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ABSTRACT

Arowana (Scleropages formosus) cultivation is a challenging endeavor, largely due to the species' sensitivity to water
quality fluctuations. Traditional manual monitoring methods are often inefficient, prone to human error, and lack the
foresight needed for proactive management. This article presents a novel approach to water quality management in
arowana aquaculture by integrating real-time monitoring capabilities of the Internet of Things (IoT) with advanced
predictive analytics using multivariate fuzzy time series (FTS) models. The proposed system continuously collects critical
water parameters such as pH, dissolved oxygen (DO), temperature, turbidity, and conductivity. These real-time data
streams are then fed into a sophisticated fuzzy time series model that forecasts future water conditions, enabling
cultivators to anticipate and mitigate potential issues before they impact fish health. The implementation demonstrates
the efficacy of a hybrid [oT-FTS framework in providing timely, data-driven insights for optimizing Arowana cultivation
environments, contributing significantly to sustainable aquaculture practices and reducing economic losses associated
with poor water quality. Through rigorous evaluation and validation, the proposed FTS-multivariate T2 model
demonstrated superior performance, achieving an exceptionally low error rate, outperforming traditional regression
models.

Keywords: Arowana, Water Quality, Internet of Things (IoT), Fuzzy Time Series (FTS), Predictive Modeling, Aquaculture,
Multivariate Analysis, Environmental Monitoring, Sensor Networks.

(DO) levels, pH, temperature, turbidity, and
conductivity—must remain within narrow optimal ranges
for the fish to thrive [3]. Deviations from these ideal
conditions, even minor ones, can induce severe stress,
impair growth, compromise immune systems, lead to
disease outbreaks, and ultimately result in high mortality
rates. Such losses translate directly into substantial
economic setbacks for cultivators.

INTRODUCTION
1.1 Importance of Arowana Aquaculture

Arowana, particularly the Asian Arowana (Scleropages
formosus), holds a unique position in both ecological
conservation and economic markets. Ecologically, it is
recognized as an endangered species, making its
sustainable cultivation paramount for its survival and

biodiversity preservation [1]. Economically, the Arowana
is a highly coveted ornamental fish, especially in Asian
markets, commanding premium prices due to its
aesthetic appeal and cultural significance, often
associated with prosperity and good fortune. This high
demand has propelled its aquaculture into a significant,
albeit complex, industry [2]. The intricacies of Arowana
cultivation stem primarily from the species' extreme
sensitivity to environmental conditions, necessitating
precise control over their aquatic habitat.

1.2 Challenges in Traditional Water

Management

Quality

Successful Arowana aquaculture is inextricably linked to
maintaining  impeccable  water  quality. Key
environmental parameters—such as dissolved oxygen

Historically, water quality monitoring in aquaculture has
relied on manual methods, involving periodic collection of
water samples and their subsequent analysis using
handheld sensors or laboratory tests. This traditional
approach, while fundamental, suffers from several critical
drawbacks. Firstly, it is inherently labor-intensive and
time-consuming, requiring significant human effort to
collect, transport, and analyze samples. Secondly, it
provides only sporadic "snapshots" of water conditions.
Given the dynamic nature of aquatic ecosystems, where
parameters can fluctuate rapidly due to biological
processes, feeding, or environmental changes, these
infrequent measurements often fail to capture critical,
fast-developing trends or sudden deteriorations [4]. This
reactive mode of management means that corrective
actions are often initiated after a problem has manifested,
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rather than proactively preventing it. Furthermore,
manual data recording and human judgment are
susceptible to error, potentially leading to inaccurate
assessments and suboptimal interventions [4], [13]. The
inability to continuously monitor and predict changes
leaves cultivators vulnerable to unexpected crises and
significant economic losses.

1.3 Role of Internet of Things (IoT) in Aquaculture
Monitoring

The emergence of the Internet of Things (IoT) has
presented a revolutionary paradigm for environmental
monitoring and management across various sectors,
including aquaculture. [oT systems leverage networks of
interconnected physical devices equipped with sensors,
software, and other technologies to collect and exchange
data over the internet [6]. In aquaculture, this translates
into the deployment of smart sensors that can
continuously and autonomously measure water quality
parameters in real-time. These devices can transmit data
wirelessly to a central server or cloud platform,
providing cultivators with an always-on, comprehensive,
and up-to-date view of their aquatic environment [5], [7].

Several studies have explored the application of IoT in
aquaculture, demonstrating its potential to automate
monitoring tasks and enhance farm management
efficiency. For instance, early models integrated
ultrasonic sensors and Arduino boards for basic
aquarium condition monitoring [8], which later evolved
to include pH, temperature, and turbidity sensors for
more comprehensive surveillance [9]. Subsequent
advancements led to the development of IoT-based water
quality monitoring systems, such as SIMONAIR, designed
specifically for Arowana cultivation [10], and systems
capable of integrating with cloud services like
Thingspeak for accurate data measurements [11]. These
advancements have significantly reduced the need for
constant manual checks, freeing up cultivators' time and
improving the frequency and consistency of data
collection.

However, a notable limitation of many existing 1oT
implementations in aquaculture is their primary focus on
monitoring current conditions. While providing real-
time data is a significant improvement, it still largely
supports a reactive management approach. For optimal
outcomes, especially with sensitive species like Arowana,
the ability to predict future water quality states is
indispensable.

1.4 The Need for Predictive Analytics: Fuzzy Time
Series

To move beyond mere monitoring and enable proactive
water quality management, predictive analytics becomes
essential. This is where advanced forecasting models,
such as Fuzzy Time Series (FTS), play a crucial role.
Traditional time series forecasting methods, like ARIMA
or exponential smoothing, often rely on assumptions of
linearity, stationarity, or precise numerical data [14],

[25], [26]. However, environmental data, particularly in
complex biological systems like aquaculture, is frequently
characterized by inherent uncertainties, vagueness, and
non-stationarity [15], [17]. Measurements can be
imprecise, and the relationships between parameters
might be non-linear and difficult to define with crisp
numerical values.

Fuzzy logic, first introduced by Lotfi Zadeh, provides a
powerful framework for dealing with imprecision,
uncertainty, and qualitative information [18], [19]. Fuzzy
time series models extend this concept to temporal data,
allowing for the representation of data points as fuzzy sets
rather than crisp numbers. This approach enables the
model to capture and process linguistic variables (e.g.,
"water temperature is warm,” "DO is low") that better
reflect human expert knowledge and the inherent
fuzziness of natural phenomena [16]. FTS models have
demonstrated robust performance in various forecasting
applications, including non-stationary environmental data
and solar energy prediction, proving their adaptability and
accuracy in complex, real-world scenarios [14], [15], [16].

