly surrounding the prey to gradually 

exhaust it before the final attack. The hawk's position 

update is given by [25]: 

X(t+1)=ΔX(t)−E∣JXprey(t)−X(t)∣(2.10) 

 

where ΔX(t)=Xprey(t)−X(t) represents the difference 

vector between the prey's position and the current 

hawk's position. J=2(1−r5), where r5 is a random number 

in [0,1], simulates the random jump strength of the prey 

during its escape. 

● 2. Hard Besiege (r≥0.5 and ∣E∣≥0.5): 

Here, the prey is significantly exhausted, and its escape 

attempt is unsuccessful. The hawks execute a "hard 

besiege," directly and aggressively attacking the prey 

without extensive prior maneuvering. The position update 

is more direct [25]: 

X(t+1)=Xprey(t)−E∣ΔX(t)∣(2.11) 

● 3. Soft Besiege with Progressive Rapid Dives (r<0.5 

and ∣E∣<0.5): 

In this case, the prey still has some energy but manages a 

successful (though perhaps weak) escape. The hawks 

adapt by performing rapid, zigzagging dives to chase and 

disorient the prey before the final pounce. This "zigzag" 

motion is often modeled using the concept of Levy flight 

(LF), which generates a sequence of random steps drawn 

from a Levy distribution, mimicking erratic movements. 

The hawk compares its current strategy with a new zigzag 

motion and chooses the better option [25]: 

Y=Xprey(t)−E∣JXprey(t)−X(t)∣(2.12)Z=Y+S×LF(D)(2.13)X(

t+1)={YZif F(Y)<F(X(t))if F(Z)<F(X(t))(2.14) 

 

where S is a 1×D random vector, and D is the problem 

dimension. F(⋅) denotes the fitness function value. The 

hawk moves to Y if it provides better fitness than its 

current position X(t), otherwise it moves to Z if Z provides 

better fitness. Levy flight provides an effective way to 

explore the local neighborhood more thoroughly while 

also potentially allowing for larger jumps if needed to 

escape local optima. 

● 4. Hard Besiege with Progressive Rapid Dives 

(r<0.5 and ∣E∣≥0.5): 

This strategy is employed when the prey has considerable 

energy and makes a successful escape. The hawks respond 

with a "hard besiege" combined with rapid, aggressive 

dives to cut off the prey's escape routes. Similar to the soft 

besiege with rapid dives, Levy flight is incorporated to 

model the erratic pursuit. The position update follows a 

similar logic to the previous case, but with the specific 

formulation for hard besiege in Y: 

Y=Xprey(t)−E∣JXprey(t)−Xm(t)∣(2.15) 

 

The hawk then updates its position using equation (2.14) 

by comparing the fitness of Y and Z (where Z is again 

generated using equation 2.13). 

The sophisticated transition mechanism and the diversity 

of pounce strategies within the exploitation phase enable 

HHO to effectively explore complex search spaces and then 

converge rapidly and accurately on optimal solutions. This 

adaptive behavior makes HHO a promising candidate for 

tackling challenging optimization problems, particularly 

those involving continuous search spaces for 

hyperparameter tuning, such as in SVR. 
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2.3 HHO-SVR Integration for Parameter Optimization 

The fundamental premise of integrating Harris Hawks 

Optimization with Support Vector Regression is to 

harness the global and local search capabilities of HHO to 

intelligently and efficiently discover the optimal values 

for SVR's critical hyperparameters: the regularization 

constant (C), the ϵ-insensitive loss function parameter 

(ϵ), and the RBF kernel parameter (γ). The predictive 

accuracy and generalization performance of an SVR 

model are profoundly sensitive to these parameters. 

Finding their optimal combination, therefore, translates 

directly into a more robust and accurate predictive 

model. 

The integration process involves several key 

components: a defined search space for each parameter, 

a robust fitness function to guide the optimization, and a 

systematic algorithmic procedure. 

2.3.1 Parameter Encoding and Search Space Definition 

In the HHO-SVR framework, each individual "hawk" 

within the Harris Hawks Optimization population 

represents a unique candidate solution—a specific set of 

SVR parameter values. For an SVR model employing the 

Radial Basis Function (RBF) kernel, each hawk's position 

Xi is encoded as a 3-dimensional vector: 

 

Xi=[Ci,ϵi,γi](2.16) 

 

Establishing appropriate bounds for these parameters is 

crucial, as it defines the search landscape for HHO. These 

ranges are typically determined based on common 

practices in SVR applications, empirical observations, 

and recommendations from prior research. To ensure a 

comprehensive search, especially for parameters that 

often span several orders of magnitude (like C and γ), a 

logarithmic scale is frequently preferred. The 

hypothetical search ranges for this study are defined as: 

● Regularization Parameter (C): [0.1,1000]. A 

logarithmic scale (20 to 210) is particularly effective for 

C, as its impact can vary widely across orders of 

magnitude. 

● ϵ-Insensitive Loss Function Parameter (ϵ): 

[0.001,1]. This range allows for fine-grained control over 

the error tolerance. 

● Gamma (γ) for RBF Kernel: [0.001,100]. Similarly, 

a logarithmic scale (2−8 to 20) can be beneficial for γ to 

cover a wide range of influence radii. 

2.3.2 Fitness Function Design 

The primary objective of the HHO-SVR optimization is to 

minimize the prediction error of the SVR model. 

Therefore, the fitness function (also known as the 

objective function) serves as the guiding metric for HHO, 

evaluating the "goodness" of each candidate parameter 

set. For regression problems, common and effective 

choices for the fitness function include statistical error 

metrics calculated on a dedicated validation dataset. This 

ensures that the optimization process is guided by the 

model's generalization performance rather than its ability 

to merely memorize the training data. 

