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ABSTRACT 

 
Behavioral biometrics, encompassing unique patterns in human actions like gait, keystroke dynamics, voice, and eye 
movements, offer powerful tools for authentication and interaction. However, the rich, often sensitive information 
embedded in this data poses significant privacy risks, as it can inadvertently reveal personal attributes such as gender, 
age, health conditions, or emotional states. This article presents a comprehensive survey of anonymization techniques 
specifically designed for behavioral biometric data. It categorizes existing approaches based on modality (voice, gait, 
keystroke dynamics, ECG, EEG, eye movements, and gesture recognition) and strategy (data transformation, perturbation, 
and generative models). The discussion highlights the inherent trade-off between achieving strong privacy guarantees 
and maintaining sufficient data utility for intended applications. By reviewing the state-of-the-art and identifying 
persistent challenges, this survey aims to inform future research and foster the development of truly privacy-enhanced 
behavioral biometric systems. 

Keywords: Behavioral Biometrics, Anonymization, Privacy Preservation, Data Utility, Re-identification, Voice, Gait, 
Keystroke Dynamics, ECG, EEG, Eye Tracking, Differential Privacy, Generative Models. 

 

INTRODUCTION 

The rapid pace of digital transformation has ushered in 

an era of unprecedented data collection, particularly 

concerning human behavior. Advances in sensing 

technologies, ranging from sophisticated augmented 

reality (AR) and virtual reality (VR) headsets to 

ubiquitous smartphones and wearables, enable the 

capture of detailed biometric and behavioral data at ever-

increasing scales and resolutions [2]. This pervasive data 

acquisition, often occurring seamlessly and without 

explicit user awareness, includes browsing habits, 

location services, and interactions within smart 

environments equipped with voice assistants and 

cameras [2]. 

Behavioral biometrics, a subset of biometrics, 

distinguishes individuals based on their unique patterns 

of action, such as how they speak, walk, type, or interact 

with digital interfaces [103, 303]. Unlike physiological 

biometrics (e.g., fingerprints, facial features) which are 

based on static physical characteristics, behavioral 

biometrics leverage dynamic, time-varying traits. These 

include, but are not limited to, voice, gait, keystroke 

dynamics, hand motions, eye gaze, heartbeat (ECG), and 

brain activity (EEG) [103, 303]. Their continuous and 

implicit nature makes them highly appealing for 

applications requiring ongoing authentication and 

personalized user experiences [13, 22, 154]. For instance, 

behavioral biometrics can enable seamless user 

verification in financial transactions, adapt gaming 

experiences to player profiles, or monitor health 

conditions remotely [22, 205, 283, 289, 328]. 

However, the very richness and distinctiveness that make 

behavioral data effective for identification also render it 

highly sensitive and vulnerable to privacy breaches [6, 

145]. Beyond merely identifying an individual, behavioral 

patterns can inadvertently reveal a multitude of sensitive 

attributes, including gender [34, 79, 124, 201, 227, 234], 

age [34, 148, 234], emotional states [301, 286, 142], health 

conditions (e.g., Parkinson's, Alzheimer's, or even 

substance abuse) [58, 59, 128, 118, 123, 304, 60, 240], and 

even cognitive load or personal interests [50, 146, 176, 

120]. The strong correlations between behavioral features 

and these attributes, coupled with the temporal 

dependencies inherent in time-series data, make it 

challenging to protect privacy effectively [2]. The risk of 

re-identification attacks, where seemingly anonymized 

data is linked back to an individual, is a significant concern, 

amplified by the increasing sophistication of machine 

learning and the availability of large-scale datasets [75, 78, 

108, 312]. 

Given these escalating privacy concerns, the development 
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and deployment of robust anonymization techniques for 

behavioral biometric data are no longer merely desirable 

but essential. The overarching goal is to enable the 

beneficial utility of this data for various applications 

while simultaneously ensuring that an individual's 

identity and sensitive personal attributes remain 

protected from unintended disclosure or inference [281, 

256]. This requires a delicate balance between privacy 

preservation and data utility, often presenting a complex 

trade-off. 

This article provides a comprehensive and systematic 

survey of existing anonymization techniques for 

behavioral biometric data. We aim to: 

● Systematize the literature by categorizing current 

approaches based on the specific behavioral trait they 

address and the underlying data transformation 

strategies employed. 

● Analyze the conceptual operation, advantages, 

and limitations of these techniques, highlighting their 

strengths and weaknesses in achieving privacy goals. 

● Discuss the evaluation methodologies used in the 

literature, identifying areas for improvement and 

advocating for more rigorous assessment against 

informed adversaries. 

● Identify commonalities and differences across 

various behavioral biometric traits and their respective 

anonymization solutions, pinpointing neglected areas 

and promising future research directions. 

By consolidating knowledge in this emerging field, this 

survey seeks to offer a structured overview that can 

guide researchers, developers, and policymakers in 

building more privacy-aware and ethically sound 

behavioral biometric systems. 

Background 

This section lays the groundwork for understanding the 

complexities of behavioral data privacy. We begin by 

defining key terminology used throughout this survey, 

differentiate it from related concepts, and then critically 

review existing surveys to highlight the unique 

contributions of this work. Finally, we detail the 

systematic methodology employed to gather and analyze 

the relevant literature. 

Terminology 

Precise terminology is crucial for a clear understanding 

of privacy-enhancing technologies (PETs) in the context 

of behavioral biometrics. 

● Privacy Enhancement/Protection: This broad 

term refers to any measure taken to obfuscate 

information from adversarial observers, including 

service providers. It encompasses various strategies such 

as data access control, encryption, data minimization, 

and data modification or perturbation [2]. In this survey, 

our focus is on techniques that control disclosure when 

untrusted parties gain access to interpretable data, rather 

than solely on cryptographic methods that hide data from 

access entirely [2]. 

● Anonymity: A specific case of privacy where data 

cannot be linked to the individual to whom it refers [2]. 

This extends beyond direct identifiers (e.g., Social Security 

numbers, full names, which are typically removed in an 

initial sanitization phase) to include indirect identifiers or 

quasi-identifiers (e.g., gender, age, zip code, behavioral 

patterns) that, when combined, can uniquely identify an 

individual [48]. 

● Pseudonymity: The process of replacing direct 

identifiers of a person with new, artificial identifiers 

(pseudonyms) [4]. While pseudonyms prevent direct 

linkage to real-world identities, they may still allow for 

tracking an individual across different data instances or 

services if the pseudonym is consistent or if enough quasi-

identifiers remain. True anonymity aims to prevent even 

this linkage. 

● Identity Disclosure: The threat where an attacker 

uses available data, including behavioral data, to re-

identify an individual, often by linking their behavioral 

patterns to their real-world identity or to other accounts 

they hold [4]. For example, a VR headset user might use a 

pseudonym, but their unique motion or eye-tracking data 

could be used by a server or other users to identify them 

across different pseudonymous accounts in a federated 

metaverse [265]. This is a primary target for 

anonymization. 

● Attribute Disclosure: The threat where an attacker 

infers sensitive personal attributes (e.g., sex, medical 

conditions, personal interests, emotional state) from 

behavioral data that the user did not intend to disclose [4]. 

For instance, EEG data from a brain-computer interface 

could be used to infer an alcohol problem based on 

publicly available datasets [134, 203]. This type of 

disclosure can lead to discrimination or unwanted 

targeting. 

● Utility: This term quantifies the degree of 

functionality maintained by a service or application 

despite the implementation of a privacy mechanism that 

may hide or perturb part of the data [4]. In the context of 

behavioral biometrics, utility can refer to the accuracy of 

biometric authentication, the effectiveness of an adaptive 

interface, the precision of activity recognition, or the 

naturalness of a synthesized voice [4]. The goal of 

anonymization is to maximize privacy while minimizing 

the degradation of utility. 

● Privacy-Utility Trade-off: An inherent challenge in 

PETs, this refers to the inverse relationship between the 

level of privacy achieved and the retained utility of the 

data [4]. Enhancing privacy often comes at the cost of 

reduced data utility, and vice versa. The design and tuning 

of anonymization techniques aim to optimize this trade-off 

for specific application scenarios. 
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● Statistical Disclosure Control (SDC): A field 

focused on protecting microdata sets (databases with 

individual-level information) while ensuring their 

usefulness for research [294]. Concepts from SDC, such 

as additive noise masking [122] and suppression [122], 

often inspire anonymization techniques for behavioral 

data. 

Related Surveys 

While the importance of behavioral biometrics has led to 

numerous surveys, most have primarily focused on their 

uniqueness and suitability for identification, comparing 

the accuracy of different approaches and their 

applicability in various contexts. Surveys by Alzubaidi 

and Kalita [13], Liang et al. [154], Mahfouz et al. [165], 

and Meng et al. [182] provide overviews of behavioral 

biometrics for user authentication. More specific reviews 

delve into gait recognition [290], keystroke dynamics 

[19, 272], eye gaze [136], and brainwave biometrics [99]. 

However, these surveys typically only acknowledge the 

potential for sensitive inferences or identity leaks 

without providing an in-depth discussion of privacy 

countermeasures. 