1.5 Research Gap and Contribution

Despite the individual progress in loT-based monitoring
and the proven capabilities of fuzzy time series in
forecasting, there remains a significant research gap
concerning their integrated application for predictive
water quality management specifically in Arowana
aquaculture. While some studies have implemented loT
for Arowana water quality monitoring [7], [10], they
typically lack sophisticated predictive algorithms that can
forecast future conditions. Existing models often provide
real-time alerts when thresholds are breached, but they do
not offer the foresight needed to prevent these breaches
from occurring in the first place [13]. Furthermore, the
application of multivariate fuzzy time series, which
considers the interdependencies between multiple water
quality parameters for more accurate prediction, has not
been thoroughly explored in this specific domain.

This article aims to bridge this critical gap by proposing
and rigorously evaluating a novel hybrid system. This
system integrates an IoT infrastructure for continuous,
real-time data collection of multiple water quality
parameters (pH, temperature, turbidity, dissolved oxygen,
and conductivity) with a multivariate fuzzy time series
(FTS) model designed for comprehensive predictive
analytics. The primary contribution of this study is the
development and validation of an FTS-multivariate T2
model, which demonstrates superior performance in
forecasting Arowana water quality, enabling proactive
management strategies that significantly enhance the
sustainability and efficiency of aquaculture operations. By
providing accurate predictions, this research empowers
cultivators to mitigate risks, optimize resource utilization,
and ultimately improve the survival rates and economic
viability of Arowana farming.

METHODS
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This section details the methodologies employed in
developing and evaluating the integrated IoT and
multivariate fuzzy time series forecasting system for
Arowana cultivation. It encompasses the system
architecture, data acquisition strategies, the intricacies of
the fuzzy time series model, and the performance
evaluation metrics used.

2.1 IoT System Architecture for Water Quality
Monitoring

The proposed IoT system is designed for continuous,
automated, and real-time monitoring of crucial water
quality parameters within Arowana cultivation tanks. Its
architecture is modular, comprising sensing units, a
microcontroller for data processing, a robust data
transmission mechanism, and a centralized cloud-based
platform for data storage, analysis, and user interaction.
The overall schematic for data gathering and the
prediction node is conceptually illustrated in Figure 1.

2.1.1 Sensing Units

A comprehensive suite of specialized sensors is deployed
directly within the Arowana cultivation environment to
capture a broad spectrum of water quality indicators. The
selection of these sensors is based on their accuracy,
long-term stability, and suitability for continuous
immersion in aquatic habitats. The sensors include:

° pH Sensor (e.g., PH-4502C): This sensor measures
the hydrogen-ion concentration in the water, providing
an indication of its acidity or alkalinity. Maintaining
optimal pH levels is paramount for Arowana health, as
deviations can significantly impact their physiological
functions and susceptibility to disease [7].

° Dissolved Oxygen (DO) Sensor: This sensor
quantifies the amount of oxygen dissolved in the water.
DO is a primary determinant of aquatic life survival;
insufficient levels can lead to severe stress and mortality
in fish, including Arowana.

° Temperature Sensor (e.g., DS18B20): This sensor
measures the water temperature. Water temperature
profoundly influences Arowana's metabolic rate,
appetite, growth, immune response, and the solubility of
gases like oxygen in water.

° Turbidity Sensor: This sensor measures the
clarity of the water, specifically the amount of light
scattered or absorbed by suspended particles. High
turbidity can indicate excess organic matter, algal
blooms, or other pollutants, affecting fish respiration and
light penetration for aquatic plants.

) Conductivity Sensor (e.g., Analog Total Dissolved
Solids - TDS sensor): This sensor measures the electrical
conductivity of the water, which is directly related to the
concentration of dissolved inorganic solids (salts). While
Arowana are freshwater fish, monitoring conductivity
provides insights into overall water purity and mineral
content, and can alert to significant chemical changes.

Each sensor is carefully calibrated to ensure accurate
readings throughout its operational lifespan. Regular
maintenance and recalibration protocols are established
to preserve data integrity.

2.1.2 Microcontroller and Local Processing

The NodeMCU ESP8266 development board serves as the
central intelligent hub for the IoT node [12]. This
microcontroller was chosen due to its integrated Wi-Fi
capabilities, which eliminate the need for external
communication modules, simplifying the hardware setup.
Its low power consumption is crucial for continuous
operation in remote or off-grid aquaculture settings. The
ESP8266's processing power is sufficient to handle
simultaneous readings from multiple analog and digital
sensors, perform initial data pre-processing, and manage
wireless communication protocols.

The microcontroller is programmed with embedded C++
(using the Arduino IDE environment) to perform the
following local processing tasks:

° Sensor Interfacing: Reading raw analog or digital
signals from each connected sensor.

° Data Conversion and Calibration: Converting raw
sensor signals into meaningful physical units (e.g., mV to
pH, raw ADC values to turbidity units, Ohm to
conductivity/TDS). This involves applying specific
calibration curves or formulas unique to each sensor.

° Noise Filtering: Implementing basic digital filters
(e.g., moving average, median filter) to reduce transient
noise and improve the stability of sensor readings. This
ensures that only reliable data is transmitted.

° Data Aggregation: Periodically (e.g, every 5
seconds, as in this study [17]) collecting and bundling
readings from all sensors into a single data packet. This
sampling interval is critical for capturing dynamic changes
without overwhelming the network or cloud
infrastructure.

2.1.3 Data Transmission

The NodeMCU utilizes its integrated Wi-Fi module to
establish a connection to a local network and transmit the
processed water quality data wirelessly to a designated
cloud-based server. Data transmission is primarily
facilitated via standard HTTP/HTTPS protocols,
interacting with a RESTful API endpoint exposed by the
server [21], [22]. This choice ensures secure and efficient
data transfer, allowing for robust communication even
across geographically dispersed cultivation sites. Each
data packet includes a timestamp, aligning with the time-
series nature of the data.

2.1.4 Cloud-based Platform

The cloud-based platform is the central repository and
processing hub for all collected data. Its architecture is
designed for scalability, accessibility, and robust data
management.

pg. 23



EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

° Cloud Database: Upon receipt, the transmitted
sensor data is stored in a scalable cloud database (e.g.,
Google Firestore, AWS DynamoDB). The choice of a
NoSQL database is often advantageous for time-series
data due to its flexible schema and ability to handle high
ingest rates. Each record in the database includes the
timestamp, sensor ID, and all measured parameter values
(pH, temperature, turbidity, dissolved oxygen,
conductivity). A sample of the gathered data, formatted
with UNIX epoch timestamps, is provided in Table 1,
showcasing the raw input to the system.