The selected fitness functions for this study are: 

● Root Mean Squared Error (RMSE): RMSE quantifies 

the square root of the average of the squared differences 

between predicted values and actual values. It penalizes 

large errors more heavily, making it sensitive to outliers. 

RMSE=N1i=1∑N(yi−y^i)2(2.17) 

● Mean Absolute Error (MAE): MAE measures the 

average magnitude of the errors, without considering their 

direction. It is less sensitive to outliers compared to RMSE. 

MAE=N1i=1∑N∣yi−y^i∣(2.18) 

● Mean Absolute Percentage Error (MAPE): MAPE 

expresses the error as a percentage of the actual value, 

providing a relative measure of accuracy. It is particularly 

useful for forecasting where relative error is more 

intuitive. 

MAPE=N1i=1∑NXiXi−Fi×100%(2.19) 

 

where N is the total number of samples in the validation 

set, yi (or Xi) is the actual value, and y^i (or Fi) is the 

predicted value. The goal of HHO is to find the parameter 

set [C,ϵ,γ] that minimizes the chosen fitness function (e.g., 

RMSE or MAPE). The original paper from which 

inspiration is drawn utilized MAPE as the objective 

function, acknowledging its interpretability in forecasting 

[32]. 

2.3.3 HHO-SVR Optimization Algorithm Steps and 

Workflow 

The overall systematic procedure for optimizing SVR 

parameters using the Harris Hawks Optimization 

algorithm can be summarized in the following iterative 

steps: 

1. Initialization: 

○ Population Generation: An initial population of 

Harris' hawks (candidate SVR parameter sets) is randomly 

generated within the predefined search bounds for C, ϵ, 

and γ. Each hawk Xi is a vector [Ci,ϵi,γi]. 

○ Algorithm Parameters: Define the maximum 

number of iterations (T), which serves as the stopping 

criterion. Initialize other HHO-specific parameters, such as 

the initial energy E0 for each hawk (randomly initialized 

in [−1,1]). 

○ Dataset Split: The entire dataset is partitioned into 

three distinct subsets: 

■ Training Set: Used to train the SVR model with a 
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given set of parameters. 

■ Validation Set: Used to evaluate the fitness (e.g., 

RMSE, MAE, or MAPE) of each SVR model during the HHO 

optimization process. This set guides the search and 

prevents overfitting to the training data. 

■ Test Set: An independent, unseen dataset used 

only once at the very end to provide an unbiased 

evaluation of the final optimized SVR model's 

generalization performance. 

2. Fitness Evaluation: 

○ For each hawk (representing a unique SVR 

parameter set (C,ϵ,γ)) in the current HHO population: 

■ An SVR model is trained using these specific 

parameters on the designated training dataset. 

■ The performance of this trained SVR model is then 

evaluated on the validation dataset using the chosen 

fitness function (e.g., RMSE or MAPE). 

■ The calculated fitness value is assigned to the 

current hawk. A lower fitness value (e.g., lower RMSE or 

MAPE) indicates a better SVR parameter combination. 

3. Identify Prey (Best Solution): 

○ After evaluating all hawks in the current 

population, the hawk that exhibits the best fitness value 

(i.e., the minimum RMSE or MAPE) is identified. Its 

position (parameter set) is designated as Xprey(t), 

representing the best SVR configuration found so far in 

iteration t. 

4. Update Escaping Energy: 

○ For the current iteration t, the escaping energy E 

of the prey is calculated using the formula E=2E0(1−Tt). 

This value dynamically controls the transition between 

exploration and exploitation. 

5. Hawk Position Update: 

○ For every hawk in the population (excluding the 

identified prey), its position is updated based on the HHO 

algorithm's rules: 

■ Generate several random numbers 

(r1,r2,r3,r4,r5,q) to introduce stochasticity and control 

strategy selection. 

■ Exploration Phase (∣E∣≥1): If the magnitude of the 

escaping energy is 1 or greater, the hawk is in the 

exploration phase. Its position is updated using the 

appropriate exploration equation (2.7), determined by 

the random value q. This phase promotes global search. 

■ Exploitation Phase (∣E∣<1): If the magnitude of the 

escaping energy is less than 1, the hawk transitions to the 

exploitation phase. One of the four pounce strategies 

(soft besiege, hard besiege, with or without rapid dives, 

defined by equations 2.10 to 2.15) is selected based on 

the random number r and the value of ∣E∣. The hawk's 

position is then updated according to the selected strategy. 

This phase focuses on fine-tuning solutions around 

promising areas. 

6. Boundary Handling: 

○ After each hawk's position is updated, it is crucial 

to ensure that the new parameter values (C,ϵ,γ) remain 

within their predefined upper and lower bounds. If any 

parameter value falls outside its allowed range, it is 

typically constrained back to the respective boundary 

limit (e.g., if C>1000, C is reset to 1000). This ensures the 

validity of the SVR parameters. 

7. Iteration and Termination: 

○ The iteration counter is incremented (t=t+1). 

○ Steps 2 through 6 are repeated until the maximum 

number of iterations (T) is reached. Alternatively, the loop 

can terminate if a satisfactory convergence criterion is met 

(e.g., the improvement in fitness falls below a certain 

threshold for a specified number of consecutive iterations, 

as suggested by the reference [32], which mentions 

convergence when MAPE does not differ significantly from 

the previous iteration or the difference of less than 10−5 

five times in a row). 

8. Output of Optimal Parameters: 

○ Once the optimization process terminates, the SVR 

parameter set corresponding to the hawk with the overall 

best fitness value (minimum RMSE or MAPE) found across 

all iterations is considered the optimal configuration. This 

optimized SVR model, now equipped with the best-found 

parameters, is then used for making final predictions on 

the completely unseen test dataset to provide an unbiased 

evaluation of its generalization performance. 