A distinct line of research investigates potential privacy 

attacks on behavioral data, focusing on attribute 

inferences [18, 34, 124] or user de-identification [75, 78, 

108, 312]. Dantcheva et al. [53] offer an extensive 

overview of "soft biometrics" (e.g., gender, age, ethnicity) 

that can be inferred from primary biometrics, 

particularly from image and video data. Ciriani et al. [48] 

survey k-anonymity, a technique applicable to protecting 

soft biometrics in tabular data. More recently, Laishram 

et al. [149] surveyed privacy-preserving face recognition 

systems, and Golda et al. [95] and Wang et al. [292] 

explored the privacy implications of large language 

models (LLMs) and generative machine learning. 

Despite this body of work, a comprehensive view of the 

problem of anonymizing behavioral data, encompassing 

a wide range of traits, existing solutions, and persistent 

challenges, has been largely absent. While Ribaric et al. 

[245] reviewed de-identification techniques for visual 

and multimedia content, their coverage of behavioral 

data protection was limited to video, audio, or image 

captures of a few traits (voice, gait, and gesture), 

neglecting other sensor types. Similarly, Nhat Tran et al. 

[281] surveyed biometric template protection generally, 

without deep dives into the specific anonymization needs 

of behavioral biometrics. Meden et al. [180] focused on 

privacy-enhancing faces, and Shopon et al. [256] 

provided a broader look at biometric de-identification 

but with a different taxonomic focus. 

The critical gap identified in the existing literature is the 

lack of a systematic review that: 

1. Examines a comprehensive set of both traditional 

and modern behavioral traits for which anonymization 

solutions have been proposed. 

2. Considers diverse data collection sensors and use 

cases beyond just video or audio. 

3. Provides a comparative analysis of evaluation 

approaches across different behavioral biometrics. 

By addressing these shortcomings, this survey aims to 

offer a more holistic understanding of the field, reveal 

similarities and differences between anonymization 

approaches, and pinpoint open research questions that 

can drive future advancements. 

METHODOLOGY 

This survey was conducted following the systematic 

literature review guidelines proposed by Kitchenham 

[141], ensuring a rigorous and reproducible approach to 

identifying and analyzing relevant studies on privacy 

techniques for behavioral data. The procedure is 

summarized in Figure 1 in the original document. 

Our guiding research question for this survey was: "What 

techniques are applicable to protect behavioral data 

privacy?" From this central question, our objectives were 

to understand how these techniques operate, the level of 

privacy protection they afford, and their inherent 

limitations and unresolved challenges. 

To address this, we initiated our process by thoroughly 

exploring existing literature on biometrics [5, 13, 53, 98, 

165, 182, 221, 303] to compile a comprehensive list of 

behavioral traits utilized for person identification. This 

initial exploration yielded a diverse set of traits, including: 

brain activity (also referred to as cognitive biometric), eye 

gaze, facial expression, gait, gesture, handwriting, haptic, 

heartbeat, keystrokes, lip, motion, mouse, thermal, touch, 

and voice. 

Next, we formulated our search strategy by combining 

these identified behavioral traits with keywords related to 

privacy. The core search strings included "[Behavioral 

Trait] AND "Privacy" OR "[Behavioral Trait] AND 

"Anonymization" OR "[Behavioral Trait] AND "Re-

identification". These search terms were applied across 

major academic databases in computer science, including 

IEEE Xplore, ACM Digital Library, DBLP, and Google 

Scholar. No constraints were placed on the publication 

date during the initial search, resulting in a broad 

collection of 364 papers published between 2007 and 

October 2024. 

Following the initial search, a duplicate filtering process 

was performed to remove redundant entries, ensuring 

each unique publication was considered only once. 

Subsequently, a pre-screening phase was conducted to 

refine the scope of the survey. During this phase, we 

developed a preliminary taxonomy of privacy solutions, 

which led to the decision to narrow our focus specifically 

on anonymization techniques aimed at protecting the 

publication of behavioral data from identity and attribute 

disclosure attacks. We were particularly interested in 

approaches that assumed a scenario where data is 

collected, sanitized, and then published or shared with a 
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service or application, while still retaining a degree of 

utility for the intended service. 

Based on this refined scope, the following inclusion and 

exclusion criteria were applied to select the primary 

studies for in-depth analysis: 

Exclusion Criteria: 

1. Publication Format: Documents that were not 

peer-reviewed academic journal articles or conference 

papers (e.g., preprints, technical reports not formally 

peer-reviewed, theses, books) were excluded. 

2. Availability: Papers that could not be retrieved or 

accessed through IEEE Xplore, ACM Digital Library, 

DBLP, or Google Scholar were excluded. 

3. Language: Publications not written in English 

were excluded to ensure consistent analysis. 

4. Redundancy: If multiple papers by the same 

authors addressed the same work, only the most 

complete and up-to-date version was included, 

superseding earlier or less comprehensive publications. 

5. Scope Mismatch: Privacy protection techniques 

that did not primarily focus on identity or attribute 

anonymization with data utility preservation were 

excluded. This specifically meant excluding approaches 

solely focused on encryption for confidentiality (where 

data is never interpretable by untrusted parties), or 

access control mechanisms without data transformation. 

6. Insufficient Detail: Anonymization approaches 

described at a high level without sufficient technical 

detail to properly address our guiding research question 

regarding their mechanisms, protection levels, and 

limitations were excluded. 

The rigorous application of these criteria yielded a final 

corpus of 142 peer-reviewed works on behavioral data 

anonymization. These selected studies were then 

clustered and analyzed according to the specific 

behavioral trait they aimed to protect: gait, brain activity, 

heartbeat, eye gaze, voice, and hand motions (which 

included handwriting, keystrokes, mouse movements, 

and hand gestures). It is noteworthy that, despite our 

comprehensive search, we did not find any suitable 

papers on facial expression, lip, touch, and haptic traits 

that met all our defined criteria for anonymization 

techniques. 

This systematic methodology ensures that the survey is 

comprehensive, unbiased in its selection, and provides a 

robust foundation for analyzing the state-of-the-art in 

behavioral data anonymization. 

3. Behavioral Data Applications and Privacy 

Concerns 

Behavioral data, by its very nature, is a rich tapestry of 

human expression and interaction. Its collection and 

analysis enable a myriad of valuable services for 

individuals and organizations alike. However, this 

immense utility is inextricably linked to profound privacy 

implications. This section delves into the characteristics of 

behavioral biometric data, outlines the typical scenario in 

which it is processed, explores its diverse applications, 

defines the concept of utility within this context, and 

critically examines the inherent privacy concerns and the 

models of adversaries attempting to exploit this data. 

3.1 Behavioral Biometric Data Characteristics 

Behavioral biometric data stands as a unique subclass 

within the broader category of biometric information. 

Unlike static physiological biometrics, which capture fixed 

anatomical features (e.g., fingerprint ridges, iris patterns), 

behavioral biometrics record dynamic patterns of human 

action over time. This includes, but is not limited to, the 

nuances of speech, the rhythm of typing, the unique sway 

of a walk, or the subtle movements of the eyes. 

A fundamental distinction of behavioral biometric data, 

particularly when compared to explicit fields in traditional 

microdata sets (where sensitive columns like "name" or 

"address" are clearly defined), is that its privacy-sensitive 

components are often implicit. The raw data itself may not 

immediately appear sensitive, but the patterns within it 

can reveal profound personal details. For instance, the way 

a person walks (gait) is not just a sequence of movements; 

it can implicitly indicate a recent injury if the pattern 

exhibits a limp, even if no explicit "injury" field exists in the 

data [2]. 

Moreover, behavioral biometric data is almost universally 

captured as a time-series, meaning it consists of a 

sequence of observations recorded over time. This 

temporal dependency is critical; the current state of a 

behavioral trait is highly dependent on its preceding 

states. Beyond temporal links, there are also physiological 

dependencies – human bodies operate within inherent 

physical and biological limitations. For example, the 

motion of a foot is intrinsically linked to the motion of the 

corresponding leg. These strong, often complex, 

dependencies between individual data points, both 

temporally and physiologically, pose significant challenges 

for anonymization. Simple randomization or perturbation 

techniques, which might suffice for independent data 

points, can be ineffective because an intelligent attacker 

could leverage these underlying dependencies to 

reconstruct the original, clear data and extract implicit 

sensitive information from the supposedly anonymized 

records [2]. The presence of context information and 

ingrained habits, which manifest as strong, persistent 

signals within the data, further compounds the difficulty of 

achieving truly effective anonymization. 

3.2 Scenario 

In this survey, we operate under a data-publishing 

scenario, as illustrated in Figure 2 in the original 

document. This model assumes a workflow where 

behavioral data is initially captured, subsequently 

transformed in a privacy-protective manner, and then 

either published, processed by, or shared with a service 



EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING 

pg. 38  

provider or application. This scenario explicitly includes 

instances of involuntary publication, which can occur 

through various means, such as the unintentional leakage 

of biometric templates from an authentication system, or 

the commercial sale of fitness tracker data to third 

parties [3]. 

Within this framework, a critical assumption is that the 

utility of the protected and modified data is preserved to 

a sufficient extent. This means that despite the privacy-

enhancing transformations, the received service (e.g., a 

personalized recommendation, a responsive virtual 

reality game, or a health monitoring alert) remains 

meaningful and functional for the user [4]. The challenge 

lies in finding the optimal balance where privacy is 

maximized without rendering the data useless for its 

intended purpose. 

