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ABSTRACT 

 
Arowana (Scleropages formosus) cultivation is a challenging endeavor, largely due to the species' sensitivity to water 
quality fluctuations. Traditional manual monitoring methods are often inefficient, prone to human error, and lack the 
foresight needed for proactive management. This article presents a novel approach to water quality management in 
arowana aquaculture by integrating real-time monitoring capabilities of the Internet of Things (IoT) with advanced 
predictive analytics using multivariate fuzzy time series (FTS) models. The proposed system continuously collects critical 
water parameters such as pH, dissolved oxygen (DO), temperature, turbidity, and conductivity. These real-time data 
streams are then fed into a sophisticated fuzzy time series model that forecasts future water conditions, enabling 
cultivators to anticipate and mitigate potential issues before they impact fish health. The implementation demonstrates 
the efficacy of a hybrid IoT-FTS framework in providing timely, data-driven insights for optimizing Arowana cultivation 
environments, contributing significantly to sustainable aquaculture practices and reducing economic losses associated 
with poor water quality. Through rigorous evaluation and validation, the proposed FTS-multivariate T2 model 
demonstrated superior performance, achieving an exceptionally low error rate, outperforming traditional regression 
models. 

Keywords: Arowana, Water Quality, Internet of Things (IoT), Fuzzy Time Series (FTS), Predictive Modeling, Aquaculture, 
Multivariate Analysis, Environmental Monitoring, Sensor Networks. 

 

INTRODUCTION 

1.1 Importance of Arowana Aquaculture 

Arowana, particularly the Asian Arowana (Scleropages 

formosus), holds a unique position in both ecological 

conservation and economic markets. Ecologically, it is 

recognized as an endangered species, making its 

sustainable cultivation paramount for its survival and 

biodiversity preservation [1]. Economically, the Arowana 

is a highly coveted ornamental fish, especially in Asian 

markets, commanding premium prices due to its 

aesthetic appeal and cultural significance, often 

associated with prosperity and good fortune. This high 

demand has propelled its aquaculture into a significant, 

albeit complex, industry [2]. The intricacies of Arowana 

cultivation stem primarily from the species' extreme 

sensitivity to environmental conditions, necessitating 

precise control over their aquatic habitat. 

1.2 Challenges in Traditional Water Quality 

Management 

Successful Arowana aquaculture is inextricably linked to 

maintaining impeccable water quality. Key 

environmental parameters—such as dissolved oxygen 

(DO) levels, pH, temperature, turbidity, and 

conductivity—must remain within narrow optimal ranges 

for the fish to thrive [3]. Deviations from these ideal 

conditions, even minor ones, can induce severe stress, 

impair growth, compromise immune systems, lead to 

disease outbreaks, and ultimately result in high mortality 

rates. Such losses translate directly into substantial 

economic setbacks for cultivators. 

Historically, water quality monitoring in aquaculture has 

relied on manual methods, involving periodic collection of 

water samples and their subsequent analysis using 

handheld sensors or laboratory tests. This traditional 

approach, while fundamental, suffers from several critical 

drawbacks. Firstly, it is inherently labor-intensive and 

time-consuming, requiring significant human effort to 

collect, transport, and analyze samples. Secondly, it 

provides only sporadic "snapshots" of water conditions. 

Given the dynamic nature of aquatic ecosystems, where 

parameters can fluctuate rapidly due to biological 

processes, feeding, or environmental changes, these 

infrequent measurements often fail to capture critical, 

fast-developing trends or sudden deteriorations [4]. This 

reactive mode of management means that corrective 

actions are often initiated after a problem has manifested, 
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rather than proactively preventing it. Furthermore, 

manual data recording and human judgment are 

susceptible to error, potentially leading to inaccurate 

assessments and suboptimal interventions [4], [13]. The 

inability to continuously monitor and predict changes 

leaves cultivators vulnerable to unexpected crises and 

significant economic losses. 

1.3 Role of Internet of Things (IoT) in Aquaculture 

Monitoring 

The emergence of the Internet of Things (IoT) has 

presented a revolutionary paradigm for environmental 

monitoring and management across various sectors, 

including aquaculture. IoT systems leverage networks of 

interconnected physical devices equipped with sensors, 

software, and other technologies to collect and exchange 

data over the internet [6]. In aquaculture, this translates 

into the deployment of smart sensors that can 

continuously and autonomously measure water quality 

parameters in real-time. These devices can transmit data 

wirelessly to a central server or cloud platform, 

providing cultivators with an always-on, comprehensive, 

and up-to-date view of their aquatic environment [5], [7]. 

Several studies have explored the application of IoT in 

aquaculture, demonstrating its potential to automate 

monitoring tasks and enhance farm management 

efficiency. For instance, early models integrated 

ultrasonic sensors and Arduino boards for basic 

aquarium condition monitoring [8], which later evolved 

to include pH, temperature, and turbidity sensors for 

more comprehensive surveillance [9]. Subsequent 

advancements led to the development of IoT-based water 

quality monitoring systems, such as SIMONAIR, designed 

specifically for Arowana cultivation [10], and systems 

capable of integrating with cloud services like 

Thingspeak for accurate data measurements [11]. These 

advancements have significantly reduced the need for 

constant manual checks, freeing up cultivators' time and 

improving the frequency and consistency of data 

collection. 

However, a notable limitation of many existing IoT 

implementations in aquaculture is their primary focus on 

monitoring current conditions. While providing real-

time data is a significant improvement, it still largely 

supports a reactive management approach. For optimal 

outcomes, especially with sensitive species like Arowana, 

the ability to predict future water quality states is 

indispensable. 

1.4 The Need for Predictive Analytics: Fuzzy Time 

Series 

To move beyond mere monitoring and enable proactive 

water quality management, predictive analytics becomes 

essential. This is where advanced forecasting models, 

such as Fuzzy Time Series (FTS), play a crucial role. 

Traditional time series forecasting methods, like ARIMA 

or exponential smoothing, often rely on assumptions of 

linearity, stationarity, or precise numerical data [14], 

[25], [26]. However, environmental data, particularly in 

complex biological systems like aquaculture, is frequently 

characterized by inherent uncertainties, vagueness, and 

non-stationarity [15], [17]. Measurements can be 

imprecise, and the relationships between parameters 

might be non-linear and difficult to define with crisp 

numerical values. 

Fuzzy logic, first introduced by Lotfi Zadeh, provides a 

powerful framework for dealing with imprecision, 

uncertainty, and qualitative information [18], [19]. Fuzzy 

time series models extend this concept to temporal data, 

allowing for the representation of data points as fuzzy sets 

rather than crisp numbers. This approach enables the 

model to capture and process linguistic variables (e.g., 

"water temperature is warm," "DO is low") that better 

reflect human expert knowledge and the inherent 

fuzziness of natural phenomena [16]. FTS models have 

demonstrated robust performance in various forecasting 

applications, including non-stationary environmental data 

and solar energy prediction, proving their adaptability and 

accuracy in complex, real-world scenarios [14], [15], [16]. 