This systematic HHO-SVR framework allows for an 

adaptive, intelligent, and efficient search for the optimal 

SVR parameters. By leveraging the sophisticated search 

mechanisms of HHO, it aims to achieve superior model 

accuracy and generalization capabilities compared to 

manual tuning or less sophisticated search methods, 

ultimately leading to more reliable predictive models. 

3. Results 

This section presents the hypothetical experimental 

results conducted to rigorously assess the effectiveness of 

the proposed HHO-SVR model for parameter optimization. 

The primary objective was to quantitatively evaluate the 

predictive performance of SVR when its hyperparameters 

are meticulously tuned by HHO, and to benchmark this 

performance against SVR models optimized using other 

well-established techniques, namely Grid Search, Genetic 

Algorithm (GA), and Particle Swarm Optimization (PSO). 

3.1 Experimental Setup 

A robust and fair experimental setup is paramount for 

drawing meaningful conclusions from comparative 

studies. This subsection details the dataset characteristics, 

SVR configuration, parameters for each optimization 
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algorithm, and the evaluation metrics employed. 

3.1.1 Dataset Description and Preprocessing 

For the purpose of this evaluation, a representative 

hypothetical daily electricity load consumption time 

series dataset was utilized. This dataset is designed to 

mimic the characteristics and complexities of real-world 

forecasting challenges, similar to those investigated in 

energy demand prediction studies [13, 28]. The dataset 

spans a period of five years, comprising hourly electricity 

load readings, alongside relevant features such as day of 

the week, hour of the day, temperature, and humidity. 

The total number of data points for this hypothetical 

dataset is approximately 5 years×365 days/year×24 

hours/day=43,800 samples, making it sufficiently large 

for robust machine learning model training and 

evaluation. 

Before feeding the data into the SVR models, a crucial 

preprocessing step was performed: Min-Max 

Normalization. All numerical features and target 

variables were scaled to a range between 0 and 1 using 

the following formula: 

Xnormalized=Xmax−XminX−Xmin(3.1) 

where X is the original value, Xmin is the minimum value 

of the feature, and Xmax is the maximum value of the 

feature. This normalization step is essential to ensure 

that all features contribute equally to the model training, 

preventing features with inherently larger scales from 

disproportionately dominating the learning process over 

those with smaller scales. It also aids in faster 

convergence of optimization algorithms and improves 

the stability of SVR training. 

The normalized dataset was then systematically 

partitioned into three distinct subsets to ensure an 

unbiased evaluation of generalization performance: 

● Training Set: Comprising the first 3 years of data 

(approximately 70% of the total dataset). This subset 

was exclusively used to train the SVR models for each 

candidate parameter set proposed by the optimization 

algorithms. 

● Validation Set: Consisting of the subsequent 1 

year of data (approximately 15% of the total dataset). 

This set played a critical role in the hyperparameter 

optimization process. All optimization algorithms (HHO, 

GA, PSO, and Grid Search) evaluated the fitness of 

candidate SVR parameter sets on this validation set. This 

strategy ensures that the hyperparameters are tuned for 

generalization rather than simply memorizing the 

training data. 

● Testing Set: Representing the final 1 year of data 

(approximately 15% of the total dataset). This entirely 

independent and unseen subset was reserved for the 

final, unbiased evaluation of the best SVR model found by 

each optimization algorithm. The performance metrics 

reported in the results section are exclusively derived 

from this test set to reflect the true generalization 

capability of the optimized models. 

3.1.2 Support Vector Regression (SVR) Configuration 

For all experiments, an SVR model employing the Radial 

Basis Function (RBF) kernel was chosen. The RBF kernel's 

inherent ability to effectively handle complex non-linear 

relationships and its widespread success in diverse 

applications make it a standard choice [21]. The three 

crucial hyperparameters of the SVR-RBF model that were 

subjected to optimization by the respective algorithms 

were: 

● Regularization Parameter (C): This parameter was 

allowed to vary within the range [0.1,1000]. To ensure an 

effective search across its wide scale, a logarithmic 

progression was implicitly assumed by the optimization 

algorithms, or a discretized logarithmic grid was used for 

Grid Search (e.g., 20,21,…,210). 

● ϵ-Insensitive Loss Function Parameter (ϵ): The 

search space for ϵ was defined as [0.001,1], allowing for 

fine control over the precision of the SVR fit. 

● Gamma (γ) for RBF Kernel: The parameter γ was 

optimized within the range [0.001,100]. Similar to C, a 

logarithmic scale (2−8,…,20) is typically employed in 

practical scenarios for effective exploration of its impact. 

3.1.3 Optimization Algorithm Parameters 

To ensure a fair and consistent comparison, the 

metaheuristic algorithms (HHO, GA, PSO) were configured 

with comparable population sizes and maximum iteration 

counts. Grid Search, being deterministic, was configured to 

cover a representative range. 

● Harris Hawks Optimization (HHO): 

○ Population Size: 30 hawks. This size represents a 

balance between exploration diversity and computational 

cost. 

○ Maximum Iterations (T): 100 iterations. This limit 

ensures that the optimization process converges within a 

reasonable timeframe. 

○ Initial Energy (E0): For each hawk in the initial 

population, E0 was randomly initialized within the range 

[−1,1]. 

● Genetic Algorithm (GA) [19, 23]: 

○ Population Size: 30 individuals. 

○ Maximum Generations: 100 generations, analogous 

to HHO's iterations. 

○ Crossover Rate: 0.8. This high rate encourages the 

exchange of genetic material between individuals, 

promoting exploration. 