° RESTful API Backend: A backend application,
developed using frameworks like Python/Flask or
Node.js/Express, exposes a RESTful API [21], [22]. This
API serves multiple purposes:

o Receiving and validating incoming data from IoT
nodes.

o Storing validated data in the cloud database.

o Providing endpoints for the fuzzy time series

model to fetch historical data for training and current
data for real-time forecasting.

o Exposing forecasting results for the user interface.

° Fuzzy Time Series Forecasting Module: The core
predictive analytics component, the multivariate fuzzy
time series (FTS) model, resides and operates within this
cloud environment. It continuously accesses the latest
incoming data and historical records to perform its
forecasting computations.

° User Interface (UI) / Dashboard: A web-based
(and potentially mobile) user interface provides
cultivators with a comprehensive and intuitive view of
their aquaculture environment. This dashboard displays:

o Real-time readings of all water quality
parameters.

o Historical trends and graphical representations of
data.

o The forecasted water quality values for upcoming
periods.

o Alerts and notifications when predicted values

approach critical thresholds.

This remote accessibility empowers cultivators to
monitor and manage their operations from anywhere, at
any time.

2.2 Multivariate Fuzzy Time Series (FTS) Forecasting
Model

The predictive intelligence of the system is underpinned
by a multivariate fuzzy time series (FTS) model. FTS is
particularly well-suited for environmental data, which
often exhibits characteristics of vagueness, imprecision,
and non-stationarity that traditional crisp time series
models struggle to manage [14], [18]. Unlike
conventional statistical models that require precise

numerical inputs and clear linear relationships, FTS
leverages fuzzy logic to process linguistic variables and
handle inherent uncertainties, making it robust for
complex ecological systems. This study implemented two
versions of the FTS model, namely FTS-multivariate T1
and FTS-multivariate T2, based on different degrees of
data differentiation.

The prediction mechanism from an IoT node to the server
and its database is illustrated conceptually in Figure 2. The
IoT node sends the five water quality parameters (pH,
temperature,  turbidity, dissolved  oxygen, and
conductivity) to the server via the REST protocol. Upon
receiving the data, the server performs the prediction
using the pre-trained FTS model and subsequently stores
the prediction results in its database.

The development of the multivariate FTS model involves a
sequence of structured steps, ensuring robust and
accurate forecasting:

2.2.1 Data Fuzzification

The initial and crucial step in FTS modeling is the
transformation of crisp (numerical) input data, collected
by the IoT sensors, into fuzzy sets. This process, known as
fuzzification, allows the model to handle the inherent
vagueness and qualitative aspects often associated with
environmental parameters.

° Universe of Discourse Definition: For each water
quality parameter (pH, temperature, turbidity, dissolved
oxygen, conductivity), a specific universe of discourse is
defined. This represents the full range of possible values
for that parameter. For example, pH might range from 0 to
14, and temperature might range from 0C to 500C.

° Partitioning into Linguistic Terms: The universe of
discourse for each parameter is then partitioned into
several fuzzy sets, or linguistic terms, such as "very low,"
"low," "optimal," "high," or "very high." Each linguistic
term represents a qualitative state of the parameter. For
example, for pH, terms like "Acid," "Neutral,” and
"Alkaline" are used. For temperature, "Cold," "Warm," and
"Hot" are defined. Turbidity, dissolved oxygen, and
conductivity are similarly categorized into "Low,"
"Medium," and "High" [Table 2].

° Membership Functions: Each fuzzy set is associated
with a membership function (e.g, triangular, trapezoidal,
or Gaussian). A membership function assigns a "degree of
membership"” (a value between 0 and 1) to each crisp data
point, indicating how strongly that point belongs to a
particular fuzzy set. For instance, a pH reading of 6.5 might
have a high membership degree to "Neutral" and a lower
degree to "Acid," rather than being strictly classified as one
or the other.

° Quality Fuzzification: Beyond the individual
parameters, the study also fuzzifies a composite "water
quality” output, ranging from 0 to 100. This output is
categorized into "Poor" (0-35), "Fair" (32-75), and "Good"
(72-100) [Table 2]. This enables the model to predict an
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overall water quality index in addition to individual
parameters, which is more intuitive for cultivators.

2.2.2 Establishment of Fuzzy Logical Relationships
(FLRs)

Once the historical crisp data is converted into its fuzzy
representation, the next step involves identifying and
establishing the relationships between consecutive fuzzy
states across multiple parameters. This is the core of how
the FTS model learns patterns and predicts future states.

° Multivariate Analysis: In a multivariate FTS
model, the relationships are not just between sequential
states of a single parameter but among the fuzzy states of
all relevant parameters at different time points. For
example, the model seeks to identify rules like: "IF (pH is
'Acid' at time t) AND (DO is 'Low' at time t) AND
(Temperature is 'Cold" at time t) THEN (Water Quality
will be 'Poor’ at time t+1)."

° Rule Generation: FLRs are derived from analyzing
the historical sequence of fuzzified data. This involves
identifying common transitions between fuzzy states
from one time step to the next. Various methods can be
employed for generating these rules, such as direct
mapping of observed sequences or clustering similar
fuzzy state transitions.

2.2.3 Grouping of Fuzzy Logical Relationships

To enhance the robustness and generalization capability
of the forecasting model, similar Fuzzy Logical
Relationships (FLRs) are grouped together. This process
helps to consolidate redundant or highly similar rules,
creating a more concise and effective rule base for
prediction.

° Consolidation: Grouping can involve merging
FLRs that lead to the same consequent fuzzy state, even
if their antecedent fuzzy states are slightly different but
conceptually close. This reduces the complexity of the
rule base and can mitigate the impact of minor data
fluctuations.

° Improved Accuracy and Efficiency: A well-
grouped set of FLRs helps to improve the overall
forecasting accuracy by providing more generalized and
robust predictions, while also potentially reducing the
computational overhead during the forecasting step.

2.2.4 Forecasting

The forecasting step uses the established and grouped
FLRs to predict the future fuzzy state of the water quality
parameters.

) Current Fuzzy State Determination: For a given
prediction, the current crisp water quality readings from
the IoT sensors are first fuzzified to determine their
current fuzzy state.

° Matching with FLRs: This current fuzzy state (or a
sequence of recent fuzzy states in higher-order FTS) is
then matched against the rule base of established FLRs.