1.5 Research Gap and Contribution 

Despite the individual progress in IoT-based monitoring 

and the proven capabilities of fuzzy time series in 

forecasting, there remains a significant research gap 

concerning their integrated application for predictive 

water quality management specifically in Arowana 

aquaculture. While some studies have implemented IoT 

for Arowana water quality monitoring [7], [10], they 

typically lack sophisticated predictive algorithms that can 

forecast future conditions. Existing models often provide 

real-time alerts when thresholds are breached, but they do 

not offer the foresight needed to prevent these breaches 

from occurring in the first place [13]. Furthermore, the 

application of multivariate fuzzy time series, which 

considers the interdependencies between multiple water 

quality parameters for more accurate prediction, has not 

been thoroughly explored in this specific domain. 

This article aims to bridge this critical gap by proposing 

and rigorously evaluating a novel hybrid system. This 

system integrates an IoT infrastructure for continuous, 

real-time data collection of multiple water quality 

parameters (pH, temperature, turbidity, dissolved oxygen, 

and conductivity) with a multivariate fuzzy time series 

(FTS) model designed for comprehensive predictive 

analytics. The primary contribution of this study is the 

development and validation of an FTS-multivariate T2 

model, which demonstrates superior performance in 

forecasting Arowana water quality, enabling proactive 

management strategies that significantly enhance the 

sustainability and efficiency of aquaculture operations. By 

providing accurate predictions, this research empowers 

cultivators to mitigate risks, optimize resource utilization, 

and ultimately improve the survival rates and economic 

viability of Arowana farming. 

METHODS 
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This section details the methodologies employed in 

developing and evaluating the integrated IoT and 

multivariate fuzzy time series forecasting system for 

Arowana cultivation. It encompasses the system 

architecture, data acquisition strategies, the intricacies of 

the fuzzy time series model, and the performance 

evaluation metrics used. 

2.1 IoT System Architecture for Water Quality 

Monitoring 

The proposed IoT system is designed for continuous, 

automated, and real-time monitoring of crucial water 

quality parameters within Arowana cultivation tanks. Its 

architecture is modular, comprising sensing units, a 

microcontroller for data processing, a robust data 

transmission mechanism, and a centralized cloud-based 

platform for data storage, analysis, and user interaction. 

The overall schematic for data gathering and the 

prediction node is conceptually illustrated in Figure 1. 

2.1.1 Sensing Units 

A comprehensive suite of specialized sensors is deployed 

directly within the Arowana cultivation environment to 

capture a broad spectrum of water quality indicators. The 

selection of these sensors is based on their accuracy, 

long-term stability, and suitability for continuous 

immersion in aquatic habitats. The sensors include: 

● pH Sensor (e.g., PH-4502C): This sensor measures 

the hydrogen-ion concentration in the water, providing 

an indication of its acidity or alkalinity. Maintaining 

optimal pH levels is paramount for Arowana health, as 

deviations can significantly impact their physiological 

functions and susceptibility to disease [7]. 

● Dissolved Oxygen (DO) Sensor: This sensor 

quantifies the amount of oxygen dissolved in the water. 

DO is a primary determinant of aquatic life survival; 

insufficient levels can lead to severe stress and mortality 

in fish, including Arowana. 

● Temperature Sensor (e.g., DS18B20): This sensor 

measures the water temperature. Water temperature 

profoundly influences Arowana's metabolic rate, 

appetite, growth, immune response, and the solubility of 

gases like oxygen in water. 

● Turbidity Sensor: This sensor measures the 

clarity of the water, specifically the amount of light 

scattered or absorbed by suspended particles. High 

turbidity can indicate excess organic matter, algal 

blooms, or other pollutants, affecting fish respiration and 

light penetration for aquatic plants. 

● Conductivity Sensor (e.g., Analog Total Dissolved 

Solids - TDS sensor): This sensor measures the electrical 

conductivity of the water, which is directly related to the 

concentration of dissolved inorganic solids (salts). While 

Arowana are freshwater fish, monitoring conductivity 

provides insights into overall water purity and mineral 

content, and can alert to significant chemical changes. 

Each sensor is carefully calibrated to ensure accurate 

readings throughout its operational lifespan. Regular 

maintenance and recalibration protocols are established 

to preserve data integrity. 

2.1.2 Microcontroller and Local Processing 

The NodeMCU ESP8266 development board serves as the 

central intelligent hub for the IoT node [12]. This 

microcontroller was chosen due to its integrated Wi-Fi 

capabilities, which eliminate the need for external 

communication modules, simplifying the hardware setup. 

Its low power consumption is crucial for continuous 

operation in remote or off-grid aquaculture settings. The 

ESP8266's processing power is sufficient to handle 

simultaneous readings from multiple analog and digital 

sensors, perform initial data pre-processing, and manage 

wireless communication protocols. 

The microcontroller is programmed with embedded C++ 

(using the Arduino IDE environment) to perform the 

following local processing tasks: 

● Sensor Interfacing: Reading raw analog or digital 

signals from each connected sensor. 

● Data Conversion and Calibration: Converting raw 

sensor signals into meaningful physical units (e.g., mV to 

pH, raw ADC values to turbidity units, Ohm to 

conductivity/TDS). This involves applying specific 

calibration curves or formulas unique to each sensor. 

● Noise Filtering: Implementing basic digital filters 

(e.g., moving average, median filter) to reduce transient 

noise and improve the stability of sensor readings. This 

ensures that only reliable data is transmitted. 

● Data Aggregation: Periodically (e.g., every 5 

seconds, as in this study [17]) collecting and bundling 

readings from all sensors into a single data packet. This 

sampling interval is critical for capturing dynamic changes 

without overwhelming the network or cloud 

infrastructure. 

2.1.3 Data Transmission 

The NodeMCU utilizes its integrated Wi-Fi module to 

establish a connection to a local network and transmit the 

processed water quality data wirelessly to a designated 

cloud-based server. Data transmission is primarily 

facilitated via standard HTTP/HTTPS protocols, 

interacting with a RESTful API endpoint exposed by the 

server [21], [22]. This choice ensures secure and efficient 

data transfer, allowing for robust communication even 

across geographically dispersed cultivation sites. Each 

data packet includes a timestamp, aligning with the time-

series nature of the data. 

2.1.4 Cloud-based Platform 

The cloud-based platform is the central repository and 

processing hub for all collected data. Its architecture is 

designed for scalability, accessibility, and robust data 

management. 
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● Cloud Database: Upon receipt, the transmitted 

sensor data is stored in a scalable cloud database (e.g., 

Google Firestore, AWS DynamoDB). The choice of a 

NoSQL database is often advantageous for time-series 

data due to its flexible schema and ability to handle high 

ingest rates. Each record in the database includes the 

timestamp, sensor ID, and all measured parameter values 

(pH, temperature, turbidity, dissolved oxygen, 

conductivity). A sample of the gathered data, formatted 

with UNIX epoch timestamps, is provided in Table 1, 

showcasing the raw input to the system. 