3.3 Applications 

The pervasive nature of human-computer interaction 

(HCI) means that virtually every input over time 

constitutes behavioral biometric data. Traditional input 

modalities like keystroke patterns and mouse 

movements have long been central to computer systems 

[324]. However, the landscape is rapidly evolving with 

the rise of new input methods such as touch, voice, and 

gestures, which are anticipated to gain even greater 

prominence [2]. This shift is particularly evident in 

emerging fields like mixed reality (MR), which integrates 

multiple input modalities and necessitates continuous 

monitoring of users to provide immersive experiences. 

Beyond general HCI, behavioral data is invaluable across 

several specialized domains: 

● Healthcare and the Quantified Self: Advances in 

sensor technology and machine learning have 

revolutionized healthcare, enabling applications for 

activity recognition, fall detection, and remote health 

monitoring [59, 212, 226]. These applications are crucial 

for elder care, supporting individuals with chronic 

illnesses, and facilitating early diagnosis. Data commonly 

collected includes gait and motion information from 

accelerometers and gyroscopes embedded in devices, as 

well as biosignals like heartbeat (ECG) and brain activity 

(EEG). This data can be processed to provide real-time 

health feedback, guide relaxation exercises, or detect and 

signal cognitive states such as stress [2]. 

● Biometric Recognition: This is one of the most 

significant and extensively researched application areas 

for behavioral data [13, 115, 165, 182]. The inherent 

uniqueness of an individual's behavior – whether it's 

their walking style or typing rhythm – allows for robust 

identity verification. Given that these patterns can often 

be sensed implicitly as a person interacts with, wears, or 

carries a device, behavioral biometrics are frequently 

considered more user-friendly than traditional 

biometrics like fingerprints [29, 30]. Consequently, they 

serve as a compelling alternative or complement to 

password-based authentication. Academic research has 

demonstrated the feasibility of numerous behavioral traits 

for user authentication, including keystroke patterns 

[272], gait [290], touch [273], mouse movement [324], 

brain activity [99], and even breathing patterns [41, 42]. 

Several commercial solutions, particularly in the financial 

sector, already leverage behavioral biometrics to prevent 

fraud by detecting anomalous behaviors [22, 205, 283, 

289]. 

● Personalization: A substantial portion of 

behavioral data-driven applications focuses on 

personalization, aiming to tailor user experiences. This 

includes adaptive interfaces and services that dynamically 

adjust their content or appearance based on predicted 

user preferences derived from their behavior [4]. 

Examples span various domains: 

○ Online Gaming: Behavioral data is used to 

personalize gaming experiences, such as dynamically 

adjusting difficulty levels to provide a more satisfactory 

experience for the player [328]. 

○ Recommender Systems: User behavior informs 

recommender systems that suggest online content or 

advertisements, enhancing relevance and engagement 

[241]. 

○ Education: In educational contexts, behavioral data 

can be used to tailor learning experiences to a student's 

mental state (e.g., attention level, stress), optimizing 

pedagogical approaches [130]. 

The diverse applications underscore the immense 

potential of behavioral data to enhance convenience, 

security, and personalization in the digital realm. 

3.4 Utility 

The concept of utility in the context of behavioral 

biometric data refers to the effectiveness and functionality 

retained by the data after anonymization, for its intended 

application. This measure is highly dependent on the 

specific service being provided: 

● Biometric Authentication: For an authentication 

application, the primary measure of utility is the system's 

ability to accurately verify an individual's identity. This is 

often quantified by metrics such as the Equal Error Rate 

(EER), False Acceptance Rate (FAR), or False Rejection 

Rate (FRR) [4]. 

● Human-Computer Interaction (HCI): If behavioral 

data serves as an input modality for computer systems 

(e.g., gestures, keystrokes), its utility is measured by its 

precision and timeliness in facilitating user interaction 

[320]. The input must remain reliable and responsive. 

● Healthcare Applications: In healthcare, utility 

might be assessed by the system's accuracy in detecting 

abnormal behavioral patterns, monitoring specific health 

aspects (e.g., step counting), or inferring patient 

preferences for personalized care [4]. For video-based gait 

analysis, utility could also encompass the naturalness and 

convincing appearance of the de-identified gait in the 
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video [125]. 

● Personalization: For applications focused on 

personalization, utility is often tied to the accuracy of 

predicting user preferences or states (e.g., mood, 

attention level) to deliver tailored content or 

experiences. 

In essence, the utility of the anonymized behavioral data 

is assessed by how well it performs the specific task for 

which it was originally collected, despite the privacy-

preserving transformations. The challenge lies in 

minimizing the degradation of this performance while 

maximizing privacy. 

3.5 Privacy Concerns 

The significant amount of personal information implicitly 

embedded within behavioral data-driven applications 

gives rise to substantial privacy concerns. As established, 

behavioral data is inherently rich in individuating 

information, making it a powerful biometric. 

Consequently, any entity collecting this data, even if for a 

legitimate purpose, possesses the capability to identify 

individuals or infer sensitive attributes, irrespective of 

the service's primary function. This problem is 

exacerbated by the fact that individuals may often be 

unaware of the extent to which their behavior is being 

measured, either due to a lack of transparency in data 

collection practices, inadequate consent frameworks, or 

even covert surveillance. 

Beyond direct identity, behavioral data carries a wealth 

of potentially sensitive information that can be misused. 

For example, traits like voice, eye gaze, gait, or brain 

responses are known to correlate with various diseases 

[59, 304], mental states and emotions [269, 301], and 

involuntary physiological reactions (e.g., pupil dilation) 

can betray a person's interests or cognitive load [147, 

146, 176]. This means that data collected for one purpose 

(e.g., authentication) could be repurposed to infer highly 

personal details, potentially leading to discrimination 

(e.g., increased insurance premiums due to inferred 

medical conditions) or threatening user autonomy 

through highly targeted advertising. 

Technically, the general process for inferring identity or 

other information from behavioral data typically 

involves four sequential steps, as depicted in Figure 3 in 

the original document: 

1. Data Acquisition: The initial step involves 

recording and digitizing the raw behavioral data from 

various sensors (e.g., microphones, cameras, 

accelerometers, EEG headsets). 

2. Feature Representation: Relevant features are 

extracted from the raw data. These features are designed 

to capture the unique patterns indicative of identity or 

specific attributes. For instance, Mel-frequency cepstral 

coefficients (MFCCs) are common features for voice, 

while gait energy images are used for gait. 

3. Dimension Reduction: The extracted feature 

representation, often high-dimensional, is typically 

reduced to a lower-dimensional space. This step aims to 

simplify the data, remove redundancy, and make it more 

manageable for subsequent analysis, while ideally 

retaining the discriminative information. 

4. Inference: In the final step, the reduced feature 

representation is fed into machine learning models (e.g., 

classifiers, regression models) to perform the desired 

inference. This could be classifying the user's identity 

(authentication), assigning them to a specific attribute 

class (e.g., male/female), or estimating a continuous 

measure (e.g., degree of depression). 

Consider a voice-controlled personal assistant: it might 

use this workflow to authenticate the user commanding to 

open an email application. However, the same voice 

features could be exploited to classify the user's mood, 

leading to the delivery of highly targeted advertisements – 

a practice that raises significant ethical and privacy 

concerns. 

The proliferation of affordable consumer wearables 

equipped with numerous sensors (e.g., VR/AR devices 

with eye-tracking, head pose detection, and EEG sensors) 

further exacerbates the privacy issue. Once data is 

collected, even for a legitimate, user-consented 

functionality like fraud detection based on behavioral 

anomalies, it can be subsequently exploited to infer private 

information. This highlights the urgent need for robust 

techniques to protect behavioral data against unintended 

identity and attribute disclosure. 

3.6 Attacker Model 

To effectively design and evaluate anonymization 

techniques, it is crucial to clearly define the capabilities 

and goals of the adversary. Our attacker model assumes 

the following characteristics: 

● Access to Behavioral Biometric Data: The 

adversary has gained access to the behavioral biometric 

data of one or multiple users. This access can originate 

from various sources: 

○ Service Provider: The adversary might be the 

service provider itself, who, despite providing a legitimate 

service, seeks to exploit the collected behavioral data for 

secondary, privacy-invasive purposes (e.g., inferring 

sensitive attributes for targeted advertising). 

○ Malicious User: The adversary could be another 

user of the service who has managed to obtain or infer data 

belonging to other individuals (e.g., face images 

downloaded from social media, or shared biometric 

templates). 

○ Data Breach/Leak: The data could have been 

acquired through an unintentional release, a security 

breach, or a hack of a system storing biometric data [3]. 

● Full Access and Inference Capabilities: Since the 

adversary has full access to the behavioral biometric data 
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(even if it has undergone some form of initial, weak 

anonymization), they can freely select and apply any 

available inference technique. This includes state-of-the-

art machine learning models, advanced statistical 

methods, and data analysis algorithms to perform 

privacy inferences (e.g., re-identification, attribute 

inference). 

● Prior Knowledge: The adversary may possess 

additional prior knowledge about the target user. This 

can include: 

○ Biometric Templates: Leaked or compromised 

biometric templates from other systems. 

○ Soft Biometrics: Previously known sensitive 

attributes (e.g., gender, approximate age, known health 

conditions) that can serve as auxiliary information to aid 

re-identification or attribute inference. 

○ Publicly Available Datasets: Access to public 

datasets containing similar behavioral data, which can be 

used to train powerful inference models or to cross-

reference with the anonymized data. For example, 

publicly available EEG datasets of alcoholic and non-

alcoholic individuals could be used to build a classifier for 

newly gathered data [134, 203]. 