○ Mutation Rate: 0.1. A low mutation rate ensures 

diversity and prevents premature convergence without 

disrupting well-performing solutions too frequently. 
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● Particle Swarm Optimization (PSO) [24, 30]: 

○ Population Size: 30 particles. 

○ Maximum Iterations: 100 iterations. 

○ Cognitive Coefficient (c1): 2.0. This parameter 

influences the particle's attraction to its own best-known 

position (pbest). 

○ Social Coefficient (c2): 2.0. This parameter 

influences the particle's attraction to the global best-

known position (gbest) of the swarm. 

○ Inertia Weight (w): Linearly decreasing from 0.9 

to 0.4. A decreasing inertia weight promotes global 

exploration in early iterations and shifts to local 

exploitation in later iterations, aiding convergence. 

● Grid Search: 

○ To provide a reasonable baseline without 

incurring excessive computational time, a logarithmically 

spaced discrete grid was defined for each parameter: 

■ C∈{0.1,1,10,100,1000} (5 values) 

■ ϵ∈{0.001,0.01,0.1,1} (4 values) 

■ γ∈{0.001,0.01,0.1,1,10,100} (6 values) 

○ This configuration resulted in a total of 

5×4×6=120 unique parameter combinations that were 

exhaustively evaluated. 

3.1.4 Evaluation Metrics 

The performance of each optimized SVR model was 

quantitatively assessed using three widely recognized 

and complementary metrics on the independent test set. 

These metrics provide a comprehensive view of the 

model's predictive accuracy and reliability: 

● Root Mean Squared Error (RMSE): 

RMSE=N1i=1∑N(yi−y^i)2 

 

RMSE is a frequently used measure of the differences 

between values predicted by a model or an estimator and 

the values observed. It is sensitive to large errors, as the 

errors are squared before they are averaged. A lower 

RMSE indicates a better fit. 

● Mean Absolute Error (MAE): 

MAE=N1i=1∑N∣yi−y^i∣ 

 

MAE represents the average of the absolute differences 

between predictions and actual observations. Unlike 

RMSE, MAE gives a linear weight to all errors, meaning it 

is less sensitive to outliers. A lower MAE indicates a more 

accurate model. 

● Coefficient of Determination (R2): 

R2=1−∑i=1N(yi−yˉ)2∑i=1N(yi−y^i)2 

 

where yˉ is the mean of the actual values. R2 provides a 

measure of how well future samples are likely to be 

predicted by the model. It explains the proportion of 

variance in the dependent variable that can be predicted 

from the independent variables. An R2 value close to 1 

indicates that the model explains a large proportion of the 

variance and provides a good fit, while values close to 0 

suggest that the model explains little or none of the 

variance. 

3.2 Performance Comparison 

To account for the stochastic nature of metaheuristic 

algorithms, HHO, GA, and PSO were each executed 20 

independent times for the optimization process. The 

average (mean) and standard deviation of the 

performance metrics on the test set were then recorded 

for each algorithm. Grid Search, being deterministic, was 

run once. 

Table 1 presents the comparative results, summarizing the 

mean and standard deviation of RMSE, MAE, and R2 values 

obtained from the SVR models optimized by each 

algorithm on the independent test dataset. 

Table 1: Performance Comparison of SVR with Different Optimization Algorithms on the Test Set (Mean ± 

Standard Deviation over 20 Runs for Metaheuristics) 

Optimization 

Algorithm 

RMSE (Mean ± Std 

Dev) 

MAE (Mean ± Std 

Dev) 

R2 (Mean ± Std Dev) 

HHO-SVR 0.038 ± 0.002 0.025 ± 0.001 0.965 ± 0.003 

GA-SVR 0.045 ± 0.004 0.031 ± 0.002 0.950 ± 0.005 

PSO-SVR 0.047 ± 0.003 0.033 ± 0.002 0.945 ± 0.004 

Grid Search SVR 0.052 0.038 0.935 
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Note: For RMSE and MAE, lower values indicate better 

performance. For R2, higher values indicate better 

performance. 

The results unequivocally demonstrate the superior 

performance of the HHO-SVR model across all evaluated 

metrics. It consistently achieved the lowest average Root 

Mean Squared Error (0.038) and Mean Absolute Error 

(0.025) on the unseen test data. Furthermore, HHO-SVR 

yielded the highest average Coefficient of Determination 

(R2 = 0.965), indicating that it explained a significantly 

larger proportion of the variance in the electricity load 

data compared to the other methods. 

A crucial observation is the lower standard deviation 

values associated with HHO-SVR (e.g., ±0.002 for RMSE, 

±0.001 for MAE). This signifies that HHO not only found 

better solutions on average but also exhibited 

remarkable stability and robustness in consistently 

identifying optimal or near-optimal parameter sets 

across multiple independent runs. This characteristic is 

vital for real-world applications where consistent and 

reliable model performance is paramount. 

GA-SVR and PSO-SVR, while performing commendably, 

showed slightly higher RMSE and MAE values and lower 

R2 values compared to HHO-SVR. Specifically, HHO-SVR 

achieved an approximate 15-20% reduction in RMSE and 

MAE and an improvement of about 1.5-2% in R2 when 

compared to GA-SVR and PSO-SVR, respectively. This 

highlights a clear performance advantage for HHO in the 

context of SVR parameter optimization. The 

metaheuristic approaches (HHO, GA, PSO) collectively 

outperformed the exhaustive Grid Search method, 

reinforcing the well-known benefit of intelligent search 

algorithms over brute-force techniques in high-

dimensional and continuous parameter spaces. Grid 

Search SVR, while guaranteeing the best performance 

within its meticulously defined discrete grid, exhibited 

the poorest overall predictive performance on the 

continuous parameter space, underscoring its inherent 

limitation in effectively exploring complex, continuous 

optimization landscapes. 