° Consequent Identification: The consequent fuzzy
set (the predicted fuzzy state for the next time step) from
the matched FLR(s) is identified. If multiple FLRs match
the current state, their consequent fuzzy sets might be
combined using aggregation operators (e.g., fuzzy union or
intersection, or weighted averages based on membership
degrees).

2.2.5 Defuzzification

The final step in the FTS forecasting process is
defuzzification, which converts the forecasted fuzzy set
back into a crisp, numerical value that is directly
interpretable and actionable for cultivators.

° Conversion to Crisp Values: Various defuzzification
methods can be employed, each with its own advantages:

o Centroid Method: This method calculates the
center of gravity of the membership function of the
consequent fuzzy set. It is widely used due to its intuitive
nature and robustness.

o Weighted Average Method: This method calculates
the weighted average of the membership values, where the
weights are typically the midpoints of the fuzzy sets.

° Actionable Predictions: The defuzzified output
provides a precise numerical prediction for the future pH,
DO, temperature, turbidity, and conductivity levels, as well
as the overall water quality index. This allows cultivators
to understand the predicted conditions and take precise
proactive measures.

2.2.6 Model Implementation and Differential Degrees

The multivariate fuzzy time series models in this study
were implemented using Python, leveraging the PyFTS
library [20]. PyFTS provides a comprehensive set of
functionalities for various FTS methods, simplifying the
development and deployment process.

Crucially, this study explored two distinct FTS-
multivariate models based on the degree of data
differentiation applied to the dataset:

° FTS-multivariate T1: This model was trained using
the dataset's first differential degree. This process involves
taking the difference between consecutive data points,
which helps to remove trends and make the time series
more stationary.

° FTS-multivariate T2: This model was trained using
the dataset's second differential degree. Applying a second
differentiation further helps in removing residual trends
and achieving a higher degree of stationarity and
consistency in the time series patterns. Higher differential
degrees are often employed when the underlying time
series exhibits strong trends or non-linear patterns that
persist even after a single differentiation. The choice
between T1 and T2 is empirical and based on which
transformation yields a more stationary and predictable
series.

After training, these FTS models were serialized and
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exported into a binary format, allowing them to be loaded
efficiently by the cloud server for real-time prediction
without requiring retraining with every new data point.
The models continuously learn and update their fuzzy
logical relationships as new data arrives from the IoT
system, enhancing their adaptive capabilities over time
and ensuring their relevance to evolving cultivation
conditions.

2.3 Experimental Setup and Data Collection

To ensure the robustness and practical applicability of
the proposed system, a controlled experimental setup
was established for data collection.

° Cultivation Environment: Data was meticulously
gathered from a small-sized aquarium housing one
Arowana fish. This controlled environment allowed for
precise monitoring and minimized external disturbances,
ensuring that recorded fluctuations were primarily
attributable to the intrinsic dynamics of the aquatic
system and the fish's metabolic activities.

° Sensor Configuration: The [oT node was equipped
with the array of sensors described in Section 2.1.1,
specifically including a PH-4502C (water acidity), an
analog total dissolved solid (water conductivity), a
DS18B20 (water temperature), a dissolved oxygen
sensor, and a turbidity sensor.

° Data Acquisition Period and Frequency:
Continuous data collection spanned two days, with an
extremely high sampling frequency of one data point
recorded every five seconds [17]. This resulted in a
substantial dataset comprising 34,560 rows in CSV
format, each row containing a timestamp (in UNIX epoch
format) and the corresponding readings for pH,
temperature, turbidity, dissolved oxygen, and
conductivity. A sample of this raw data is presented in
Table 1, showcasing the raw input to the system.

° Data Pre-processing for FTS Training: Following
data acquisition, the raw numerical sensor data was
subjected to the fuzzification process as described in
Section 2.2.1. This involved transforming the crisp values
into fuzzy sets based on predefined membership
functions (Table 2). This fuzzified dataset included an
additional column named "quality," representing the
overall water quality as a numerical value between 0 and
100, derived through the fuzzification process. This
"quality" output served as the primary target variable for
the FTS multivariate models, reflecting a comprehensive
assessment of the water environment.

2.4 Comparative and Performance

Evaluation Metrics

Analysis

To rigorously evaluate the efficacy and superiority of the
proposed FTS-multivariate models, their predictive
performance was compared against established
regression algorithms widely used in similar domains:
multivariate linear regression and decision trees. This
comparative analysis provides a benchmark for

assessing the improvements achieved by the fuzzy time
series approach.

2.4.1 Regression Evaluation Metrics

The performance of all forecasting models was quantified
using a set of standard statistical metrics designed for
regression tasks. These metrics assess different aspects of
prediction accuracy and error distribution:

° Mean Absolute Error (MAE): This metric measures
the average magnitude of the errors between the
predicted values and the actual observed values. It is
expressed in the same units as the data, making it
straightforward to interpret. MAE provides a direct
average of the absolute differences, treating all errors
equally regardless of their size [23].MAE=total
datali=1)total datalactuali-predictionil

° Mean Absolute Percentage Error (MAPE): MAPE
expresses the average error as a percentage of the actual
values. This makes it a scale-independent metric,
particularly useful for comparing model performance
across different datasets or when the magnitude of the
predicted values varies significantly. However, MAPE can
be problematic when actual values are zero or very close
to Zero [24].MAPE=total datali=1)total
dataactualiactuali-predictionix100

° Mean Squared Error (MSE): MSE calculates the
average of the squared differences between predicted and
actual values. By squaring the errors, MSE heavily
penalizes larger errors, making it sensitive to outliers. It
provides a good overall measure of prediction accuracy
[23].MSE=total datali=1) total data(actuali-predictioni)2

° Root Mean Squared Error (RMSE): RMSE is the
square root of the MSE. It brings the error measure back
into the same units as the dependent variable, making it
more interpretable than MSE. Like MSE, it gives more
weight to large errors, making it a good indicator of model
precision [24].RMSE=total datali=1}total
data(actuali-predictioni)2

° R-squared (R2) Score: Also known as the
coefficient of determination, R2 indicates the proportion
of the variance in the dependent variable that is
predictable from the independent variables. A higher R2
(closer to 1) indicates that the model fits the data well. It is
calculated as 1 minus the ratio of the sum of squares of
residuals to  the  total sum of  squares
[25].R2Score=1-)i=1total data(actuali—-actual)2) i=1total
data(actuali-predictioni)2

° Adjusted R-squared (RAdjusted2): While R2 tends
to increase with the addition of more independent
variables, even if they are not truly predictive, adjusted R2
compensates for this by penalizing the inclusion of
unnecessary features. It is a more robust measure for
comparing models with different numbers of features,
providing a fairer evaluation of explanatory power
[26].RAdjusted2=1-(total data-total
features—-1(1-R2)(total data-1))
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Where:
o i refers to the row number of the dataset.
o total data refers to the total number of data points

for both actual and predicted values.

o actual and prediction refer to the respective
values stored in the database.

o total features refers to the number of independent
variables used in the model.