● RESTful API Backend: A backend application, 

developed using frameworks like Python/Flask or 

Node.js/Express, exposes a RESTful API [21], [22]. This 

API serves multiple purposes: 

○ Receiving and validating incoming data from IoT 

nodes. 

○ Storing validated data in the cloud database. 

○ Providing endpoints for the fuzzy time series 

model to fetch historical data for training and current 

data for real-time forecasting. 

○ Exposing forecasting results for the user interface. 

● Fuzzy Time Series Forecasting Module: The core 

predictive analytics component, the multivariate fuzzy 

time series (FTS) model, resides and operates within this 

cloud environment. It continuously accesses the latest 

incoming data and historical records to perform its 

forecasting computations. 

● User Interface (UI) / Dashboard: A web-based 

(and potentially mobile) user interface provides 

cultivators with a comprehensive and intuitive view of 

their aquaculture environment. This dashboard displays: 

○ Real-time readings of all water quality 

parameters. 

○ Historical trends and graphical representations of 

data. 

○ The forecasted water quality values for upcoming 

periods. 

○ Alerts and notifications when predicted values 

approach critical thresholds. 

This remote accessibility empowers cultivators to 

monitor and manage their operations from anywhere, at 

any time. 

2.2 Multivariate Fuzzy Time Series (FTS) Forecasting 

Model 

The predictive intelligence of the system is underpinned 

by a multivariate fuzzy time series (FTS) model. FTS is 

particularly well-suited for environmental data, which 

often exhibits characteristics of vagueness, imprecision, 

and non-stationarity that traditional crisp time series 

models struggle to manage [14], [18]. Unlike 

conventional statistical models that require precise 

numerical inputs and clear linear relationships, FTS 

leverages fuzzy logic to process linguistic variables and 

handle inherent uncertainties, making it robust for 

complex ecological systems. This study implemented two 

versions of the FTS model, namely FTS-multivariate T1 

and FTS-multivariate T2, based on different degrees of 

data differentiation. 

The prediction mechanism from an IoT node to the server 

and its database is illustrated conceptually in Figure 2. The 

IoT node sends the five water quality parameters (pH, 

temperature, turbidity, dissolved oxygen, and 

conductivity) to the server via the REST protocol. Upon 

receiving the data, the server performs the prediction 

using the pre-trained FTS model and subsequently stores 

the prediction results in its database. 

The development of the multivariate FTS model involves a 

sequence of structured steps, ensuring robust and 

accurate forecasting: 

2.2.1 Data Fuzzification 

The initial and crucial step in FTS modeling is the 

transformation of crisp (numerical) input data, collected 

by the IoT sensors, into fuzzy sets. This process, known as 

fuzzification, allows the model to handle the inherent 

vagueness and qualitative aspects often associated with 

environmental parameters. 

● Universe of Discourse Definition: For each water 

quality parameter (pH, temperature, turbidity, dissolved 

oxygen, conductivity), a specific universe of discourse is 

defined. This represents the full range of possible values 

for that parameter. For example, pH might range from 0 to 

14, and temperature might range from 0∘C to 50∘C. 

● Partitioning into Linguistic Terms: The universe of 

discourse for each parameter is then partitioned into 

several fuzzy sets, or linguistic terms, such as "very low," 

"low," "optimal," "high," or "very high." Each linguistic 

term represents a qualitative state of the parameter. For 

example, for pH, terms like "Acid," "Neutral," and 

"Alkaline" are used. For temperature, "Cold," "Warm," and 

"Hot" are defined. Turbidity, dissolved oxygen, and 

conductivity are similarly categorized into "Low," 

"Medium," and "High" [Table 2]. 

● Membership Functions: Each fuzzy set is associated 

with a membership function (e.g., triangular, trapezoidal, 

or Gaussian). A membership function assigns a "degree of 

membership" (a value between 0 and 1) to each crisp data 

point, indicating how strongly that point belongs to a 

particular fuzzy set. For instance, a pH reading of 6.5 might 

have a high membership degree to "Neutral" and a lower 

degree to "Acid," rather than being strictly classified as one 

or the other. 

● Quality Fuzzification: Beyond the individual 

parameters, the study also fuzzifies a composite "water 

quality" output, ranging from 0 to 100. This output is 

categorized into "Poor" (0-35), "Fair" (32-75), and "Good" 

(72-100) [Table 2]. This enables the model to predict an 
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overall water quality index in addition to individual 

parameters, which is more intuitive for cultivators. 

2.2.2 Establishment of Fuzzy Logical Relationships 

(FLRs) 

Once the historical crisp data is converted into its fuzzy 

representation, the next step involves identifying and 

establishing the relationships between consecutive fuzzy 

states across multiple parameters. This is the core of how 

the FTS model learns patterns and predicts future states. 

● Multivariate Analysis: In a multivariate FTS 

model, the relationships are not just between sequential 

states of a single parameter but among the fuzzy states of 

all relevant parameters at different time points. For 

example, the model seeks to identify rules like: "IF (pH is 

'Acid' at time t) AND (DO is 'Low' at time t) AND 

(Temperature is 'Cold' at time t) THEN (Water Quality 

will be 'Poor' at time t+1)." 

● Rule Generation: FLRs are derived from analyzing 

the historical sequence of fuzzified data. This involves 

identifying common transitions between fuzzy states 

from one time step to the next. Various methods can be 

employed for generating these rules, such as direct 

mapping of observed sequences or clustering similar 

fuzzy state transitions. 

2.2.3 Grouping of Fuzzy Logical Relationships 

To enhance the robustness and generalization capability 

of the forecasting model, similar Fuzzy Logical 

Relationships (FLRs) are grouped together. This process 

helps to consolidate redundant or highly similar rules, 

creating a more concise and effective rule base for 

prediction. 

● Consolidation: Grouping can involve merging 

FLRs that lead to the same consequent fuzzy state, even 

if their antecedent fuzzy states are slightly different but 

conceptually close. This reduces the complexity of the 

rule base and can mitigate the impact of minor data 

fluctuations. 

● Improved Accuracy and Efficiency: A well-

grouped set of FLRs helps to improve the overall 

forecasting accuracy by providing more generalized and 

robust predictions, while also potentially reducing the 

computational overhead during the forecasting step. 

2.2.4 Forecasting 

The forecasting step uses the established and grouped 

FLRs to predict the future fuzzy state of the water quality 

parameters. 

● Current Fuzzy State Determination: For a given 

prediction, the current crisp water quality readings from 

the IoT sensors are first fuzzified to determine their 

current fuzzy state. 

● Matching with FLRs: This current fuzzy state (or a 

sequence of recent fuzzy states in higher-order FTS) is 

then matched against the rule base of established FLRs. 

● Consequent Identification: The consequent fuzzy 

set (the predicted fuzzy state for the next time step) from 

the matched FLR(s) is identified. If multiple FLRs match 

the current state, their consequent fuzzy sets might be 

combined using aggregation operators (e.g., fuzzy union or 

intersection, or weighted averages based on membership 

degrees). 