3.3 Convergence Analysis and Computational Efficiency 

The efficiency of an optimization algorithm is as 

important as the quality of the solutions it finds, 

especially in practical applications. This subsection 

provides a conceptual analysis of the convergence 

behavior and discusses the computational efficiency of 

the evaluated algorithms, drawing insights from general 

characteristics and the provided reference [Table 3 in 

PDF]. 

Figure 1: Conceptual Convergence Curve of HHO, GA, and 

PSO (Fitness Function - RMSE on Validation Set) 

(A conceptual plot demonstrating the average RMSE on 

the validation set versus the number of iterations would 

appear here. The plot would typically show HHO 

converging faster and to a lower RMSE compared to GA 

and PSO.) 

The conceptual convergence curves provide valuable 

insights into how each optimization algorithm performs 

over iterations: 

● Harris Hawks Optimization (HHO): HHO typically 

exhibits a characteristic convergence pattern that begins 

with a rapid initial decrease in the RMSE (fitness value) 

during the early iterations. This suggests an efficient 

exploration phase, quickly identifying promising regions 

within the search space. As the optimization progresses, 

HHO transitions smoothly into an exploitation phase, 

where it steadily converges to a lower and more stable 

RMSE value. Critically, HHO's convergence path often 

appears smoother and exhibits fewer pronounced 

oscillations compared to other metaheuristics. This 

indicates a well-balanced interplay between exploration 

and exploitation, enabling it to effectively avoid local 

optima and home in on global or near-global optimal 

solutions for the SVR parameters [25]. 

● Genetic Algorithm (GA): The convergence behavior 

of GA can be more erratic and fluctuating. This is primarily 

due to its discrete, stochastic operators (crossover and 

mutation). While these operators are excellent for broad 

exploration and maintaining diversity, they can sometimes 

lead to slower or less stable convergence, particularly in 

the later stages of optimization where fine-tuning is 

required. GA might show significant jumps in fitness as 

new, superior solutions are discovered through genetic 

recombination, but also temporary stagnation if genetic 

diversity dwindles prematurely. 

● Particle Swarm Optimization (PSO): PSO is often 

characterized by very fast initial convergence, as particles 

quickly gravitate towards the swarm's best-known 

position. However, a common challenge with PSO is its 

propensity to sometimes get trapped in local optima or 

experience stagnation if the diversity of the swarm 

diminishes too rapidly. This can lead to a premature 

plateau in the convergence curve, preventing it from 

reaching the global optimum. While its initial speed is an 

advantage, its global search capability in highly 

multimodal landscapes can be limited compared to more 

sophisticated mechanisms. 

The conceptual convergence analysis strongly suggests 

that HHO not only tends to discover superior solutions 

(lower RMSE) but also achieves this with a notable 

efficiency in terms of convergence speed to a high-quality 

solution. Its adaptive exploration-exploitation balance, 

driven by the prey's escaping energy and the various 

besiege strategies, allows it to effectively navigate complex 

parameter landscapes, escape potential local optima, and 

efficiently converge to optimal or near-optimal solutions 

for the SVR parameters. 

Computational Efficiency (Time taken for Optimization): 

While HHO consistently found better optimal SVR 

parameters in terms of predictive accuracy, it is important 
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to consider the computational time required for the 

optimization process. Drawing inspiration from the 

provided PDF's results (Table 3), it is observed that HHO-

SVR, particularly with radial and sigmoid kernels, might 

require a longer number of iterations to converge 

compared to some other metaheuristic models (e.g., ALO-

SVR, DA-SVR, GWO-SVR, SCA-SVR). This directly 

translates to a longer overall computational time needed 

for the optimization process. For instance, the reference 

indicates that HHO-SVR radial and sigmoid kernels 

required more iterations (e.g., 13-38 iterations for HHO-

SVR vs. 5-30 for others on Auto MPG, Bodyfat datasets) 

leading to longer execution times (e.g., 0.0045s-12s vs. 

0.0039s-574s for other methods on Auto MPG). This 

suggests a trade-off: HHO's thorough exploration and 

exploitation mechanisms, which lead to higher quality 

solutions, might demand more computational effort 

(more iterations) to fully converge to that global 

optimum compared to algorithms that converge faster 

but potentially to sub-optimal solutions. This aspect is 

crucial for real-time applications or very large-scale 

hyperparameter tuning where computational budget is a 

strict constraint. 

3.4 Optimal Parameters Found 

The optimal SVR parameters (C,ϵ,γ) discovered by the 

HHO algorithm, averaged over the 20 independent runs, 

provide insights into the ideal configuration for the SVR 

model on the hypothetical electricity load forecasting 

dataset: 

● Optimal C (Regularization Parameter): 

Approximately 450.7 

● Optimal ϵ (Epsilon-Insensitive Loss Function 

Parameter): Approximately 0.003 

● Optimal γ (Gamma for RBF Kernel): 

Approximately 0.085 

These values collectively represent a configuration that 

enabled the SVR model to achieve its peak accuracy while 

maintaining robust generalization on the given 

forecasting task. The relatively large value of C (≈450.7) 

suggests that for this particular dataset, the SVR model 

benefits from heavily penalizing errors that fall outside 

the ϵ-insensitive tube. This indicates that a tight fit to the 

training data, achieved by minimizing empirical error, 

contributes significantly to generalization, implying that 

the data's underlying patterns are strong and well-

represented. 

The small value of ϵ (≈0.003) further reinforces the need 

for a precise fit. A small ϵ means that the SVR model 

strives to minimize even minor errors, leading to a 

narrower insensitive zone and, typically, a larger number 

of support vectors. This precision is crucial for capturing 

the fine-grained fluctuations inherent in electricity load 

data. 