2.4.2 Baseline and Cross-Validation Approaches

Two distinct approaches were utilized to validate the
results and ensure the consistency and reliability of the
models:

° Baseline Comparison: This approach involved
creating a "baseline" from the fuzzified water quality data
(derived directly from sensor readings using fuzzy logic,
as per Table 2). The performance of the FTS-multivariate
T1, FTS-multivariate T2, multivariate linear regression
[25], [26], and decision tree [27] models was then
compared against this baseline. Linear regression and
decision trees were chosen as comparison algorithms
due to their widespread use in predictive analytics,
including water quality prediction [28], [29]. This
provides a direct measure of how well each model could
replicate or forecast the 'true' water quality index
defined by the fuzzy logic system.

° Cross-Validation (5-Fold): To evaluate the
generalizability and robustness of the proposed models
across different subsets of the data, a 5-fold cross-
validation method was employed. In this technique, the
entire dataset is divided into five equally sized folds. The
model is trained on four folds and tested on the
remaining one. This process is repeated five times, with
each fold serving as the test set exactly once. The average
accuracy and error percentages across these five
iterations provide a more reliable estimate of the model's
performance on unseen data, mitigating the risk of
overfitting and ensuring consistency regardless of the
specific data split. This also helped to assess the models'
stability when trained with varying lengths of training
and test data.

By employing these comprehensive evaluation metrics
and validation strategies, this study provides a thorough
assessment of the proposed hybrid [oT-FTS system's
capabilities in accurately forecasting Arowana
cultivation water quality.

RESULTS

This section presents the empirical results obtained from
the evaluation and validation phases of the proposed
predictive water quality management system. The
findings are structured to demonstrate the performance
of the multivariate fuzzy time series (FTS) models in
comparison to other established regression algorithms.

3.1 Water Quality Prediction Samples

The IoT system successfully collected and transmitted
34,560 rows of real-time water quality data (pH,
temperature, turbidity, dissolved oxygen, and
conductivity) over two days, sampled every five seconds.
This extensive dataset served as the foundation for
training and testing the predictive models.

Table 3 provides a sample of the water quality predictions
obtained from the FTS-multivariate T1, FTS-multivariate
T2, multivariate linear regression, and decision tree
models, juxtaposed against the fuzzy logic water quality
baseline. The baseline column represents the "true" water
quality index, ranging from 0 to 100, derived from
fuzzifying the raw sensor data using the membership
functions defined in Table 2.

° The Baseline column shows the target fuzzy quality
score.
° FTS-multivariate T1 displays predictions from the

first differential degree FTS model.

° FTS-multivariate T2 displays predictions from the
second differential degree FTS model.

° Linear regression and Decision tree columns
present the predictions from the respective benchmark
algorithms.

As observed in Table 3, a preliminary visual inspection
suggests that the FTS-multivariate models, particularly
FTS-multivariate T2, exhibit predictions that are
remarkably close to the baseline values. In contrast, the
linear regression model appears to deviate more
significantly from the baseline. However, a quantitative
evaluation is necessary to provide a definitive assessment
of each model's performance.

3.2 Quantitative Evaluation Results

The performance of all models was rigorously assessed
using a suite of regression evaluation metrics: Mean
Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), R-squared (R2), and Adjusted R-squared.

3.2.1 MAE and MAPE Evaluation

Figures 3(a) and 3(b) graphically represent the Mean
Absolute Error (MAE) and Mean Absolute Percentage
Error (MAPE) results, respectively. Lower values for both
MAE and MAPE indicate higher prediction accuracy.

° MAE Results (Figure 3a):

o FTS-multivariate T2: Achieved the lowest MAE of
0.0033. This indicates that, on average, the model's
predictions deviated by a mere 0.0033 units from the
actual water quality baseline.

o Decision Tree: Ranked second with an MAE of
0.0257.

o FTS-multivariate T1: Followed with an MAE of
0.1697.
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o Linear Regression: Demonstrated the highest
error, with a significantly large MAE of 4.0155.

° MAPE Results (Figure 3b):

o FTS-multivariate T2: Exhibited an exceptionally
low MAPE of 0.01704%. This translates to an accuracy of
over 99.98%, signifying outstanding predictive precision.

o Decision Tree: Ranked second with a MAPE of
0.13410%.

o FTS-multivariate T1: Achieved a MAPE of
0.88397%.

o Linear Regression: Showed a substantially high
MAPE of 20.91791%, indicating a very poor fit to the
data.

These results unequivocally highlight FTS-multivariate
T2 as the superior model in terms of both absolute and
percentage error, demonstrating its high regression
accuracy in predicting water quality.

3.2.2 MSE and RMSE Evaluation

Figures 4(a) and 4(b) illustrate the Mean Squared Error
(MSE) and Root Mean Squared Error (RMSE) results,
respectively. These metrics heavily penalize larger
errors, providing insight into the presence of significant
deviations. Lower values are desirable.

° MSE Results (Figure 4a):

o FTS-multivariate T2: Recorded the lowest error
penalty with an MSE of 0.0049.

o Decision Tree: Followed with an MSE of 0.0783.
o FTS-multivariate T1: Showed an MSE of 0.4598.

o Linear Regression: Exhibited an extremely high
MSE of 70.9747, further emphasizing its inability to
accurately model the water quality data.

° RMSE Results (Figure 4b):

o The RMSE results mirrored the MSE findings,
providing a more interpretable error magnitude in the
original units. FTS-multivariate T2 maintained its lead
with the lowest RMSE (not explicitly stated in the
provided text for FTS-T2, but visually implied as the
lowest bar, confirming its superiority from MSE). Linear
regression again showed the highest RMSE, indicating
substantial deviations from the actual values. The visual
representation in Figure 4(b) reinforces that FTS-
multivariate T2 has the lowest root mean squared error,
signifying the smallest average magnitude of errors.

These results consistently indicate that FTS-multivariate
T2 not only achieves lower average errors but also
effectively minimizes the impact of larger errors,
signifying a highly robust and precise prediction model.

3.2.3 R-squared (R2) and Adjusted R-squared Evaluation
Figures 5(a) and 5(b) present the R2 and Adjusted R2

values, respectively. These metrics quantify how well the
models explain the variance in the water quality baseline,
with higher values (closer to 1) indicating a better fit.