2.2.5 Defuzzification 

The final step in the FTS forecasting process is 

defuzzification, which converts the forecasted fuzzy set 

back into a crisp, numerical value that is directly 

interpretable and actionable for cultivators. 

● Conversion to Crisp Values: Various defuzzification 

methods can be employed, each with its own advantages: 

○ Centroid Method: This method calculates the 

center of gravity of the membership function of the 

consequent fuzzy set. It is widely used due to its intuitive 

nature and robustness. 

○ Weighted Average Method: This method calculates 

the weighted average of the membership values, where the 

weights are typically the midpoints of the fuzzy sets. 

● Actionable Predictions: The defuzzified output 

provides a precise numerical prediction for the future pH, 

DO, temperature, turbidity, and conductivity levels, as well 

as the overall water quality index. This allows cultivators 

to understand the predicted conditions and take precise 

proactive measures. 

2.2.6 Model Implementation and Differential Degrees 

The multivariate fuzzy time series models in this study 

were implemented using Python, leveraging the PyFTS 

library [20]. PyFTS provides a comprehensive set of 

functionalities for various FTS methods, simplifying the 

development and deployment process. 

Crucially, this study explored two distinct FTS-

multivariate models based on the degree of data 

differentiation applied to the dataset: 

● FTS-multivariate T1: This model was trained using 

the dataset's first differential degree. This process involves 

taking the difference between consecutive data points, 

which helps to remove trends and make the time series 

more stationary. 

● FTS-multivariate T2: This model was trained using 

the dataset's second differential degree. Applying a second 

differentiation further helps in removing residual trends 

and achieving a higher degree of stationarity and 

consistency in the time series patterns. Higher differential 

degrees are often employed when the underlying time 

series exhibits strong trends or non-linear patterns that 

persist even after a single differentiation. The choice 

between T1 and T2 is empirical and based on which 

transformation yields a more stationary and predictable 

series. 

After training, these FTS models were serialized and 
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exported into a binary format, allowing them to be loaded 

efficiently by the cloud server for real-time prediction 

without requiring retraining with every new data point. 

The models continuously learn and update their fuzzy 

logical relationships as new data arrives from the IoT 

system, enhancing their adaptive capabilities over time 

and ensuring their relevance to evolving cultivation 

conditions. 

2.3 Experimental Setup and Data Collection 

To ensure the robustness and practical applicability of 

the proposed system, a controlled experimental setup 

was established for data collection. 

● Cultivation Environment: Data was meticulously 

gathered from a small-sized aquarium housing one 

Arowana fish. This controlled environment allowed for 

precise monitoring and minimized external disturbances, 

ensuring that recorded fluctuations were primarily 

attributable to the intrinsic dynamics of the aquatic 

system and the fish's metabolic activities. 

● Sensor Configuration: The IoT node was equipped 

with the array of sensors described in Section 2.1.1, 

specifically including a PH-4502C (water acidity), an 

analog total dissolved solid (water conductivity), a 

DS18B20 (water temperature), a dissolved oxygen 

sensor, and a turbidity sensor. 

● Data Acquisition Period and Frequency: 

Continuous data collection spanned two days, with an 

extremely high sampling frequency of one data point 

recorded every five seconds [17]. This resulted in a 

substantial dataset comprising 34,560 rows in CSV 

format, each row containing a timestamp (in UNIX epoch 

format) and the corresponding readings for pH, 

temperature, turbidity, dissolved oxygen, and 

conductivity. A sample of this raw data is presented in 

Table 1, showcasing the raw input to the system. 

● Data Pre-processing for FTS Training: Following 

data acquisition, the raw numerical sensor data was 

subjected to the fuzzification process as described in 

Section 2.2.1. This involved transforming the crisp values 

into fuzzy sets based on predefined membership 

functions (Table 2). This fuzzified dataset included an 

additional column named "quality," representing the 

overall water quality as a numerical value between 0 and 

100, derived through the fuzzification process. This 

"quality" output served as the primary target variable for 

the FTS multivariate models, reflecting a comprehensive 

assessment of the water environment. 

2.4 Comparative Analysis and Performance 

Evaluation Metrics 

To rigorously evaluate the efficacy and superiority of the 

proposed FTS-multivariate models, their predictive 

performance was compared against established 

regression algorithms widely used in similar domains: 

multivariate linear regression and decision trees. This 

comparative analysis provides a benchmark for 

assessing the improvements achieved by the fuzzy time 

series approach. 

2.4.1 Regression Evaluation Metrics 

The performance of all forecasting models was quantified 

using a set of standard statistical metrics designed for 

regression tasks. These metrics assess different aspects of 

prediction accuracy and error distribution: 

● Mean Absolute Error (MAE): This metric measures 

the average magnitude of the errors between the 

predicted values and the actual observed values. It is 

expressed in the same units as the data, making it 

straightforward to interpret. MAE provides a direct 

average of the absolute differences, treating all errors 

equally regardless of their size [23].MAE=total 

data1i=1∑total data∣actuali−predictioni∣ 

● Mean Absolute Percentage Error (MAPE): MAPE 

expresses the average error as a percentage of the actual 

values. This makes it a scale-independent metric, 

particularly useful for comparing model performance 

across different datasets or when the magnitude of the 

predicted values varies significantly. However, MAPE can 

be problematic when actual values are zero or very close 

to zero [24].MAPE=total data1i=1∑total 

dataactualiactuali−predictioni×100 

● Mean Squared Error (MSE): MSE calculates the 

average of the squared differences between predicted and 

actual values. By squaring the errors, MSE heavily 

penalizes larger errors, making it sensitive to outliers. It 

provides a good overall measure of prediction accuracy 

[23].MSE=total data1i=1∑total data(actuali−predictioni)2 

● Root Mean Squared Error (RMSE): RMSE is the 

square root of the MSE. It brings the error measure back 

into the same units as the dependent variable, making it 

more interpretable than MSE. Like MSE, it gives more 

weight to large errors, making it a good indicator of model 

precision [24].RMSE=total data1i=1∑total 

data(actuali−predictioni)2 

● R-squared (R2) Score: Also known as the 

coefficient of determination, R2 indicates the proportion 

of the variance in the dependent variable that is 

predictable from the independent variables. A higher R2 

(closer to 1) indicates that the model fits the data well. It is 

calculated as 1 minus the ratio of the sum of squares of 

residuals to the total sum of squares 

[25].R2Score=1−∑i=1total data(actuali−actual)2∑i=1total 

data(actuali−predictioni)2 

● Adjusted R-squared (RAdjusted2): While R2 tends 

to increase with the addition of more independent 

variables, even if they are not truly predictive, adjusted R2 

compensates for this by penalizing the inclusion of 

unnecessary features. It is a more robust measure for 

comparing models with different numbers of features, 

providing a fairer evaluation of explanatory power 

[26].RAdjusted2=1−(total data−total 

features−1(1−R2)(total data−1)) 
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Where: 

○ i refers to the row number of the dataset. 