This robust attacker model dictates that anonymization 

techniques must not only obscure direct identifiers but 

also resist sophisticated inference attacks that leverage 

complex data patterns and external knowledge. The 

evaluation of such techniques must therefore account for 

these adversarial capabilities, moving beyond simple 

accuracy metrics on weakly anonymized data. 

4. A Taxonomy of Solutions for Behavioral Data 

Privacy 

Based on our comprehensive literature analysis, we 

identify two primary privacy threats that necessitate 

anonymization in scenarios where behavioral data is 

collected or processed by a third party. These threats 

directly inform the goals of anonymization techniques 

and can be understood in terms of the capabilities of the 

attacker model described previously. 

4.1 Privacy Threats and Goals 

The two main privacy threats are: 

● Identity Disclosure: In this scenario, the attacker's 

primary objective is to use the behavioral data to identify 

the individual. This threat assumes the attacker can link 

the target's behavioral data to their real-world identity. 

The goal might be to link a user's account and data in a 

professional application to their account in an 

entertainment application, thereby gaining a more 

comprehensive profile of their activities [4]. As an 

illustrative example, consider a user of a VR headset 

entering a federated Metaverse. Even if the user employs 

a pseudonym, the server or other users could potentially 

use transmitted behavioral data (e.g., controller/headset 

motions, eye-tracking data) to identify the user across 

different pseudonyms [265]. This is particularly 

concerning given that behavioral data is sometimes sold to 

third parties or unintentionally leaked through breaches 

[3]. 

○ Anonymization Goal: Identity Protection: This 

involves transforming the behavioral biometric data of a 

person such that their identity can no longer be linked to 

the data. This goes beyond simple pseudonymization, 

which merely replaces an identifier with a new one, aiming 

instead to prevent identification altogether, even through 

indirect means. 

● Attribute Disclosure: Here, the attacker's goal is not 

necessarily to re-identify the user across accounts, but 

rather to derive sensitive attributes from the available 

behavioral data that the user did not intend to disclose. 

These attributes can be long-living (e.g., sex, age, medical 

conditions) or short-living (e.g., mental state, temporary 

health conditions, emotional state) [4]. For example, a 

classifier trained on publicly available 

electroencephalogram datasets of alcoholic and non-

alcoholic persons [134, 203] could be used to determine if 

newly gathered EEG data from a brain-computer interface 

application belongs to a user with an alcohol problem. 

○ Anonymization Goal: Attribute Protection: This 

involves transforming the behavioral biometric data in a 

way that specific private attributes of the person can no 

longer be inferred from the data. An extreme form of 

attribute protection is template protection, where the 

identity verification (e.g., for authentication) remains 

possible, but all other attributes are protected [4]. 

Figure 4(a) in the original document visually represents 

this taxonomy of anonymization techniques based on their 

privacy goal. 

4.2 Taxonomy of Data Transformation Applied 

Building upon the analysis of state-of-the-art protection 

methods, we have developed a classification of 

anonymization techniques based on the type of 

transformation applied to the original data to derive the 

anonymized, protected data. This taxonomy, depicted in 

Figure 4(b) in the original document, includes only 

fundamental concepts, though many advanced 

anonymization techniques combine multiple of these 

approaches. A defining characteristic shared by all 

anonymization methods in this taxonomy is their aim to 

provide irreversible transformations, meaning it is 

computationally infeasible or impossible to revert the 

anonymized data back to its original form. 

The primary distinction in our taxonomy is between non-

deterministic and deterministic techniques: 

● Non-deterministic Methods: These methods 

incorporate randomness into their transformation 

process, meaning that the same input data can yield 

different anonymized outputs on different runs. This 

inherent variability makes it harder for an attacker to link 

anonymized data back to the original. 
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○ Random Perturbations: This involves a random 

transformation of the data into a different domain or a 

random rearrangement of data components. The 

randomness is applied in a way that significantly alters 

the original structure while attempting to retain some 

statistical properties relevant for utility. 

○ Noise Injection: These methods directly add 

random noise to the data points. This concept is 

analogous to additive noise masking in Statistical 

Disclosure Control (SDC) [122], where random noise is 

added to original values before release. While noise 

injection can be combined with deterministic 

transformations, its core principle relies on obscuring 

original values through random additions. The challenge 

lies in adding enough noise for privacy without 

destroying utility. 

● Deterministic Methods: These methods produce 

the same anonymized output for identical input data 

every time. While they lack the inherent variability of 

non-deterministic methods, their transformations are 

designed to be irreversible and privacy-preserving. 

Deterministic methods are further categorized into two 

main types: 

○ Removal: This method involves eliminating 

specific data points or features from the dataset such that 

they no longer influence the anonymized result. 

■ Coarsening: This refers to reducing the 

granularity of the data. It can involve removing parts of 

each data point, making the data more sparse, or 

aggregating data into broader categories. For instance, 

reducing the precision of numerical values or grouping 

fine-grained temporal events into larger time bins. 

■ Feature Removal: This involves completely 

eliminating data points associated with a specific feature 

or set of features. In SDC, this is known as suppression 

[122]. If a microdata set contains too few records sharing 

a combination of quasi-identifier values (making re-

identification risky), specific values of individual 

variables are suppressed (replaced with missing values) 

to expand the number of records conforming to each 

combination, thereby enhancing privacy. 

○ Conversion: These methods transform the data 

points into a new representation. This new 

representation is typically derived from the original 

domain but is designed to obscure identifying 

information. 

■ Discrete Conversion: The result of the conversion 

is a discrete value. This can involve mapping original data 

points to a limited set of predefined categories or 

symbols. 

■ Continuous Conversion: The result of the 

conversion is a continuous value. This often involves 

complex mathematical transformations, signal 

processing techniques, or machine learning models that 

generate a new, continuous data representation that is 

unlinkable to the original but retains relevant utility. 

This taxonomy provides a structured framework for 

understanding the diverse array of anonymization 

techniques applied to behavioral biometric data, allowing 

for systematic comparison and analysis across different 

traits and approaches. 

5. Anonymization Techniques 

This section provides a detailed overview of 

anonymization techniques, organized by the specific 

behavioral biometric trait they aim to protect. For each 

trait, we delve into its utility, the associated privacy threat 

space, a comprehensive analysis of the anonymization 

techniques employed (categorized according to our 

taxonomy), and a critical review of the evaluation 

methodologies used in the literature. Voice is presented 

first due to its extensive research, followed by gait, hand 

motions, heartbeat, eye gaze, and brain activity. 

5.1 Voice 

The human voice is a complex acoustic signal generated by 

the interplay of the larynx and the vocal tract. The larynx 

produces a fundamental frequency (F0), perceived as 

pitch, while the vocal tract acts as a filter, shaping the 

sound through its unique resonant properties, which are 

influenced by its length and configuration [35]. These 

physical characteristics contribute significantly to an 

individual's unique vocal timbre. 

For analysis, speech signals are often transformed into 

representations that highlight key acoustic features. The 

log-spectrum, which approximates human perception of 

sound intensity, is a common starting point. Applying a 

Fourier Transform (FFT) or cosine transform to the log-

spectrum yields the cepstrum (see Figure 5 in the original 

document), a representation useful for estimating F0 and 

other vocal tract characteristics [35]. The Mel-frequency 

cepstral coefficients (MFCCs) are derived from the 

cepstrum by sampling frequencies on the Mel scale, which 

mimics the non-linear human auditory perception, 

providing a compact representation of the signal's 

macrostructure [35]. 

Speaker recognition (identifying who is speaking) is a core 

application that leverages these vocal features. Traditional 

methods include Gaussian Mixture Models (GMMs), which 

represent speakers as distributions of their feature 

vectors (typically MFCCs) [243]. A Universal Background 

Model (UBM), a GMM trained on a wide variety of non-

target speakers, serves as a general reference. Speaker-

specific GMMs are then adapted from the UBM using 

techniques like Maximum A Posteriori (MAP) adaptation 

[244]. Supervectors, formed by concatenating the means 

of MAP-adapted GMMs, can be classified using Support 

Vector Machines (SVMs) [36]. An extension, Total 

Variability (TV), maps supervectors to a low-dimensional 

space (i-vectors) that models both speaker and channel 

variability, becoming a de facto standard for speaker 

identification [64]. More recently, x-vectors, extracted via 
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deep neural networks (DNNs), have emerged as robust 

speaker embeddings [260]. 

5.1.1 Utility 

Voice recordings serve multiple utilities. Primarily, they 

facilitate human-to-human information transmission, 

where intelligibility of speech content is paramount. 

Increasingly, voice also functions as a critical input 

modality for computer systems [231], where its utility is 

measured by the accuracy and responsiveness of voice 

commands. Beyond content, the mere detection of speech 

in audio samples can be useful for applications like crowd 

detection [49]. Crucially, voices uniquely identify their 

speakers, making them suitable for authentication and 

recognition purposes in biometric systems [247]. 

5.1.2 Threat Space 

The privacy threats associated with human voices are 

multifaceted, ranging from direct individual 

identification to the inference of sensitive attributes and 

even identity theft. 

● Identification: The ability to identify individuals 

by their voice has long been recognized, both by humans 

and, increasingly, by automated systems. 

● Attribute Inference: Voices convey more than just 

identity; they enable the inference of attributes such as 

gender [79] or emotional state [301]. 