° R2 Results (Figure 5a):

o FTS-multivariate T2: Achieved a near-perfect R2 of
0.99993. This implies that almost 100% of the variance in
the water quality baseline can be explained by this model's
predictions.

o Decision Tree: Followed closely with an R2 of
0.99889.

o FTS-multivariate T1: Showed a high R2 of 0.99351.

o Linear Regression: Performed exceptionally poorly
with an R2 of -0.00174. A negative R2 indicates that the
model provides a worse fit than simply using the mean of
the dependent variable, highlighting its complete
inadequacy for this dataset.

° Adjusted R2 Results (Figure 5b):

o The Adjusted R2 results closely aligned with the R2
values, confirming the high explanatory power of the FTS-
multivariate and Decision Tree models. FTS-multivariate
T2 remained the top performer with 0.99993, followed by
Decision Tree (0.99889) and FTS-multivariate T1
(0.99351).

o Linear Regression again yielded a negative
adjusted R2 of -0.00223, reaffirming its poor performance.

These R2 and Adjusted R2 values corroborate the error
metrics, establishing FTS-multivariate T2 as the most
accurate and explanatory model among those evaluated.

3.3 Prediction Comparison with Baseline

To provide a visual and intuitive validation of the
quantitative results, Figure 6 illustrates a sample of 100
sequenced prediction results from each model against the
water quality baseline (referred to as "Original Data").

° Figure 6 visually confirms the superior
performance of FTS-multivariate T2. Its prediction line
(blue line) almost perfectly overlaps with the baseline
(orange dashed line), indicating highly precise forecasts.

° FTS-multivariate T1 (red dashed line) also shows a
good fit but with slightly more noticeable deviations
compared to T2.

° The Decision Tree model (green dotted line)
generally follows the trend but with more pronounced
fluctuations and less precision.

° In stark contrast, the Linear Regression model
(purple solid line) shows significant and consistent
deviations from the baseline, often failing to capture the
underlying patterns and exhibiting very poor predictive
accuracy.

° A specific example at timestep 27 further highlights
these differences:
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o Original Data (Baseline): 29.2362
o FTS-multivariate T2: 29.2362 (Precise match)
o FTS-multivariate T1: 29.2389 (Very close)

o Decision Tree: 30.5334 (Reasonably close but
with a larger deviation)

o Linear Regression: 19.0401 (Significantly off)

This visual validation strongly supports the statistical
findings, affirming that FTS-multivariate T2 provides
highly accurate regression predictions consistent with
the fuzzy logic baseline.

3.4 Cross-Validation Results

To assess the consistency and generalizability of the
proposed models, a 5-fold cross-validation was
performed. The results reinforced the superior and
stable performance of the FTS-multivariate T2 model:

° FTS-multivariate T2: Achieved an average
accuracy of 99.98% across the 5 folds, with an
exceptionally low average error percentage of 0.016%.
This demonstrates the model's remarkable stability and
reliability on unseen data, confirming its robust
performance regardless of varying training and test
dataset lengths.

° FTS-multivariate T1: Showed an average accuracy
of 99.13%, with an average error rate of 0.867%. While
still good, it performed notably less accurately than T2.

The cross-validation results provide strong evidence that
the FTS-multivariate T2 model is not only accurate on the
initial dataset but also robust and consistent across
different partitions of the data, reinforcing its practical
viability for real-world deployment in dynamic
aquaculture environments.

DISCUSSION

The comprehensive evaluation of the proposed hybrid
[oT and multivariate fuzzy time series (FTS) system for
Arowana water quality forecasting reveals several
significant findings and implications. This section
interprets the results, compares them with previous
research, discusses the theoretical and practical
implications, outlines the strengths and weaknesses of
the approach, and suggests avenues for future research.

4.1 Interpretation of Results

The empirical results consistently demonstrate the
superior performance of the FTS-multivariate T2 model
in predicting Arowana water quality. With an
impressively low Mean Absolute Percentage Error
(MAPE) of 0.01704% (translating to over 99.98%
accuracy) and minimal Mean Absolute Error (MAE) of
0.0033, this model significantly outperformed all other
evaluated algorithms, including Decision Tree, FTS-
multivariate T1, and particularly Linear Regression.
Similarly, the Root Mean Squared Error (RMSE) and
Mean Squared Error (MSE) values for FTS-multivariate

T2 were the lowest, indicating its robustness against
larger prediction errors. The near-perfect R2 and Adjusted
R2 scores (0.99993) further affirm that FTS-multivariate
T2 can explain almost all the variance in the water quality
baseline, signifying an excellent fit to the complex
temporal patterns of water parameters.

This exceptional accuracy is further validated by the visual
comparison (Figure 6), where the FTS-multivariate T2
predictions almost perfectly align with the actual water
quality baseline. The consistent performance observed
during the 5-fold cross-validation (average accuracy of
99.98% for FTS-multivariate T2) underscores the model's
stability and generalizability, assuring its reliability on
unseen and dynamic data.

The marked difference in performance between FTS-
multivariate T2 and FTS-multivariate T1 provides a crucial
insight. The superior accuracy of T2, which was trained on
the dataset's second differential degree, suggests that
applying a higher degree of differencing effectively
removed more underlying trends and non-stationarities
from the time series data. This enabled the T2 model to
better capture the underlying seasonal or cyclical patterns
inherent in the water quality fluctuations, which are
essential for accurate short-term forecasting. In contrast,
the first differential degree in T1 likely left some residual
trends, making it less effective in identifying the true
seasonality, thus leading to a slightly higher error rate.
This highlights the importance of proper data
preprocessing, particularly differencing, in optimizing FTS
model performance for non-stationary environmental
time series.

The poor performance of linear regression, as evidenced
by its high error rates and negative R2 values, is expected.
Water quality dynamics in biological systems are
inherently non-linear, influenced by complex interactions
between multiple parameters and environmental factors.
Linear regression, by its nature, assumes linear
relationships between variables [25], [26], which is
inadequate for modeling such complexity and the inherent
vagueness of environmental data, which fuzzy logic is
designed to address. Decision tree models, while more
capable of capturing non-linear relationships than linear
regression, still operate on crisp partitions of data, which
may not fully represent the nuanced and uncertain nature
of water quality parameters, leading to its performance
being good but still inferior to FTS-multivariate T2 in this
context [27], [29].

4.2 Comparison with Past Studies

This study directly addresses a critical limitation identified
in many prior works on IoT-based aquaculture
monitoring. As highlighted in the introduction, numerous
existing models successfully leverage IoT for real-time
data acquisition and monitoring [8], [9], [10], [11]. These
advancements have undoubtedly improved the efficiency
of data collection and reduced manual labor. However,
their primary function is to report current conditions or
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trigger alerts after a parameter has crossed a predefined
threshold. This inherently reactive approach means that
cultivators are often responding to problems that have
already begun to manifest [13].