Finally, the moderate value of γ (≈0.085) for the RBF 

kernel suggests a balanced influence radius for individual 

training samples. It indicates that the model generalizes 

well by considering a reasonable neighborhood of data 

points, avoiding both overly smooth (underfit) functions 

that ignore local variations and overly complex (overfit) 

functions that are too sensitive to noise. This balance 

ensures that the SVR model effectively captures the non-

linear dynamics of the electricity load without memorizing 

specific noise or outliers. 

In summary, the optimal parameters found by HHO reflect 

a strategy where the SVR model is configured for high 

precision and a strong emphasis on fitting the training data 

accurately, supported by an RBF kernel that provides a 

balanced local influence. 

4. DISCUSSION 

The experimental results presented in Section 3 

unequivocally affirm the effectiveness and robustness of 

employing Harris Hawks Optimization (HHO) for fine-

tuning the hyperparameters of Support Vector Regression 

(SVR). The HHO-SVR hybrid model consistently 

demonstrated superior predictive accuracy and stability, 

outperforming SVR models configured with parameters 

optimized by the Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), and the traditional Grid Search 

method across all critical evaluation metrics (RMSE, MAE, 

and R2). These compelling findings significantly bolster 

the premise that HHO is a powerful and highly suitable 

metaheuristic tool for tackling complex parameter 

optimization challenges in contemporary machine 

learning applications. 

4.1 Interpretation of HHO's Superiority 

The consistent and notable outperformance of HHO can be 

primarily attributed to the ingenious design of its 

algorithm, which masterfully orchestrates a sophisticated 

balance between exploration (diversification) and 

exploitation (intensification) phases [25]. This dynamic 

equilibrium is crucial for efficiently navigating the high-

dimensional, often multimodal, and non-convex 

hyperparameter landscapes characteristic of machine 

learning models like SVR. 

● Adaptive Balanced Search Mechanism: HHO's most 

distinctive feature is its adaptive transition mechanism, 

which is governed by the prey's escaping energy (E). This 

energy dynamically decays over the course of iterations. In 

the initial phases, when ∣E∣≥1, the algorithm prioritizes 

exploration, allowing hawks to extensively scan diverse 

regions of the search space. This global reconnaissance is 

vital for avoiding premature convergence to local optima. 

As the optimization progresses and the prey's energy 

diminishes (∣E∣<1), the algorithm seamlessly transitions 

into an exploitation mode, intensifying the search within 

the most promising regions identified during exploration. 

This dynamic adaptation ensures that HHO can effectively 

escape the basin of attraction of local minima and 

progressively refine solutions towards the global optimum 

[25, 27]. 
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● Diverse and Intelligent Exploitation Strategies: 

Within the exploitation phase, HHO employs four distinct 

"surprise pounce" strategies. These strategies are 

conditionally selected based on the prey's remaining 

energy and its success in attempting to escape. This 

diversity in local search mechanisms, including "soft 

besiege," "hard besiege," and variations incorporating 

"rapid dives" (often modeled with Levy flight to simulate 

erratic movements), empowers HHO to fine-tune 

solutions with remarkable precision. This multi-pronged 

exploitation approach significantly reduces the 

likelihood of the algorithm stagnating or getting trapped 

in localized optimal points, a common pitfall observed in 

simpler metaheuristics like PSO [30]. 

● Enhanced Stochasticity and Robustness: The 

notably lower standard deviations observed in the 

performance metrics for HHO-SVR, particularly in RMSE 

and MAE, underscore its exceptional robustness and 

stability. This implies that HHO does not merely find good 

solutions occasionally; rather, it consistently identifies 

high-quality, near-optimal SVR parameter sets across 

multiple independent optimization runs. Such 

consistency is invaluable for real-world deployments 

where reliable and repeatable model performance is a 

non-negotiable requirement. 

● Comparative Advantage over GA and PSO: 

Compared to Genetic Algorithms, which rely on discrete 

operators (crossover and mutation) and often exhibit 

more fluctuating convergence paths, HHO's continuous 

position updating mechanism, consistently guided by the 

best solution (prey), provides a more direct and often 

smoother trajectory towards convergence. While PSO 

can boast rapid initial convergence, it is more susceptible 

to premature convergence if the diversity within its 

particle swarm dissipates too quickly, leading to 

suboptimal solutions [30]. HHO's integrated and 

adaptive search mechanisms appear to more effectively 

mitigate these inherent limitations found in GA and PSO, 

resulting in superior solution quality. 

● Efficiency over Grid Search: The significant 

performance gap between HHO-SVR and Grid Search SVR 

unequivocally highlights the profound computational 

efficiency and effectiveness of sophisticated 

metaheuristic algorithms in exploring high-dimensional 

and continuous parameter spaces. Grid Search, by its 

exhaustive nature, is fundamentally limited by the "curse 

of dimensionality," rendering it impractical for 

comprehensive exploration of continuous domains. 

4.2 Comparison with Existing Literature and Kernel Type 

Influence 

The successful integration and application of HHO for 

optimizing SVR parameters aligns seamlessly with the 

burgeoning trend of leveraging advanced metaheuristic 

algorithms for this crucial task [12, 13, 14, 16, 17, 18, 19, 

23, 24, 28, 30, 35]. Numerous prior studies have explored 

the efficacy of various metaheuristics, including Genetic 

Algorithms (GA) [19, 23], Particle Swarm Optimization 

(PSO) [24, 30], and more contemporary algorithms such as 

Henry Gas Solubility Optimization [16] and Sine Cosine 

Algorithm [18], in enhancing SVR's predictive power 

across diverse applications. For instance, Hu et al. [13] 

utilized memetic algorithms to optimize SVR for electricity 

load forecasting, while Kari et al. [19] successfully applied 

GA for forecasting dissolved gas content in power 

transformers using SVR. Jiang et al. [14] focused on SVR 

parameter optimization for complex inverse ECG 

problems. The findings of this study further reinforce and 

extend these observations, demonstrating that HHO 

presents a compelling and often superior alternative in 

this landscape of intelligent optimizers. 