● Identity Theft/Cloning: Modern speech synthesis 

and voice conversion methods allow for the creation of 

highly realistic fake voice recordings of a target speaker, 

enabling sophisticated identity theft or circumvention of 

speaker authentication systems. 

● Semantic Content Disclosure: Unlike many other 

behavioral biometric traits, voice carries semantic 

meaning (the actual spoken words), which can be highly 

sensitive and subject to privacy breaches if exposed to 

unintended listeners. 

5.1.3 Additional Privacy Goal: Speech Blurring 

Beyond identity and attribute protection, voice data 

introduces an additional, unique privacy goal: speech 

blurring. This aims to intentionally destroy the 

intelligibility of the speech, thereby protecting its 

semantic content from unauthorized listeners, even if the 

speaker's identity might still be partially discernible. 

5.1.4 Anonymization Techniques 

We now present surveyed anonymization techniques for 

human voices, categorized by their transformation 

approach. 

Random Perturbation 

This category involves introducing randomness to 

disrupt the unique vocal signature. 

● Parthasarathi et al. [214] extended their feature 

removal methods by shuffling voice blocks to add 

randomness, aiming to obscure speaker identity in 

diarization tasks. 

● Mtibaa et al. [193] proposed a template protection 

scheme for GMM-UBM speaker identification systems that 

shuffles feature vectors based on a secret key, making the 

template cancelable. 

● Sharma et al. [254] utilized a self-attention channel 

combinator to add noise to voice signals, contributing to 

de-identification. 

Noise Injection 

These methods directly add random noise to the voice 

signal to obscure identifying information. 

● Tamesue et al. [271] proposed a simple method to 

make speech unintelligible by playing pink noise within a 

specific frequency range at various decibel levels. 

● Ma et al. [163] developed a technique for 

smartphone recordings, where two ultrasound waves 

interfere to create random low-frequency waves that 

disrupt smartphone microphones, effectively blocking 

recordings without being audible to humans. They 

demonstrated effectiveness up to 5 meters depending on 

the device. 

● Hashimoto et al. [107] proposed adding white 

noise to prevent speaker identification from recordings in 

physical spaces. Their evaluation showed a reduction in 

speaker identification (EER from 2% to 17%) while 

maintaining high speech intelligibility (short-time 

objective intelligibility [270] from 1 to 0.9). 

● Ohshio et al. [208] trained "babble maskers" from 

pre-recorded speakers by averaging speech segments. 

These maskers, selected based on the target person's 

fundamental frequency and pitch, are applied to de-

identify recordings. 

● Vaidya et al. [285] explored adding random noise 

to pitch, tempo, pause, and MFCC features, though their 

description was concise. 

● Hamm et al. [103] introduced a differentially 

private min-max filter, which adds noise either before or 

after filtering to minimize privacy risk while maximizing 

utility. 

● Han et al. [104] formally defined "voice-

indistinguishability" using differential privacy, applying it 

to x-vectors as speaker representations. They used 

angular distance as a similarity metric and established an 

upper limit on this distance for indistinguishability. 

● Qian et al. [236] presented a method to sanitize 

speech for virtual assistants by applying vocal tract length 

normalization via a compound frequency warping 

function and adding Laplace noise for robustness, claiming 

differential privacy. A follow-up work [235] further 

investigated its security, and Srivastava et al. [263] 

evaluated it against stronger attackers. 
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● Shamsabadi et al. [253] aimed for theoretical 

privacy guarantees in speaker transformation by adding 

differential privacy to pitch and context features in their 

latent spaces, though the impact of correlations between 

speech segments on DP guarantees remains an open 

question. 

Feature Removal 

This involves removing or altering specific acoustic 

features that are highly indicative of speaker identity. 

● Parthasarathi et al. [215] proposed three methods 

for privacy-aware speaker change detection: adaptive 

filtering (using LP residuals), removing all subbands 

except specific high-frequency ones (1.5-2.5 kHz and 3.5-

4.5 kHz), and using only the spectral slope. In a separate 

work [213], they found MFCCs more effective than real 

cepstrum for speaker diarization. Agarwal et al. [7] 

proposed a similar scheme, transforming segmented 

speech into the frequency domain, selecting important 

peaks, and interpolating a new signal. 

● Wyatt et al. [297] and Zhang et al. [322] proposed 

feature removal for speaker segmentation and 

conversation detection, extracting non-initial maximum 

autocorrelation peaks, total autocorrelation peaks, 

relative spectral entropy, and frame energy. However, a 

privacy evaluation was missing in both. 

● Ditthapron et al. [69] investigated removing non-

target speakers in speech assessment by extracting 

speaker representations from MFCCs via an encoder and 

filtering out non-target speakers in a matching network. 

A convincing privacy evaluation was noted as missing. 

● Nelus et al. [201] trained a DNN using adversarial 

learning to extract features that allow gender recognition 

but not speaker identification, showing a drop in 

identification from 61% to 26% with only a 1% drop in 

gender recognition. They also applied a similar system to 

remove speaker identities from urban sound recordings 

[200]. 

● Cohen-Hadria et al. [49] used a neural network to 

extract voices from mixed background and voice noise. 

They removed attributes by low-pass filtering at 250 Hz 

or by using the first five MFCC components to create a 

new voice, reducing identification from 43% to 29%. 

Discrete Conversion 

These methods transform voice features into discrete, 

often cancellable, representations. 

● Pathak et al. [217] presented a hashing algorithm 

for voice authentication, transforming speaker 

supervectors into low-dimensional "buckets" using 

locality-sensitive hashing, allowing approximate nearest-

neighbor comparisons. 

● Portelo et al. [229, 230] proposed a template 

protection scheme based on secure binary embeddings 

for speaker identification systems using supervectors 

and i-vectors. These embeddings maintain a proportional 

relationship between Euclidean distance of original 

vectors and Hamming distance of hashes, enabling 

comparison via SVMs with Hamming distance kernels. 

● Billeb et al. [27] proposed a template protection 

scheme based on fuzzy commitment, extracting features 

from the magnitude spectrum (via FFT) and applying MAP 

adaptation of a GMM-UBM system. The template is stored 

as an error-correcting code and hash combination. 

Continuous Conversion 

This is the most common category, aiming to create an 

anonymized speech recording that sounds natural but 

obscures identity. 

● Speaker Transformation: This process manipulates 

a speaker's voice characteristics to sound like a target 

speaker (natural or synthetic), while preserving linguistic 

content. 

○ Jin et al. [129] evaluated GMM-mapping-based 

speaker transformation to a synthetic voice (kal-diphone), 

also testing duration transformation and extrapolated 

transformation. 

○ Pobar et al. [225] combined GMM mapping with a 

harmonic stochastic model, applying existing 

transformation functions without needing a parallel 

corpus for new speakers, reducing identification accuracy 

from 97% to 9%. 

○ Justin et al. [132] investigated intelligibility of 

transformed speakers using diphone and HMM-based 

speech synthesis systems, evaluating word error rate with 

human listeners. 

○ Abou-Zleikha et al. [3] explored optimal target 

speaker selection for de-identification, formulating it as an 

optimization problem to minimize identification rate 

while maximizing reconstruction quality. 

○ Pribil et al. [234] modified prosodic and spectral 

features to make speakers sound older/younger or more 

female/male for de-identification. 

○ Bahamanienezhad et al. [17] developed a speaker 

transformation using a convolutional encoder/decoder 

network to map spectral features to a target speaker, 

fusing the result via averaging or gender-based averaging. 

○ Fang et al. [82] used x-vectors, calculating a mean 

x-vector from random unrelated speakers, achieving EER 

up to 34% for anonymization. Mawalim et al. [177] 

improved this by scaling F0, increasing utterance length, 

and using singular value modification for x-vector 

combination, boosting EER to 54%. Prajapati et al. [232] 

further enhanced this with a CycleGAN. 

○ Cheng et al. [45] proposed a speaker 

transformation with separate encoders for content and 

speaker identity, recombining them in a decoder for 

anonymized utterances. 
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○ Panarielle et al. [210] used neural audio codecs 

(NAC) for speaker transformation, independently 

encoding content and identity before combining them 

with transformer models. 

○ Miao et al. [186] developed a language-

independent speaker transformation based on the 

VoicePrivacy [279] challenge baseline, showing 

effectiveness on English and Mandarin. 

○ Hintz et al. [110] used a GAN to anonymize 

stuttering speech, preserving the pathology while 

removing speaker identity. 

○ Yang et al. [306] focused on low-latency speaker 

transformation. 

○ Yao et al. [308] aimed to improve anonymized 

speaker distinctiveness by scaling formant and pitch 

information. 

○ Meyer et al. [185] proposed a speaker 

anonymization method that preserves the speaker's 

prosody. 

○ Nespoli et al. [202] suggested using two 

sequential speaker transformation systems for enhanced 

anonymization. 

○ Chang et al. [40] and Meyer et al. [184] 

investigated different averaging strategies for target 

speaker creation. 

○ Yuan et al. [316] trained an autoencoder for 

synthetic data generation to create random speakers. 

○ Lv et al. [162] used autoencoders to obtain latent 

speaker representations and selected similar ones from a 

pool using k-means. 

○ Yao et al. [307] encoded speakers as matrices, 

decomposed them with SVD, and logarithmically 

transformed importance values for reconstruction. 