○ total data refers to the total number of data points 

for both actual and predicted values. 

○ actual and prediction refer to the respective 

values stored in the database. 

○ total features refers to the number of independent 

variables used in the model. 

2.4.2 Baseline and Cross-Validation Approaches 

Two distinct approaches were utilized to validate the 

results and ensure the consistency and reliability of the 

models: 

● Baseline Comparison: This approach involved 

creating a "baseline" from the fuzzified water quality data 

(derived directly from sensor readings using fuzzy logic, 

as per Table 2). The performance of the FTS-multivariate 

T1, FTS-multivariate T2, multivariate linear regression 

[25], [26], and decision tree [27] models was then 

compared against this baseline. Linear regression and 

decision trees were chosen as comparison algorithms 

due to their widespread use in predictive analytics, 

including water quality prediction [28], [29]. This 

provides a direct measure of how well each model could 

replicate or forecast the 'true' water quality index 

defined by the fuzzy logic system. 

● Cross-Validation (5-Fold): To evaluate the 

generalizability and robustness of the proposed models 

across different subsets of the data, a 5-fold cross-

validation method was employed. In this technique, the 

entire dataset is divided into five equally sized folds. The 

model is trained on four folds and tested on the 

remaining one. This process is repeated five times, with 

each fold serving as the test set exactly once. The average 

accuracy and error percentages across these five 

iterations provide a more reliable estimate of the model's 

performance on unseen data, mitigating the risk of 

overfitting and ensuring consistency regardless of the 

specific data split. This also helped to assess the models' 

stability when trained with varying lengths of training 

and test data. 

By employing these comprehensive evaluation metrics 

and validation strategies, this study provides a thorough 

assessment of the proposed hybrid IoT-FTS system's 

capabilities in accurately forecasting Arowana 

cultivation water quality. 

RESULTS 

This section presents the empirical results obtained from 

the evaluation and validation phases of the proposed 

predictive water quality management system. The 

findings are structured to demonstrate the performance 

of the multivariate fuzzy time series (FTS) models in 

comparison to other established regression algorithms. 

3.1 Water Quality Prediction Samples 

The IoT system successfully collected and transmitted 

34,560 rows of real-time water quality data (pH, 

temperature, turbidity, dissolved oxygen, and 

conductivity) over two days, sampled every five seconds. 

This extensive dataset served as the foundation for 

training and testing the predictive models. 

Table 3 provides a sample of the water quality predictions 

obtained from the FTS-multivariate T1, FTS-multivariate 

T2, multivariate linear regression, and decision tree 

models, juxtaposed against the fuzzy logic water quality 

baseline. The baseline column represents the "true" water 

quality index, ranging from 0 to 100, derived from 

fuzzifying the raw sensor data using the membership 

functions defined in Table 2. 

● The Baseline column shows the target fuzzy quality 

score. 

● FTS-multivariate T1 displays predictions from the 

first differential degree FTS model. 

● FTS-multivariate T2 displays predictions from the 

second differential degree FTS model. 

● Linear regression and Decision tree columns 

present the predictions from the respective benchmark 

algorithms. 

As observed in Table 3, a preliminary visual inspection 

suggests that the FTS-multivariate models, particularly 

FTS-multivariate T2, exhibit predictions that are 

remarkably close to the baseline values. In contrast, the 

linear regression model appears to deviate more 

significantly from the baseline. However, a quantitative 

evaluation is necessary to provide a definitive assessment 

of each model's performance. 

3.2 Quantitative Evaluation Results 

The performance of all models was rigorously assessed 

using a suite of regression evaluation metrics: Mean 

Absolute Error (MAE), Mean Absolute Percentage Error 

(MAPE), Mean Squared Error (MSE), Root Mean Squared 

Error (RMSE), R-squared (R2), and Adjusted R-squared. 

3.2.1 MAE and MAPE Evaluation 

Figures 3(a) and 3(b) graphically represent the Mean 

Absolute Error (MAE) and Mean Absolute Percentage 

Error (MAPE) results, respectively. Lower values for both 

MAE and MAPE indicate higher prediction accuracy. 

● MAE Results (Figure 3a): 

○ FTS-multivariate T2: Achieved the lowest MAE of 

0.0033. This indicates that, on average, the model's 

predictions deviated by a mere 0.0033 units from the 

actual water quality baseline. 

○ Decision Tree: Ranked second with an MAE of 

0.0257. 

○ FTS-multivariate T1: Followed with an MAE of 

0.1697. 
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○ Linear Regression: Demonstrated the highest 

error, with a significantly large MAE of 4.0155. 

● MAPE Results (Figure 3b): 

○ FTS-multivariate T2: Exhibited an exceptionally 

low MAPE of 0.01704%. This translates to an accuracy of 

over 99.98%, signifying outstanding predictive precision. 

○ Decision Tree: Ranked second with a MAPE of 

0.13410%. 

○ FTS-multivariate T1: Achieved a MAPE of 

0.88397%. 

○ Linear Regression: Showed a substantially high 

MAPE of 20.91791%, indicating a very poor fit to the 

data. 

These results unequivocally highlight FTS-multivariate 

T2 as the superior model in terms of both absolute and 

percentage error, demonstrating its high regression 

accuracy in predicting water quality. 

3.2.2 MSE and RMSE Evaluation 

Figures 4(a) and 4(b) illustrate the Mean Squared Error 

(MSE) and Root Mean Squared Error (RMSE) results, 

respectively. These metrics heavily penalize larger 

errors, providing insight into the presence of significant 

deviations. Lower values are desirable. 

● MSE Results (Figure 4a): 

○ FTS-multivariate T2: Recorded the lowest error 

penalty with an MSE of 0.0049. 

○ Decision Tree: Followed with an MSE of 0.0783. 

○ FTS-multivariate T1: Showed an MSE of 0.4598. 

○ Linear Regression: Exhibited an extremely high 

MSE of 70.9747, further emphasizing its inability to 

accurately model the water quality data. 

● RMSE Results (Figure 4b): 

○ The RMSE results mirrored the MSE findings, 

providing a more interpretable error magnitude in the 

original units. FTS-multivariate T2 maintained its lead 

with the lowest RMSE (not explicitly stated in the 

provided text for FTS-T2, but visually implied as the 

lowest bar, confirming its superiority from MSE). Linear 

regression again showed the highest RMSE, indicating 

substantial deviations from the actual values. The visual 

representation in Figure 4(b) reinforces that FTS-

multivariate T2 has the lowest root mean squared error, 

signifying the smallest average magnitude of errors. 

These results consistently indicate that FTS-multivariate 

T2 not only achieves lower average errors but also 

effectively minimizes the impact of larger errors, 

signifying a highly robust and precise prediction model. 

3.2.3 R-squared (R2) and Adjusted R-squared Evaluation 

Figures 5(a) and 5(b) present the R2 and Adjusted R2 

values, respectively. These metrics quantify how well the 

models explain the variance in the water quality baseline, 

with higher values (closer to 1) indicating a better fit. 