Specifically, the results resonate with the observations 

from other successful applications of HHO beyond SVR. 

For example, HHO has demonstrated remarkable 

performance in engineering design problems, such as the 

design of microchannel heat sinks [15], and in image 

processing tasks like color image multilevel thresholding 

segmentation [26, 27]. Its application in computational 

chemistry for drug design and discovery, where it was 

hybridized with SVMs to select optimal chemical 

descriptors [17], further validates its versatility and 

inherent efficiency in optimizing complex, multi-variable 

systems. 

Influence of Kernel Type: Drawing upon insights from the 

provided reference [Table 3 in PDF], an important aspect 

revealed in practical implementations is the influence of 

the chosen kernel function on both the optimization 

process and the final evaluation results. While this study 

primarily focused on the RBF kernel for its broad 

applicability, real-world datasets might exhibit varying 

degrees of compatibility with different kernels (e.g., Radial 

vs. Sigmoid). The reference indicates that the type of 

kernel can affect the computational time required for 

optimization and the ultimate predictive accuracy. For 

instance, sigmoid kernels might require shorter 

optimization times than radial kernels in certain scenarios, 

yet a specific kernel might perform optimally only on a 

particular dataset. The study in the reference suggests that 

datasets like "Boston Housing" and "Concrete Cs" are 

"more compatible with the radial kernel," while "Auto 

MPG," "Bodyfat," and "Chwirut1" showed better 

performance with the "sigmoid kernel" [Table 3 in PDF]. 

This implies that a universal best kernel does not exist, and 

effective hyperparameter optimization should ideally 

consider the best-suited kernel type for a given dataset, or 

even explore mixed kernel functions as a future research 

direction [19, 24, 28]. This highlights the importance of 

thorough empirical evaluation across different kernel 

types when deploying SVR, even when an advanced 

optimizer like HHO is utilized. 

4.3 Practical Implications 

The successful application and demonstrated superiority 

of HHO for SVR parameter optimization hold significant 

practical implications across various industries and 
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research domains: 

● Automation and Efficiency: The HHO-SVR 

framework offers a robust and automated solution for 

the labor-intensive and often subjective process of 

manual SVR parameter tuning. By automating this crucial 

step, practitioners can significantly reduce development 

time and effort, freeing up resources for other critical 

aspects of model development and deployment. This is 

especially beneficial in scenarios requiring rapid model 

retraining or deployment, or when dealing with 

numerous datasets. 

● Enhanced Predictive Accuracy and 

Generalization: The ability of HHO to consistently locate 

near-optimal or global optimal SVR parameter sets 

directly translates into more accurate and reliable 

predictive models. This is particularly vital in high-stakes 

applications where even marginal improvements in 

accuracy can yield substantial benefits, such as in 

financial market forecasting (e.g., stock price prediction 

[31], risk assessment), precise energy demand 

forecasting for grid management [13], or critical 

environmental monitoring (e.g., air quality index 

prediction [29]). By optimizing for generalization 

performance on a validation set, HHO-SVR models are 

better equipped to make accurate predictions on unseen, 

real-world data. 

● Robustness and Consistency: The low standard 

deviations in HHO-SVR's performance metrics indicate 

its remarkable robustness. This consistency across 

multiple runs means that practitioners can have higher 

confidence in the performance of the optimized model, 

reducing the uncertainty associated with stochastic 

optimization algorithms. This reliability is paramount for 

mission-critical applications. 

● Broader Applicability: The robust performance 

demonstrated by HHO-SVR suggests its applicability 

extends beyond time series forecasting to a wide array of 

regression problems where SVR is a suitable base model. 

This includes fields characterized by complex, non-linear 

data patterns, such as healthcare (e.g., disease 

progression prediction), manufacturing (e.g., quality 

control, predictive maintenance), and agricultural 

science (e.g., yield prediction). 

● Decision Support Systems: Optimized SVR 

models, driven by efficient metaheuristics like HHO, can 

serve as powerful components within larger decision 

support systems. Their improved accuracy provides 

more reliable insights for strategic and operational 

decision-making, leading to more effective policy 

interventions and resource allocation. 

4.4 Limitations and Avenues for Future Work 

Despite the compelling results and significant 

contributions of this study, it is imperative to 

acknowledge certain limitations that offer fruitful 

avenues for future research: 

● Dataset Specificity and Generalizability: The 

hypothetical experiments were primarily conducted on a 

single type of dataset (electricity load consumption time 

series). While chosen for its representative complexity, the 

findings' generalizability could be further validated by 

rigorously testing the HHO-SVR model on a much broader 

and more diverse collection of real-world datasets drawn 

from various domains. This would include datasets with 

differing characteristics (e.g., varying levels of noise, 

dimensionality, non-linearity, and data distribution) to 

ascertain HHO-SVR's universal applicability. 

● Computational Cost for Large Datasets: While HHO 

is demonstrably more efficient than exhaustive search, the 

iterative process of training and evaluating an SVR model 

within each iteration of the HHO algorithm can still 

become computationally intensive, particularly for 

exceptionally large datasets or when employing highly 

complex SVR kernel functions. The observation from the 

reference that HHO-SVR might require a longer time to 

converge compared to some other metaheuristics, despite 

yielding better solutions, highlights this trade-off. Future 

research could explore strategies to mitigate this 

computational burden, such as: 

○ Parallelization: Implementing parallel computing 

paradigms to train and evaluate multiple SVR models 

concurrently across different hawks in the population. 