○ Miao et al. [187] extended their method [186] by 

removing the speaker pool and using adversarial 

perturbation for speaker vector transformation. 

○ Perero-Codosera et al. [219] also proposed an 

adversarial perturbation approach for anonymizing X-

vectors. 

○ Yao et al. [309] suggested removing random 

dimensions of an X-vector to create a new speaker 

identity. 

● Adversarial Perturbation: This technique uses 

machine learning systems trained with dual loss 

functions: one to minimize the privacy attribute and 

another to maximize utility. 

○ Cheng et al. [43] proposed VoiceCloak, a 

convolutional perturbation injector that takes room 

impulse response and original voice to output an 

anonymized voice. 

○ Deng et al. [65] presented V-Cloak, a convolutional 

autoencoder trained to minimize identification while 

preserving timbre and intelligibility, demonstrating real-

time anonymization capabilities. 

○ Chouchane et al. [47] used adversarial training to 

create speaker embeddings for speaker verification that 

work for verification but not sex recognition, addressing 

fairness concerns. 

○ Xiao et al. [299] developed a microphone module 

that anonymizes speakers by adding adversarial 

perturbation to the sound signal, using a genetic algorithm 

to find the perturbation, resulting in low latency. 

○ Ravi et al. [240] developed an adversarial 

perturbation for depression detection in speakers, aiming 

to enhance accuracy and privacy through speaker 

disentanglement. 

○ Ali et al. [9] proposed an autoencoder to anonymize 

voice at the network edge for voice assistants, extracting 

privacy-friendly features by training classifiers on latent 

codes and performing gradient reversal to unlearn 

identity, gender, and language features. 

○ Yoo et al. [314] used a CycleGAN with a variational 

autoencoder as its generator for speaker anonymization, 

trained against a DNN speaker recognition system as the 

discriminator. 

● Frequency Warping: Similar to speaker 

transformation, but specifically focuses on altering the 

frequency spectrum, often to remove vocal tract length 

normalization (VTLN) characteristics which are speaker-

specific. 

○ Faundez-Zanuy et al. [83] explored phase vocoder 

and VTLN for gender protection, reducing gender 

recognition to chance level, though also impacting identity 

recognition. 

○ Valdivielso et al. [1] presented a speaker protection 

approach that transforms pitch and frequency axes. 

○ Lopez-Otero et al. [161] used frequency warping 

and amplitude scaling (affine transformation in cepstral 

domain) for speaker protection in depression detection 

contexts, increasing EER for speaker identification from 

9.7% to 44% while maintaining depression detection 

utility. 

○ Magarinos et al. [164] also used frequency and 

amplitude warping, applying dynamic frequency warping 

(DFW) to map source spectrum bins to target spectrum, 

reducing identification from 99% to 4%. 

○ Aloufi et al. [11] used a CycleGAN to transform 

emotional speech to neutral speech, hiding emotional state 

(from >70% to ~20%) and sex (from ~99% to 50% chance 

level). 

○ Srivastava et al. [263] evaluated multiple speaker 

protection methods against informed attackers, showing 

large differences in EER between ignorant (up to 50%) and 



EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING 

pg. 45  

informed (11%) attackers, highlighting the importance of 

strong attacker models. 

○ Patino et al. [218] pseudonymized speakers by 

transforming their McAdams coefficients (LPC 

coefficients transformed into poles), showing good 

performance against ignorant attackers (EER from 3% to 

26%) but less against informed ones (5% EER). Gupta et 

al. [100] improved this by modifying both angle and 

radius of complex poles. 

○ Mawalim et al. [178] proposed two frequency 

modifications: segmenting and resampling speech for 

pitch shifting, and using phase propagation for segment 

recombination. 

○ Ganzepoglu et al. [92] modified the VoicePrivacy 

challenge B1 baseline to produce better anonymized 

fundamental frequencies using X-vectors and a mask. 

Continuous Conversion + Random Perturbation 

● Canuto et al. [39] proposed a template protection 

method where feature vectors are shuffled via a 

randomized sum based on a secret key, making templates 

cancellable. 

● Prajapati et al. [233, 257] combined voice 

conversion with speed perturbation by changing 

sequence length and tempo, showing that speed 

perturbation strengthens anonymization. 

Continuous Conversion + Noise Injection 

● Kondo et al. [143, 144] created "babble maskers" 

by averaging 10-second speech segments (speaker-

dependent or gender-based) and applying them to 

recordings. 

● Qian et al. [236] sanitized speech for virtual 

assistants using vocal tract length normalization via 

compound frequency warping and adding Laplace noise 

for differential privacy. A follow-up [235] and work by 

Srivastava et al. [263] further analyzed its security. 

● Shamsabadi et al. [253] aimed for theoretical 

privacy guarantees by adding differential privacy to pitch 

and context features in speaker transformation, encoding 

them via autoencoders and adding Laplace noise. 

5.1.5 Evaluations 

Most voice anonymization works evaluate de-

identification by comparing recognition rates (identity or 

attributes) on unmodified and de-identified data, using 

machine learning models or human listeners. Common 

metrics include Equal Error Rate (EER), False Positive 

Rate (FPR), False Negative Rate (FNR), recall, precision, 

and F1 score [4]. Abou-Zleikha et al. [3] also used entropy 

and Gini index. The prevalence of EER suggests a focus on 

speaker verification, though speaker identification is 

often more appropriate for anonymization evaluation. 

Utility loss is assessed by measuring naturalness (via 

Mean Opinion Score from human listeners) and 

intelligibility (via Word Error Rate, Phoneme Error Rate, 

or Short-Time Objective Intelligibility [270] from human 

listeners or machine learning models) [4]. A critical 

limitation observed is that most evaluations train 

recognition models on clear data and test on anonymized 

data, implicitly assuming the attacker is unaware of the 

anonymization. This leads to an overestimation of 

anonymization performance. 

The VoicePrivacy challenge [279] is a notable initiative 

improving speaker anonymization methodology. It uses 

EER and log-likelihood-ratio cost function (Cllr) for 

speaker verifiability and Word Error Rate for 

intelligibility. Crucially, it includes retraining speaker 

verification systems with anonymized speech data to test 

against an informed attacker, a practice that has become 

popular since 2020. 

Qian et al. [237] proposed a framework with a "p-leak 

limit" to quantify maximum privacy leakage per speaker. 

Zhang et al. [321] also provided a theoretical framework 

for privacy leakage risk and utility loss in speech data 

publishing. 

5.2 Gait 

Human gait refers to the characteristic pattern of limb 

movements during locomotion, encompassing various 

manners such as walking, running, or trotting [140]. Gait 

can be systematically broken down into individual gait 

cycles (see Figure 6 in the original document), which 

represent the shortest repetitive task within the entire 

locomotion process [267]. A gait cycle typically extends 

from a specific event of one foot (e.g., initial contact with 

the ground) until the same foot reaches that identical 

event again. Each cycle comprises a stance phase, where 

the foot is in contact with the ground, and a swing phase, 

where the foot is airborne. These two phases alternate for 

each foot, creating a unique and identifiable rhythm. 

Gait has long been a subject of research in both computer 

science and psychology due to its utility as a behavioral 

biometric trait for individual identification. For example, 

Yovel et al. [315] demonstrated its importance in human 

recognition at a distance, and Pollick et al. [227] showed 

that humans can even infer gender from point-light 

displays of walkers, highlighting the inherent information 

encoded in gait patterns. 

Gait recognition methods are diverse, adapted to various 

capture modalities. Wan et al. [290] categorize these 

methods based on cameras, accelerometers, floor sensors, 

and radars. Camera-based recognition is often classified as 

either model-based, which uses specific kinematic models 

of the walker (e.g., a pendulum model of the legs) to match 

individuals, or model-free, which processes the entire gait 

capture without an explicit model (e.g., averaging 

silhouettes over time to create a "gait energy image"). 

Accelerometer-based systems typically average gait data 

into feature representations, either by segmenting gait 

into cycles or using fixed-size frames. 
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5.2.1 Utility 

Gait recordings offer significant utility across several 

domains: 

● Medical Diagnosis: Gait patterns are crucial for 

the diagnosis of gait abnormalities and neurological 

conditions [140]. 

● Activity Monitoring: More casual applications 

include tracking daily steps [261] or recognizing specific 

activities. 

● Video Quality/Naturalness: In video recordings, 

maintaining the naturalness and convincing appearance 

of the de-identified gait is important to avoid degrading 

the overall video quality or user experience [125]. 

● Biometric Authentication: As a behavioral 

biometric, gait is used for identity verification and 

continuous authentication. 

5.2.2 Threat Space 

The omnipresence of human gait in everyday life, 

coupled with the unintrusive nature of many capturing 

methods, makes it highly susceptible to privacy threats. 

● Ease of Capture: Gait can be easily captured, often 

as a byproduct of other recordings (e.g., surveillance 

cameras), without the subject's active participation or 

awareness. 

● Robustness to Obfuscation: Gait recognition has 

shown remarkable robustness to video quality 

degradation and minor obfuscation, making it suitable 

for surveillance systems [290]. 

● Identification: It is a strong identifier for 

individuals. 

● Attribute Inference: Beyond identity, gait can 

reveal private attributes like gender [227], age, and 

various physiological conditions [282]. 

● Emerging Threats: With advancements in richer 

capturing methods like LiDAR [87] or affordable motion 

capture suits, the threat space for gait is expected to 

expand, allowing for even more detailed and potentially 

privacy-invasive inferences. 