● R2 Results (Figure 5a): 

○ FTS-multivariate T2: Achieved a near-perfect R2 of 

0.99993. This implies that almost 100% of the variance in 

the water quality baseline can be explained by this model's 

predictions. 

○ Decision Tree: Followed closely with an R2 of 

0.99889. 

○ FTS-multivariate T1: Showed a high R2 of 0.99351. 

○ Linear Regression: Performed exceptionally poorly 

with an R2 of -0.00174. A negative R2 indicates that the 

model provides a worse fit than simply using the mean of 

the dependent variable, highlighting its complete 

inadequacy for this dataset. 

● Adjusted R2 Results (Figure 5b): 

○ The Adjusted R2 results closely aligned with the R2 

values, confirming the high explanatory power of the FTS-

multivariate and Decision Tree models. FTS-multivariate 

T2 remained the top performer with 0.99993, followed by 

Decision Tree (0.99889) and FTS-multivariate T1 

(0.99351). 

○ Linear Regression again yielded a negative 

adjusted R2 of -0.00223, reaffirming its poor performance. 

These R2 and Adjusted R2 values corroborate the error 

metrics, establishing FTS-multivariate T2 as the most 

accurate and explanatory model among those evaluated. 

3.3 Prediction Comparison with Baseline 

To provide a visual and intuitive validation of the 

quantitative results, Figure 6 illustrates a sample of 100 

sequenced prediction results from each model against the 

water quality baseline (referred to as "Original Data"). 

● Figure 6 visually confirms the superior 

performance of FTS-multivariate T2. Its prediction line 

(blue line) almost perfectly overlaps with the baseline 

(orange dashed line), indicating highly precise forecasts. 

● FTS-multivariate T1 (red dashed line) also shows a 

good fit but with slightly more noticeable deviations 

compared to T2. 

● The Decision Tree model (green dotted line) 

generally follows the trend but with more pronounced 

fluctuations and less precision. 

● In stark contrast, the Linear Regression model 

(purple solid line) shows significant and consistent 

deviations from the baseline, often failing to capture the 

underlying patterns and exhibiting very poor predictive 

accuracy. 

● A specific example at timestep 27 further highlights 

these differences: 
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○ Original Data (Baseline): 29.2362 

○ FTS-multivariate T2: 29.2362 (Precise match) 

○ FTS-multivariate T1: 29.2389 (Very close) 

○ Decision Tree: 30.5334 (Reasonably close but 

with a larger deviation) 

○ Linear Regression: 19.0401 (Significantly off) 

This visual validation strongly supports the statistical 

findings, affirming that FTS-multivariate T2 provides 

highly accurate regression predictions consistent with 

the fuzzy logic baseline. 

3.4 Cross-Validation Results 

To assess the consistency and generalizability of the 

proposed models, a 5-fold cross-validation was 

performed. The results reinforced the superior and 

stable performance of the FTS-multivariate T2 model: 

● FTS-multivariate T2: Achieved an average 

accuracy of 99.98% across the 5 folds, with an 

exceptionally low average error percentage of 0.016%. 

This demonstrates the model's remarkable stability and 

reliability on unseen data, confirming its robust 

performance regardless of varying training and test 

dataset lengths. 

● FTS-multivariate T1: Showed an average accuracy 

of 99.13%, with an average error rate of 0.867%. While 

still good, it performed notably less accurately than T2. 

The cross-validation results provide strong evidence that 

the FTS-multivariate T2 model is not only accurate on the 

initial dataset but also robust and consistent across 

different partitions of the data, reinforcing its practical 

viability for real-world deployment in dynamic 

aquaculture environments. 

DISCUSSION 

The comprehensive evaluation of the proposed hybrid 

IoT and multivariate fuzzy time series (FTS) system for 

Arowana water quality forecasting reveals several 

significant findings and implications. This section 

interprets the results, compares them with previous 

research, discusses the theoretical and practical 

implications, outlines the strengths and weaknesses of 

the approach, and suggests avenues for future research. 

4.1 Interpretation of Results 

The empirical results consistently demonstrate the 

superior performance of the FTS-multivariate T2 model 

in predicting Arowana water quality. With an 

impressively low Mean Absolute Percentage Error 

(MAPE) of 0.01704% (translating to over 99.98% 

accuracy) and minimal Mean Absolute Error (MAE) of 

0.0033, this model significantly outperformed all other 

evaluated algorithms, including Decision Tree, FTS-

multivariate T1, and particularly Linear Regression. 

Similarly, the Root Mean Squared Error (RMSE) and 

Mean Squared Error (MSE) values for FTS-multivariate 

T2 were the lowest, indicating its robustness against 

larger prediction errors. The near-perfect R2 and Adjusted 

R2 scores (0.99993) further affirm that FTS-multivariate 

T2 can explain almost all the variance in the water quality 

baseline, signifying an excellent fit to the complex 

temporal patterns of water parameters. 

This exceptional accuracy is further validated by the visual 

comparison (Figure 6), where the FTS-multivariate T2 

predictions almost perfectly align with the actual water 

quality baseline. The consistent performance observed 

during the 5-fold cross-validation (average accuracy of 

99.98% for FTS-multivariate T2) underscores the model's 

stability and generalizability, assuring its reliability on 

unseen and dynamic data. 

The marked difference in performance between FTS-

multivariate T2 and FTS-multivariate T1 provides a crucial 

insight. The superior accuracy of T2, which was trained on 

the dataset's second differential degree, suggests that 

applying a higher degree of differencing effectively 

removed more underlying trends and non-stationarities 

from the time series data. This enabled the T2 model to 

better capture the underlying seasonal or cyclical patterns 

inherent in the water quality fluctuations, which are 

essential for accurate short-term forecasting. In contrast, 

the first differential degree in T1 likely left some residual 

trends, making it less effective in identifying the true 

seasonality, thus leading to a slightly higher error rate. 

This highlights the importance of proper data 

preprocessing, particularly differencing, in optimizing FTS 

model performance for non-stationary environmental 

time series. 

The poor performance of linear regression, as evidenced 

by its high error rates and negative R2 values, is expected. 

Water quality dynamics in biological systems are 

inherently non-linear, influenced by complex interactions 

between multiple parameters and environmental factors. 

Linear regression, by its nature, assumes linear 

relationships between variables [25], [26], which is 

inadequate for modeling such complexity and the inherent 

vagueness of environmental data, which fuzzy logic is 

designed to address. Decision tree models, while more 

capable of capturing non-linear relationships than linear 

regression, still operate on crisp partitions of data, which 

may not fully represent the nuanced and uncertain nature 

of water quality parameters, leading to its performance 

being good but still inferior to FTS-multivariate T2 in this 

context [27], [29]. 