The novel contribution of this research lies in moving
beyond mere monitoring to proactive prediction. By
integrating an advanced multivariate fuzzy time series
algorithm with the IoT data stream, this system provides
cultivators with foresight. Instead of just knowing that
pH is currently low, they can be alerted that pH will be
critically low in the next few hours, allowing for
preventative measures. This predictive capability
directly solves the "missing prediction algorithm"
problem identified as a key research gap in previous
studies.

Furthermore, while fuzzy time series has been applied to
various forecasting problems, including environmental
and energy predictions [14], [15], [16], its specific
application in a multivariate context for Arowana water
quality, leveraging detailed IoT sensor data, represents a
unique contribution. The demonstrated high accuracy of
the FTS-multivariate T2 model, especially when
compared to common regression algorithms that have
been used for water quality prediction [28], [29],
validates the efficacy of the fuzzy logic approach for this
complex domain. The ability to predict a composite water
quality index, derived through fuzzification, also offers a
more holistic and actionable insight than predicting
individual parameters in isolation.

4.3 Theoretical and Practical Implications

The findings of this study carry significant implications
for both theoretical understanding and practical
application in the field of intelligent aquaculture.

4.3.1 Theoretical Implications

From a theoretical perspective, this research provides
strong empirical evidence for the robust capabilities of
fuzzy-based prediction algorithms. While fuzzy logic is
widely recognized for its ability to translate numerical
inputs into human-interpretable linguistic terms
(fuzzification) and to handle imprecise information [18],
[19], its potential as a standalone regression prediction
algorithm is often underestimated. This study
successfully demonstrates that fuzzy time series,
particularly in its multivariate form with appropriate
data differencing, can achieve exceptionally high
predictive accuracy for complex, non-linear, and non-
stationary time series data found in environmental
monitoring. This contributes to the growing body of
literature that supports the use of soft computing
techniques like fuzzy logic for sophisticated analytical
tasks beyond mere classification or control. It highlights
FTS as a viable and often superior alternative to
traditional statistical or crisp machine learning models
when dealing with systems characterized by inherent
vagueness and uncertainty. The effectiveness of the
second degree of differentiation in achieving stationarity

and improving prediction accuracy for the FTS models also
provides a valuable methodological insight for future FTS
applications in similar domains.

4.3.2 Practical Implications

On a practical front, the proposed [0T-FTS system offers
transformative benefits for Arowana cultivators and the
aquaculture industry at large:

° Proactive Management: The most significant
practical implication is the shift from reactive to proactive
water quality management. Cultivators are no longer
forced to wait for problems to occur. Instead, they receive
early warnings, enabling them to implement preventative
measures before critical thresholds are breached. This
foresight allows for scheduled interventions rather than
emergency responses, significantly reducing stress on
both fish and farmers.

° Reduced Mortality Rates and Economic Loss: By
allowing for timely adjustments (e.g., aeration, partial
water changes, feeding modifications), the system directly
contributes to maintaining optimal conditions, which in
turn minimizes stress, prevents disease outbreaks, and
consequently reduces Arowana mortality rates. This
translates directly into substantial economic benefits for
cultivators, improving profitability and ensuring the
sustainability of their operations.

° Optimized  Resource Utilization:  Proactive
management based on precise predictions can lead to
more efficient use of resources. For example, aeration
systems can be activated precisely when DO levels are
predicted to drop, rather than running continuously or
being turned on only in an emergency, leading to energy
savings. Similarly, water changes can be scheduled more
effectively, conserving water resources.

° Enhanced Fish Health and Growth: Consistent
optimal water quality, facilitated by predictive analytics,
promotes healthier fish, better growth rates, and overall
vitality, contributing to higher market value of the
Arowana.

° Remote Monitoring and Accessibility: The cloud-
based platform and RESTful API ensure that cultivators
can monitor their tanks and receive predictions remotely
via web or mobile applications. This drastically improves
convenience and responsiveness, allowing for effective
management even when physically away from the
cultivation site.

° Data-Driven Decision Making: The system
generates a rich dataset of historical water quality
parameters and their corresponding predictions. This data
can be further analyzed to identify long-term trends,
optimize cultivation protocols, and improve overall farm
management strategies based on empirical evidence.

In essence, the proposed model provides a sophisticated,
data-driven resource that empowers cultivators with the
necessary intelligence to manage Arowana aquaculture
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with unprecedented precision and foresight, moving
towards more sustainable and economically viable
practices.

4.4 Strengths and Weaknesses

The evaluation and validation phases reveal both
compelling strengths and identifiable weaknesses of the
proposed [0T-FTS system.

4.4.1 Strengths

° High Predictive Accuracy: The foremost strength
is the exceptionally high predictive accuracy of the FTS-
multivariate T2 model, as consistently demonstrated by
its low MAE, MAPE, MSE, RMSE, and near-perfect R2
scores. This level of precision is critical for sensitive
aquaculture applications where even small deviations
can have significant consequences.

° Robustness to Vagueness and Uncertainty: Fuzzy
time series models inherently excel at handling
imprecise, vague, and non-linear data, which are
common characteristics of environmental parameters.
This makes them particularly well-suited for water
quality forecasting compared to crisp models that might
struggle with such data characteristics.

° Multivariate Capability: The ability of the model to
incorporate  multiple interacting water quality
parameters simultaneously (pH, temperature, turbidity,
dissolved oxygen, conductivity) is a significant strength.
It accounts for the complex interdependencies within the
aquatic ecosystem, leading to more holistic and accurate
predictions than univariate approaches.

° Scalability: The FTS-multivariate model (both T1
and T2) demonstrates considerable flexibility regarding
scalability. As long as the necessary dataset and sensors
are available, it can be implemented in larger aquariums
or even commercial-scale aquaculture farms with only
minor adjustments. The aggregation of data from

multiple sensors across a larger facility is a
straightforward extension.
° Adaptability: The continuous learning

mechanism, where the FTS model updates its fuzzy
logical relationships with new data arriving from the IoT
system, ensures that the model remains adaptive to
subtle changes in the cultivation environment over time,
maintaining its predictive power.

° Proactive Management Enablement: This is a core
strength, shifting the paradigm from reactive problem-
solving to preventative action, leading to improved
outcomes for fish health and cultivator economics.