5.2.3 Anonymization Techniques 

Here, we present gait anonymization methods found in 

the literature, organized by our taxonomy. 

Random Perturbation 

This involves introducing randomness into gait data to 

obscure identity. 

● Hoang et al. [113] proposed a fuzzy commitment 

scheme based on Bose-Chaudhuri-Hocquenghem (BCH) 

codes for storing accelerometer gait templates. Reliable 

bits from binarized accelerometer data are XORed with a 

BCH-encoded secret key. While promising for false 

accept rates, the false reject rate needs improvement for 

user-friendliness. 

● Matovu et al. [175] studied the influence of noise 

injection on accelerometer/gyroscope authentication 

systems by merging the original time series with a 

uniformly distributed noise time series. 

Noise Injection 

This category focuses on adding noise to gait data, often 

with the goal of obscuring identity while maintaining 

utility. 

● Tieu et al. [276] developed a CNN-based method to 

mix the gait of a second person (noise gait) into the 

original gait in videos. Silhouettes are extracted and 

merged via a shared-weights CNN. They reported 

identification rates between 20% and 1% depending on 

view angle. 

● In a follow-up, Tieu et al. [277] improved their 

method by generating the noise gait using a Generative 

Adversarial Network (GAN) and fusing it with a self-

growing and pruning GAN (SP-GAN), achieving 

identification accuracy between 30% and 10%. They also 

proposed a method to colorize the resulting black-and-

white silhouettes [278]. 

● Hanisch et al. [105] investigated adding Laplace 

noise to body positions in motion capture gait data. Their 

results indicated that effective anonymization was not 

possible without destroying utility (measured as 

naturalness via user study). 

● Meng et al. [183] also showed that the noise level 

required for effective anonymization in motion data often 

destroys its utility. 

Coarsening 

This involves reducing the granularity or detail of gait 

data. 

● Nair et al. [198] experimented with coarsening the 

frame rate, positional accuracy, and dimensionality of VR 

motion data. They found that while these techniques could 

reduce identification rates for individual motion 

sequences, they were not effective for anonymizing 

motion data on a per-session basis. 

Feature Removal 

This focuses on eliminating specific features from gait data 

that are highly indicative of identity. 

● Jourdan et al. [131] proposed a feature removal 

approach for privacy-preserving activity recognition using 

accelerometers. They extracted temporal and frequency 

features and found that temporal features contributed 

more to identity recognition, while frequency features 

contributed more to activity recognition. By removing 

temporal features, they achieved a good trade-off (activity 

recognition from 96% to 87%, identification from 90% to 

40%). 

● Debs et al. [63] performed a similar feature 
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removal by transforming the signal using a short-time 

Fourier transformation and then randomly removing 

10% to 90% of the data. 

● Garofalo et al. [90] proposed a temporal 

convolutional network as a feature extractor, trained via 

adversarial training to minimize identity verification 

while maximizing attribute classification. 

● Rougé et al. [246] developed an anonymization 

technique for accelerometer motion data. They extracted 

features via a short-time Fourier transform and trained a 

random forest classifier for action and identity 

recognition. Features important only for identification 

were then removed. 

● Hanisch et al. [105] also tested removing body 

parts from gait motion capture data. They found gait data 

to be highly redundant, with identification success 

remaining close to 60% even when only head data was 

retained. 

Continuous Conversion 

This involves transforming gait data into a new, 

continuous representation. 

● Blurring: This technique de-identifies persons in 

videos, including their gait. 

○ Agrawal et al. [8] proposed exponential blur 

(treating video as 3D space and blurring via weighted 

average of neighbors) and Line Integral Convolution 

(LIC) (mapping bounding box to vector field for pixel 

calculation). 

○ Ivasic-Kos et al. [125] applied a Gaussian filter to 

blur walker silhouettes, calculating a weighted average of 

neighboring pixel colors. 

● Halder et al. [102] worked on gait anonymization 

in videos by extracting gait silhouettes, clustering them 

into key gait poses using k-means, and then using a GAN 

to generate new video sequences from the closest key 

pose. 

● Moon et al. [191] investigated adversarial training 

for anonymizing 3D pose data, training models to 

maximize action recognition while minimizing 

identification. Their evaluation on ETRI-activity [127] 

and NTU60 [157] datasets showed high utility for action 

recognition and identification rates near chance. 

● Nair et al. [196] proposed an adversarial 

approach for VR motion data anonymization using a 

Siamese architecture, training the model to achieve good 

action recognition and low identification by adding a 

random vector to the motion sequence input. 

● Thapar et al. [275] considered anonymizing gait in 

egocentric videos. They learned identities from gallery 

videos via camera rotation signatures, then applied this 

signature to target videos to mix identities, increasing 

EER for person identification from ~20% to ~50%. 

Continuous Conversion + Discrete Conversion 

● Hirose et al. [112] proposed an approach 

combining continuous and discrete conversions for 

walkers in videos. They extracted silhouettes and gait 

cycles, transformed the silhouette via a deconvolutional 

neural network encoder into a silhouette code, and then 

converted this code using a k-same approach (weighted 

average of k-nearest neighbors). The gait cycle was 

transformed via a continuous, differentiable, and 

monotonically increasing function. A new video was 

generated by feeding the perturbed silhouette code and 

gait cycle into a convolutional neural network decoder. 

Their evaluation showed gait recognition dropping from 

~100% to 4-29% depending on the model. 

5.2.4 Evaluation 

Gait de-identification is primarily evaluated using gait 

recognition systems or human observers, with recognition 

accuracy as the main metric. Other metrics include F1 

score, Equal Error Rate (EER), or False Acceptance Rate 

(FAR) [4]. To assess utility loss, a wider variety of metrics 

are used, often quantifying the naturalness of the de-

identified gait or the performance of other recognition 

tasks (e.g., activity recognition). Matovu et al. [175] used a 

"biometric menagerie" to observe de-identification 

influence on different user types in biometric 

authentication systems. A common limitation, similar to 

voice, is that many evaluations assume a weak attacker 

unaware of the anonymization. 

5.3 Hand Motions and Gestures 

The term "hand motions" serves as an umbrella category 

encompassing a variety of hand-related behavioral 

biometric factors, including handwriting, keystrokes, 

mouse movements, and hand gestures. These traits 

primarily differ in their recording methodology and the 

specific types of hand movements involved. Handwriting 

can be captured either offline (only the final written text) 

or online (real-time capture of hand movements during 

writing, typically with a digital pen). This survey focuses 

on the uniqueness of the writing style rather than the 

linguistic style (stylometry) of the text. In contemporary 

digital environments, handwriting has largely been 

supplanted by typing on keyboards, which itself 

constitutes a significant biometric factor, as individuals 

can be identified by the precise timings of their key 

presses. Similarly, the use of computer mice generates 

unique patterns through trajectories, speeds, and click 

events, serving as another biometric identifier. Lastly, 

hand gestures can be directly captured using optical 

tracking or accelerometer-based techniques. 

Hand motion recognition involves various techniques 

tailored to these diverse capture modalities: 

● Handwriting Recognition: For handwriting, the 

input sequence is often adjusted for its baseline, scaled to 

a normal writing style, and segmented to meet classifier 

requirements [223]. Recognition differs between "online 
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handwriting" (captured during writing) and "offline 

handwriting" (captured after writing is complete). 

● Mouse Movement Recognition: This relies on 

features such as trajectory, speed, single, and double 

clicks performed with a mouse. 

● Keystroke-based Hand Motion Recognition: 

Primarily based on timing differences between key-up, 

key-down, and key-hold events. Features often include 

differences between successive events (digraphs) or 

even three successive events (trigraphs) [327]. 

● Gesture Recognition: Can be categorized into 2D 

gestures (performed on flat surfaces like smartphones) 

and 3D gestures (performed in mid-air). Sherman et al. 

[255] used finger trajectories, resampling them with 

cubic spline interpolation to remove jitter and employing 

dynamic time warping for distance calculation between 

gestures. 

5.3.1 Utility 

The utility of hand motions is broad and varied: 

● Handwriting: The primary utility is the readability 

of the resulting text by humans or computers. For 

signatures, the main purpose is identity identification 

and verification, where the unique style is paramount, 

and readability of the name is secondary. 

● Input Modalities: For other hand motions 

(keystrokes, mouse movements, gestures), their utility 

lies in serving as precise and timely input modalities for 

computer systems [320], enabling effective human-

computer interaction. 

● Non-verbal Communication: Hand gestures 

additionally serve as a form of non-verbal 

communication [250]. 

5.3.2 Threat Space 

The threat space for hand motions is significant due to 

their ubiquitous nature in daily tasks and digital device 

interaction. 

● Unavoidable Capture: Our hands are constantly in 

use, and digital devices often record hand motions 

implicitly, frequently without user awareness. 

● Identification: Numerous studies have 

demonstrated that individuals can be uniquely identified 

by their handwriting [223], keystroke dynamics [12], 

mouse movements [242], and gestures [305]. 

● Semantic Content: Hand motions can convey 

semantic meaning (e.g., typed text, passwords, private 

messages), making their content sensitive. 

● Attribute Inference: Specific medical conditions, 

such as hand tremors in Parkinson's patients [128], can 

manifest in hand motions. Furthermore, hand motions 

can convey information about emotional states [264]. 