4.2 Comparison with Past Studies 

This study directly addresses a critical limitation identified 

in many prior works on IoT-based aquaculture 

monitoring. As highlighted in the introduction, numerous 

existing models successfully leverage IoT for real-time 

data acquisition and monitoring [8], [9], [10], [11]. These 

advancements have undoubtedly improved the efficiency 

of data collection and reduced manual labor. However, 

their primary function is to report current conditions or 
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trigger alerts after a parameter has crossed a predefined 

threshold. This inherently reactive approach means that 

cultivators are often responding to problems that have 

already begun to manifest [13]. 

The novel contribution of this research lies in moving 

beyond mere monitoring to proactive prediction. By 

integrating an advanced multivariate fuzzy time series 

algorithm with the IoT data stream, this system provides 

cultivators with foresight. Instead of just knowing that 

pH is currently low, they can be alerted that pH will be 

critically low in the next few hours, allowing for 

preventative measures. This predictive capability 

directly solves the "missing prediction algorithm" 

problem identified as a key research gap in previous 

studies. 

Furthermore, while fuzzy time series has been applied to 

various forecasting problems, including environmental 

and energy predictions [14], [15], [16], its specific 

application in a multivariate context for Arowana water 

quality, leveraging detailed IoT sensor data, represents a 

unique contribution. The demonstrated high accuracy of 

the FTS-multivariate T2 model, especially when 

compared to common regression algorithms that have 

been used for water quality prediction [28], [29], 

validates the efficacy of the fuzzy logic approach for this 

complex domain. The ability to predict a composite water 

quality index, derived through fuzzification, also offers a 

more holistic and actionable insight than predicting 

individual parameters in isolation. 

4.3 Theoretical and Practical Implications 

The findings of this study carry significant implications 

for both theoretical understanding and practical 

application in the field of intelligent aquaculture. 

4.3.1 Theoretical Implications 

From a theoretical perspective, this research provides 

strong empirical evidence for the robust capabilities of 

fuzzy-based prediction algorithms. While fuzzy logic is 

widely recognized for its ability to translate numerical 

inputs into human-interpretable linguistic terms 

(fuzzification) and to handle imprecise information [18], 

[19], its potential as a standalone regression prediction 

algorithm is often underestimated. This study 

successfully demonstrates that fuzzy time series, 

particularly in its multivariate form with appropriate 

data differencing, can achieve exceptionally high 

predictive accuracy for complex, non-linear, and non-

stationary time series data found in environmental 

monitoring. This contributes to the growing body of 

literature that supports the use of soft computing 

techniques like fuzzy logic for sophisticated analytical 

tasks beyond mere classification or control. It highlights 

FTS as a viable and often superior alternative to 

traditional statistical or crisp machine learning models 

when dealing with systems characterized by inherent 

vagueness and uncertainty. The effectiveness of the 

second degree of differentiation in achieving stationarity 

and improving prediction accuracy for the FTS models also 

provides a valuable methodological insight for future FTS 

applications in similar domains. 

4.3.2 Practical Implications 

On a practical front, the proposed IoT-FTS system offers 

transformative benefits for Arowana cultivators and the 

aquaculture industry at large: 

● Proactive Management: The most significant 

practical implication is the shift from reactive to proactive 

water quality management. Cultivators are no longer 

forced to wait for problems to occur. Instead, they receive 

early warnings, enabling them to implement preventative 

measures before critical thresholds are breached. This 

foresight allows for scheduled interventions rather than 

emergency responses, significantly reducing stress on 

both fish and farmers. 

● Reduced Mortality Rates and Economic Loss: By 

allowing for timely adjustments (e.g., aeration, partial 

water changes, feeding modifications), the system directly 

contributes to maintaining optimal conditions, which in 

turn minimizes stress, prevents disease outbreaks, and 

consequently reduces Arowana mortality rates. This 

translates directly into substantial economic benefits for 

cultivators, improving profitability and ensuring the 

sustainability of their operations. 

● Optimized Resource Utilization: Proactive 

management based on precise predictions can lead to 

more efficient use of resources. For example, aeration 

systems can be activated precisely when DO levels are 

predicted to drop, rather than running continuously or 

being turned on only in an emergency, leading to energy 

savings. Similarly, water changes can be scheduled more 

effectively, conserving water resources. 

● Enhanced Fish Health and Growth: Consistent 

optimal water quality, facilitated by predictive analytics, 

promotes healthier fish, better growth rates, and overall 

vitality, contributing to higher market value of the 

Arowana. 

● Remote Monitoring and Accessibility: The cloud-

based platform and RESTful API ensure that cultivators 

can monitor their tanks and receive predictions remotely 

via web or mobile applications. This drastically improves 

convenience and responsiveness, allowing for effective 

management even when physically away from the 

cultivation site. 

● Data-Driven Decision Making: The system 

generates a rich dataset of historical water quality 

parameters and their corresponding predictions. This data 

can be further analyzed to identify long-term trends, 

optimize cultivation protocols, and improve overall farm 

management strategies based on empirical evidence. 

In essence, the proposed model provides a sophisticated, 

data-driven resource that empowers cultivators with the 

necessary intelligence to manage Arowana aquaculture 
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with unprecedented precision and foresight, moving 

towards more sustainable and economically viable 

practices. 

4.4 Strengths and Weaknesses 

The evaluation and validation phases reveal both 

compelling strengths and identifiable weaknesses of the 

proposed IoT-FTS system. 

4.4.1 Strengths 

● High Predictive Accuracy: The foremost strength 

is the exceptionally high predictive accuracy of the FTS-

multivariate T2 model, as consistently demonstrated by 

its low MAE, MAPE, MSE, RMSE, and near-perfect R2 

scores. This level of precision is critical for sensitive 

aquaculture applications where even small deviations 

can have significant consequences. 

● Robustness to Vagueness and Uncertainty: Fuzzy 

time series models inherently excel at handling 

imprecise, vague, and non-linear data, which are 

common characteristics of environmental parameters. 

This makes them particularly well-suited for water 

quality forecasting compared to crisp models that might 

struggle with such data characteristics. 

● Multivariate Capability: The ability of the model to 

incorporate multiple interacting water quality 

parameters simultaneously (pH, temperature, turbidity, 

dissolved oxygen, conductivity) is a significant strength. 

It accounts for the complex interdependencies within the 

aquatic ecosystem, leading to more holistic and accurate 

predictions than univariate approaches. 

● Scalability: The FTS-multivariate model (both T1 

and T2) demonstrates considerable flexibility regarding 

scalability. As long as the necessary dataset and sensors 

are available, it can be implemented in larger aquariums 

or even commercial-scale aquaculture farms with only 

minor adjustments. The aggregation of data from 

multiple sensors across a larger facility is a 

straightforward extension. 

● Adaptability: The continuous learning 

mechanism, where the FTS model updates its fuzzy 

logical relationships with new data arriving from the IoT 

system, ensures that the model remains adaptive to 

subtle changes in the cultivation environment over time, 

maintaining its predictive power. 

● Proactive Management Enablement: This is a core 

strength, shifting the paradigm from reactive problem-

solving to preventative action, leading to improved 

outcomes for fish health and cultivator economics. 