4.4.2 Weaknesses

) Data Dependency: Like most data-driven models,
the accuracy and robustness of the fuzzy time series
model are heavily dependent on the quality, quantity, and
representativeness of the historical data used for
training. Insufficient, noisy, or incomplete datasets can

impair its predictive capability. The initial data collection
phase requires significant effort and a controlled
environment.

° Specific to Time Series Data: The FTS algorithm is
inherently designed for time series data. It is unsuitable for
other types of datasets, such as image data, or
unstructured text. This limits its direct applicability
outside of temporal prediction tasks.

° Domain Specificity (Initial Training): While
scalable, the model, once trained, is curated with the
specific characteristics of Arowana water parameters and
optimal ranges. Applying it directly to other types of fish
or different aquaculture systems without retraining with a
proper, relevant dataset is not recommended, as the
optimal parameters and their interrelationships can vary
significantly across species and environments.

° Complexity of Fuzzification and Defuzzification:
While powerful, the processes of defining universes of
discourse, membership functions, and defuzzification
methods require expert knowledge and careful tuning.
Improper configuration can negatively impact model
performance.

° Computational Resources: For very large datasets
and highly complex multivariate FTS models, the
computational resources required for training and real-
time prediction in a cloud environment, while manageable,
still need to be considered.

4.5 Future Study

Building upon the success of this hybrid [oT-FTS system,
several promising avenues for future research and
development can be explored to further enhance its
capabilities and broaden its applicability:

° Expanded Parameter Integration: Future studies
could incorporate a wider array of critical water quality
parameters, such as ammonia, nitrite, and nitrate levels.
These nitrogenous compounds are highly toxic to fish and
their inclusion would provide an even more
comprehensive predictive model, allowing for earlier
detection and mitigation of potential poisoning risks.

° Automated Control Mechanisms: The ultimate goal
for intelligent aquaculture is a fully autonomous system.
Integrating the predictive forecasting with automated
control mechanisms represents a logical next step. For
example, if the system predicts a drop in dissolved oxygen,
it could automatically trigger aeration pumps. Similarly, a
predicted rise in ammonia could activate automated water
exchange systems or biofiltration. This would create a

closed-loop feedback system, minimizing manual
intervention.
° Hybrid Forecasting Models: Investigating more

advanced fuzzy time series algorithms or developing
hybrid models that combine FTS with other machine
learning or deep learning techniques could further
enhance forecasting accuracy and efficiency. For instance,
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combining FTS with Long Short-Term Memory (LSTM)
networks, Autoregressive Integrated Moving Average
(ARIMA), or Seasonal Autoregressive Integrated Moving
Average (SARIMA) could leverage the strengths of both
approaches, particularly for capturing long-term
dependencies and complex non-linear patterns [27],
[28], [29].

° Real-time Adaptive Learning: While the current
model updates its relationships, exploring online
learning algorithms that allow the FTS model to adapt its
parameters or fuzzy sets in real-time with continuous
data streams could improve its responsiveness to

unforeseen environmental changes or long-term
systemic shifts in the aquaculture setup.
° Advanced User Interface and Alerting: Developing

a more sophisticated and user-friendly mobile
application with customizable dashboards, advanced
visualization tools (e.g., interactive charts, heatmaps of
water quality), and intelligent alerting systems (e.g., push
notifications, SMS alerts) would significantly enhance the
system's accessibility and utility for cultivators. This
could also include scenario planning tools based on
predictions.

° Multi-Tank Management and Spatial Analysis: For
larger aquaculture operations with multiple tanks, future
work could focus on extending the system to manage
multiple cultivation units simultaneously. This would
involve incorporating spatial analysis to identify

localized issues or propagate conditions across
interconnected systems.
° Economic Impact Assessment: Conducting

detailed longitudinal studies to quantify the tangible
economic benefits (e.g, reduced feed waste, lower
electricity consumption, increased survival rates, higher
yields) resulting from the deployment of such predictive
systems in commercial Arowana farms would provide
robust justification for wider adoption.

° Sustainability and Environmental Impact: Further
research could delve into how such intelligent systems
contribute to the broader goals of sustainable
aquaculture, including reduced water usage, minimized
chemical inputs, and overall environmental footprint
reduction.

By pursuing these future research directions, the
proposed [oT-FTS framework can evolve into an even
more powerful and indispensable tool for intelligent
aquaculture, ensuring the long-term viability and
productivity of Arowana cultivation.

CONCLUSION

Water quality stands as the paramount determinant of
Arowana fish health, growth, and survival. The intricate
balance of key parameters—pH, temperature, turbidity,
dissolved oxygen, and conductivity—is crucial, and
imbalances can lead to increased mortality rates and
significant economic losses for cultivators. While

previous studies have made strides in real-time
monitoring using [oT technologies, a critical gap remained
in their predictive capabilities, leaving cultivators in a
reactive position.

This study successfully addressed this fundamental
challenge by designing and rigorously evaluating a novel
predictive model that seamlessly integrates the Internet of
Things (IoT) with a multivariate fuzzy time series (FTS)
algorithm. The IoT infrastructure enabled continuous,
robust, and real-time acquisition of essential water quality
data, providing an unprecedented level of insight into the
aquatic environment. This data then served as the
foundation for the sophisticated FTS-multivariate T2
model, which effectively captured the complex, non-linear,
and often vague relationships within the water quality
parameters.

The comprehensive evaluation, employing metrics such as
MAE, MAPE, MSE, RMSE, and R-squared, unequivocally
demonstrated the superior performance of the FTS-
multivariate T2 model. It achieved an exceptionally low
Mean Absolute Percentage Error (MAPE) of 0.01704%,
signifying a prediction accuracy of over 99.98%. This
performance significantly surpassed that of benchmark
algorithms, including Decision Tree (MAPE 0.13410%),
FTS-multivariate T1 (MAPE 0.88397%), and particularly
Linear Regression (MAPE 20.91791%). The visual
validation and robust cross-validation results further
reinforced the model's consistency and generalizability
across different data subsets.

In conclusion, the proposed FTS-multivariate T2 model is
not only highly capable of accurately forecasting Arowana
water quality but also offers a remarkably lower mean
absolute percentage error compared to other predictive
algorithms. This hybrid [oT-FTS framework represents a
pivotal advancement in intelligent aquaculture. By
empowering cultivators with proactive insights into future
water conditions, it enables timely interventions,
minimizes environmental stress on the fish, reduces
mortality rates, optimizes resource utilization, and
ultimately fosters more efficient, sustainable, and
economically viable Arowana cultivation practices. This
research underscores the transformative potential of
integrating cutting-edge data science with environmental
monitoring for the benefit of both conservation and
industry.
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