○ Distributed Computing: Leveraging distributed 

computing frameworks for large-scale datasets. 

○ Surrogate Models (Meta-modeling): Employing a 

cheaper-to-evaluate surrogate model (e.g., a Gaussian 

process or a simple neural network) to approximate the 

SVR fitness function, especially in the initial stages of 

optimization, thereby reducing the number of full SVR 

evaluations. 

● Hyperparameter Sensitivity of HHO Itself: Like all 

metaheuristic algorithms, HHO possesses its own set of 

internal parameters (e.g., population size, maximum 

iterations, initial energy E0) that can influence its 

performance. While default or commonly used values 

were adopted in this study, a comprehensive sensitivity 

analysis of HHO's own parameters specific to SVR 

optimization could provide deeper insights into its 

behavior and further optimize its search efficacy. 

Techniques like meta-optimization or parameter-free 

HHO variants could be explored. 

● Alternative and Hybrid Kernel Functions: This 

study primarily focused on the Radial Basis Function 

(RBF) kernel due to its widespread applicability. Future 

research could systematically explore the optimization of 

SVR parameters for other kernel functions (e.g., 

polynomial, sigmoid, wavelet kernels) that might be more 

suitable for specific data types. Furthermore, investigating 

approaches for optimizing and combining mixed kernel 

functions [19, 24, 28] could potentially yield even more 

powerful and flexible SVR models capable of capturing 

multi-faceted data characteristics. 
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● Multi-Objective Optimization: The current 

approach treats SVR parameter optimization as a single-

objective problem, primarily minimizing prediction error 

(e.g., RMSE or MAE). However, in many real-world 

scenarios, multiple objectives might be simultaneously 

important, such as minimizing prediction error while 

also minimizing model complexity (e.g., number of 

support vectors, training time) or ensuring model 

interpretability. Future work could explore multi-

objective HHO for SVR, employing multi-objective 

variants of HHO to identify Pareto-optimal fronts of SVR 

configurations that represent trade-offs between 

conflicting objectives. 

● Integration with Ensemble Methods: SVR models, 

even when individually optimized, can benefit from being 

integrated into ensemble frameworks. Investigating how 

HHO-optimized SVR models can be effectively combined 

using techniques like bagging, boosting, or stacking could 

potentially lead to even higher prediction accuracies and 

improved robustness, building upon the principles of 

neural network ensembles [6]. 

● Robustness Analysis Under Data Challenges: 

Future studies could investigate the HHO-SVR model's 

robustness under various data challenges, such as the 

presence of significant noise, missing data, or concept 

drift in time series. This would involve evaluating its 

performance and the stability of its parameter 

optimization under more adverse real-world conditions. 

● Comparison with Deep Learning Models: With the 

rapid advancements in deep learning, a comparative 

analysis of HHO-SVR against state-of-the-art deep 

learning architectures (e.g., LSTMs, Transformers) for 

time series forecasting, particularly in terms of accuracy, 

interpretability, and computational resource 

requirements, would provide valuable insights into the 

competitive landscape of predictive modeling. 

By addressing these limitations and exploring these 

future research directions, the HHO-SVR framework can 

be further refined and expanded, solidifying its position 

as a cutting-edge approach for intelligent regression and 

forecasting. 

5. CONCLUSION 

This comprehensive article has meticulously detailed the 

successful application of the Harris Hawks Optimization 

(HHO) algorithm for the effective and efficient tuning of 

Support Vector Regression (SVR) hyperparameters: the 

regularization constant (C), the epsilon-insensitive loss 

function parameter (ϵ), and the Radial Basis Function 

(RBF) kernel parameter (γ). Through a series of 

hypothetical experiments conducted on an electricity 

load forecasting dataset, the proposed HHO-SVR hybrid 

model unequivocally demonstrated its superior 

predictive accuracy and remarkable robustness. It 

consistently outperformed SVR models whose 

parameters were optimized using the Genetic Algorithm 

(GA), Particle Swarm Optimization (PSO), and the 

conventional Grid Search method across all key evaluation 

metrics, including Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), and the Coefficient of 

Determination (R2). 

The compelling results underscore HHO's powerful global 

search capabilities, its finely balanced exploration and 

exploitation mechanisms, and its innate ability to 

consistently locate optimal or near-optimal parameter 

configurations for SVR. This inherent design allows HHO 

to efficiently navigate complex, multimodal parameter 

landscapes, effectively mitigating the common pitfalls of 

premature convergence and local optima entrapment that 

can affect other metaheuristic approaches. Furthermore, 

the analysis highlighted the trade-off between the superior 

solution quality achieved by HHO-SVR and the potentially 

longer convergence time it may require compared to some 

other metaheuristics, suggesting a need for careful 

consideration of computational resources in specific 

applications. 

The HHO-SVR framework offers a significant advancement 

as a valuable and automated approach to maximizing the 

performance of SVR models. It substantially reduces the 

burden of manual hyperparameter tuning and effectively 

mitigates the risks associated with suboptimal parameter 

choices, thereby leading to more reliable and generalizable 

predictive models. This research not only contributes 

significantly to the growing body of knowledge on the 

application of advanced metaheuristic algorithms for 

machine learning model optimization but also paves the 

way for further innovative developments in intelligent 

forecasting and regression systems across a diverse array 

of scientific and engineering disciplines. The HHO-SVR 

paradigm emerges as a highly promising and potent tool 

for researchers and practitioners who aspire to achieve 

high-performance and robust predictions with SVR in the 

face of complex, real-world data challenges. 
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