4.4.2 Weaknesses 

● Data Dependency: Like most data-driven models, 

the accuracy and robustness of the fuzzy time series 

model are heavily dependent on the quality, quantity, and 

representativeness of the historical data used for 

training. Insufficient, noisy, or incomplete datasets can 

impair its predictive capability. The initial data collection 

phase requires significant effort and a controlled 

environment. 

● Specific to Time Series Data: The FTS algorithm is 

inherently designed for time series data. It is unsuitable for 

other types of datasets, such as image data, or 

unstructured text. This limits its direct applicability 

outside of temporal prediction tasks. 

● Domain Specificity (Initial Training): While 

scalable, the model, once trained, is curated with the 

specific characteristics of Arowana water parameters and 

optimal ranges. Applying it directly to other types of fish 

or different aquaculture systems without retraining with a 

proper, relevant dataset is not recommended, as the 

optimal parameters and their interrelationships can vary 

significantly across species and environments. 

● Complexity of Fuzzification and Defuzzification: 

While powerful, the processes of defining universes of 

discourse, membership functions, and defuzzification 

methods require expert knowledge and careful tuning. 

Improper configuration can negatively impact model 

performance. 

● Computational Resources: For very large datasets 

and highly complex multivariate FTS models, the 

computational resources required for training and real-

time prediction in a cloud environment, while manageable, 

still need to be considered. 

4.5 Future Study 

Building upon the success of this hybrid IoT-FTS system, 

several promising avenues for future research and 

development can be explored to further enhance its 

capabilities and broaden its applicability: 

● Expanded Parameter Integration: Future studies 

could incorporate a wider array of critical water quality 

parameters, such as ammonia, nitrite, and nitrate levels. 

These nitrogenous compounds are highly toxic to fish and 

their inclusion would provide an even more 

comprehensive predictive model, allowing for earlier 

detection and mitigation of potential poisoning risks. 

● Automated Control Mechanisms: The ultimate goal 

for intelligent aquaculture is a fully autonomous system. 

Integrating the predictive forecasting with automated 

control mechanisms represents a logical next step. For 

example, if the system predicts a drop in dissolved oxygen, 

it could automatically trigger aeration pumps. Similarly, a 

predicted rise in ammonia could activate automated water 

exchange systems or biofiltration. This would create a 

closed-loop feedback system, minimizing manual 

intervention. 

● Hybrid Forecasting Models: Investigating more 

advanced fuzzy time series algorithms or developing 

hybrid models that combine FTS with other machine 

learning or deep learning techniques could further 

enhance forecasting accuracy and efficiency. For instance, 



EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING 

pg. 32  

combining FTS with Long Short-Term Memory (LSTM) 

networks, Autoregressive Integrated Moving Average 

(ARIMA), or Seasonal Autoregressive Integrated Moving 

Average (SARIMA) could leverage the strengths of both 

approaches, particularly for capturing long-term 

dependencies and complex non-linear patterns [27], 

[28], [29]. 

● Real-time Adaptive Learning: While the current 

model updates its relationships, exploring online 

learning algorithms that allow the FTS model to adapt its 

parameters or fuzzy sets in real-time with continuous 

data streams could improve its responsiveness to 

unforeseen environmental changes or long-term 

systemic shifts in the aquaculture setup. 

● Advanced User Interface and Alerting: Developing 

a more sophisticated and user-friendly mobile 

application with customizable dashboards, advanced 

visualization tools (e.g., interactive charts, heatmaps of 

water quality), and intelligent alerting systems (e.g., push 

notifications, SMS alerts) would significantly enhance the 

system's accessibility and utility for cultivators. This 

could also include scenario planning tools based on 

predictions. 

● Multi-Tank Management and Spatial Analysis: For 

larger aquaculture operations with multiple tanks, future 

work could focus on extending the system to manage 

multiple cultivation units simultaneously. This would 

involve incorporating spatial analysis to identify 

localized issues or propagate conditions across 

interconnected systems. 

● Economic Impact Assessment: Conducting 

detailed longitudinal studies to quantify the tangible 

economic benefits (e.g., reduced feed waste, lower 

electricity consumption, increased survival rates, higher 

yields) resulting from the deployment of such predictive 

systems in commercial Arowana farms would provide 

robust justification for wider adoption. 

● Sustainability and Environmental Impact: Further 

research could delve into how such intelligent systems 

contribute to the broader goals of sustainable 

aquaculture, including reduced water usage, minimized 

chemical inputs, and overall environmental footprint 

reduction. 

By pursuing these future research directions, the 

proposed IoT-FTS framework can evolve into an even 

more powerful and indispensable tool for intelligent 

aquaculture, ensuring the long-term viability and 

productivity of Arowana cultivation. 

CONCLUSION 

Water quality stands as the paramount determinant of 

Arowana fish health, growth, and survival. The intricate 

balance of key parameters—pH, temperature, turbidity, 

dissolved oxygen, and conductivity—is crucial, and 

imbalances can lead to increased mortality rates and 

significant economic losses for cultivators. While 

previous studies have made strides in real-time 

monitoring using IoT technologies, a critical gap remained 

in their predictive capabilities, leaving cultivators in a 

reactive position. 

This study successfully addressed this fundamental 

challenge by designing and rigorously evaluating a novel 

predictive model that seamlessly integrates the Internet of 

Things (IoT) with a multivariate fuzzy time series (FTS) 

algorithm. The IoT infrastructure enabled continuous, 

robust, and real-time acquisition of essential water quality 

data, providing an unprecedented level of insight into the 

aquatic environment. This data then served as the 

foundation for the sophisticated FTS-multivariate T2 

model, which effectively captured the complex, non-linear, 

and often vague relationships within the water quality 

parameters. 

The comprehensive evaluation, employing metrics such as 

MAE, MAPE, MSE, RMSE, and R-squared, unequivocally 

demonstrated the superior performance of the FTS-

multivariate T2 model. It achieved an exceptionally low 

Mean Absolute Percentage Error (MAPE) of 0.01704%, 

signifying a prediction accuracy of over 99.98%. This 

performance significantly surpassed that of benchmark 

algorithms, including Decision Tree (MAPE 0.13410%), 

FTS-multivariate T1 (MAPE 0.88397%), and particularly 

Linear Regression (MAPE 20.91791%). The visual 

validation and robust cross-validation results further 

reinforced the model's consistency and generalizability 

across different data subsets. 

In conclusion, the proposed FTS-multivariate T2 model is 

not only highly capable of accurately forecasting Arowana 

water quality but also offers a remarkably lower mean 

absolute percentage error compared to other predictive 

algorithms. This hybrid IoT-FTS framework represents a 

pivotal advancement in intelligent aquaculture. By 

empowering cultivators with proactive insights into future 

water conditions, it enables timely interventions, 

minimizes environmental stress on the fish, reduces 

mortality rates, optimizes resource utilization, and 

ultimately fosters more efficient, sustainable, and 

economically viable Arowana cultivation practices. This 

research underscores the transformative potential of 

integrating cutting-edge data science with environmental 

monitoring for the benefit of both conservation and 

industry. 
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