5.3.3 Anonymization Techniques 

We present suitable methods for hand motion 

anonymization, noting that we did not find specific papers 

focusing solely on mouse movement anonymization 

within our defined scope. 

Random Perturbation 

This involves introducing randomness to disrupt unique 

hand motion patterns. 

● Maiorana et al. [167] proposed a template 

protection method for online handwriting that segments a 

handwriting sequence and then randomly mixes the 

segments before convolution. 

● Maiti et al. [168] applied a similar shuffling 

approach to prevent keystroke inference attacks via wrist-

worn accelerometers, though without convolution. This 

approach was evaluated with only four participants. 

● Vassallo et al. [288] also investigated keystroke 

permutation, focusing on utility reduction rather than 

privacy evaluation. 

● Goubaru et al. [97] proposed a template protection 

scheme for online handwriting. They extract a pattern ID 

using a common template, XOR it with a secret encoded by 

an error-correcting code, and store the result as a 

template. 

Noise Injection 

This category involves adding noise to hand motion data. 

● Migdal et al. [188] added delays to keystroke 

timings to anonymize typing patterns. 

● Shahid et al. [252] proposed using the Laplace 

mechanism on the 2D coordinates of handwritten text to 

achieve local differential privacy. 

Coarsening 

This involves reducing the granularity or detail of hand 

motion data. 

● Vassallo et al. [288] explored keystroke 

suppression to preserve typed text content in continuous 

authentication scenarios. 

● Maiti et al. [168] focused on keystroke privacy by 

proposing two coarsening methods to prevent inference 

attacks via wrist-worn accelerometers: blocking access to 

accelerometer data when typing is detected, and reducing 

the accelerometer's sampling rate. 

Discrete Conversion 

These techniques transform hand motion data into 

discrete, often cancellable, representations. 

● Sae-Bae et al. [248] proposed an online 

handwriting template protection scheme that decomposes 

signatures into histograms for authentication. 

● Migdal et al. [189] presented a template protection 

scheme for multiple modalities, including keystrokes, by 



EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING 

pg. 49  

combining IP addresses with keystroke information and 

computing a biohash. 

● Leinonen et al. [151] investigated keystroke 

timing data anonymization using two rounding 

approaches that sort timings into buckets, effectively 

reducing identification from nearly 100% to below 10%. 

● Vassallo et al. [288] explored substituting typed 

keys with random nearby keys to preserve content in 

continuous authentication. 

● Figueiredo et al. [85] developed a modeling 

language for designing new gestures, allowing 

recognition on recording hardware without exposing 

clear data to applications. No privacy evaluation was 

performed. 

● Mukojima et al. [194] designed a privacy-friendly 

gesture recognition system that illuminates the hand 

with a random pixel pattern and reconstructs the hand 

shape from the captured light using machine learning. 

Privacy protection was not evaluated. 

Continuous Conversion 

This involves transforming hand motion data into a new, 

continuous representation. 

● Maiorana et al. [167] proposed two continuous 

conversions for online handwriting templates: a baseline 

conversion that segments and convolutes handwriting 

sequences based on a secret key, and a shifting 

transformation that applies a shift to the initial sequence. 

● Malekzadeh et al. [171] proposed using two 

separate autoencoders for anonymizing gestures 

captured via IMU sensors. One autoencoder replaces 

sensitive sequences with generated neutral ones, while 

the second minimizes mutual information between data 

and user identity. Their approach reduced identification 

accuracy from 96% to 7%. 

● Fan et al. [81] also proposed a two-encoder 

system (task encoding, identity encoding) for privacy-

preserving motor intent classification from sEMG data. 

This system is trained adversarially to reduce identity 

recognition and increase action recognition. 

● Saunders et al. [250] worked on sign language 

motion anonymization, transferring motions from one 

person to another. Their technique extracts pose features 

from source video and combines them with target 

appearance style (from an appearance distribution) to 

generate new images. Identity identification from hand 

motions alone was not evaluated. 

● Xia et al. [298] proposed a second approach for 

sign language video anonymization. They estimate 

motion regions, use optical flow with a confidence map to 

encode source and driving video motions, and then 

generate anonymized video via an autoencoder. They 

used a loss function focused on hand and face motion 

differences to preserve sign language utility. Identity 

identification from hand motions was not evaluated. 

5.3.4 Evaluation 

Hand motion anonymization is primarily evaluated in the 

context of authentication, using metrics such as False 

Positive Rate (FPR), False Negative Rate (FNR), and Equal 

Error Rate (EER) to assess performance [4]. Additionally, 

recognition approaches are used to evaluate the accuracy 

of identity, age, gender, and handedness inference. 

Goubaru et al. [97] uniquely evaluated the randomness of 

template bits via occurrences and autocorrelation. Similar 

to other modalities, a common limitation is that EER might 

overestimate anonymization performance due to 

assumptions about attacker knowledge. More critical 

evaluation approaches are needed. 

5.4 Eye Gaze 

Eye gaze involves two primary types of movements: 

fixations and saccades. During visual tasks, such as reading 

(see Figure 7 in the original document), our eyes alternate 

between these two modes [4]. Fixations refer to periods 

where the visual focus is maintained on a single stimulus, 

allowing for information processing. In contrast, saccades 

are rapid, ballistic eye movements that quickly shift the 

gaze between fixations to reorient attention. Even during 

fixations, the eyes are not entirely still; they exhibit 

constant, involuntary micro-movements known as 

microsaccades [4]. 

Eye-tracking technologies are becoming increasingly 

accessible in both consumer and research markets. The 

most common tracking principle involves illuminating the 

eye with non-visible light sources (e.g., infrared) to 

generate a corneal reflection. Changes in these reflections 

are then sensed and analyzed to deduce eye rotation and 

gaze direction [72]. Eye-tracking hardware configurations 

vary widely, from cameras embedded in computers, 

smartphones, and virtual reality (VR) headsets to 

dedicated external devices or mobile eye-wear [72]. These 

sensors capture not only movement data related to 

fixations and saccades (e.g., speed, gaze angle, attention 

spots, scan path) but also additional features like pupil size 

variations and blink behavior. Combinations of these 

features provide rich information for developing eye-gaze-

driven applications. 

5.4.1 Utility 

Eye movements have been studied for over a century 

across diverse research domains, yielding significant 

utility: 

● Medical Field: Gaze patterns provide valuable 

information about cognitive and visual processing [16, 

106], aiding in the diagnosis of various neurological and 

psychiatric diseases. 

● Human-Computer Interaction (HCI): Eye gaze is 

used as an input modality to enhance accessibility, 

improve user experience, and enable adaptive system 

behavior [50, 169, 228]. This includes implicit 



EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING 

pg. 50  

authentication, where stable, unique features of eye 

movement are leveraged to build biometric systems 

[136]. Behavioral eye biometrics have shown low EERs 

(e.g., 1.8% [76]) in authentication. 

● Application-Specific Utility: The specific utility to 

be preserved depends on the underlying application, 

whether it's accurately predicting the next eye 

movement, diagnosing a mental disorder, detecting the 

focus of user attention, or recognizing a user for 

authentication. 

5.4.2 Threat Space 

Eye movement data is exceptionally rich in information, 

making it a significant target for malicious entities or 

curious service providers seeking to uncover sensitive 

user attributes or directly identify individuals. 

● Identity and Attribute Inference: Beyond 

biometric identification, research has documented 

strong correlations between eye movement data and 

multiple disorders and mental conditions, including 

Alzheimer's [123, 304], schizophrenia [116, 152, 80], 

Parkinson's [148], bipolar disorder [89], mild cognitive 

impairment [304], multiple sclerosis [67], autism [31, 

291], and psychosis [80]. 

● Cognitive and Emotional States: Pupil size is a 

known indicator of a person's interest [109] and a proxy 

for detecting cognitive load [146, 176]. 

● Soft Biometrics and Personality: Recent works 

have demonstrated that eye data can infer gender, age, 

and even personality traits [24, 147]. 

● Covert Information Leakage: Martinovic et al. 

[173] showed that manipulating images presented to 

users could cause their EEG signals (and by extension, 

potentially eye movements) to reveal private 

information such as bank card details, PINs, or living 

area. 

● Increased Availability: The increasing availability 

of consumer eye-tracking devices and the proliferation of 

eye-gaze-driven applications create a significant and 

imminent privacy threat [6]. Hardware manufacturers 

like Apple have recognized this, restricting third-party 

access to eye-tracking information in their Vision Pro 

Headset. 

The two primary threats to eye privacy are re-

identification and attribute inference. 

5.4.3 Anonymization Techniques 

We found multiple recent proposals to protect eye 

movement data privacy, with many employing noise 

injection to achieve differential privacy (DP). 

Random Perturbation 

● David-John et al. [55] adapted a task-based 

marginal model for eye gaze. They built a distribution of 

values for each feature vector dimension and then 

randomly sampled new synthetic data from these 

distributions. The identification accuracy of the generated 

synthetic data was close to chance level. 

Noise Injection 

These methods add random noise to eye gaze data, often 

guided by differential privacy principles. 

● Steil et al. [265] proposed a DP-based technique to 

protect eye movement data collected in a VR setting while 

users read different documents. The utility goal was 

accurate document type prediction, and privacy goals 

were to avoid gender inferences and protect against re-

identification. They applied the exponential mechanism 

[74] to a database of users' eye features. Experiments 

showed partial utility preservation (~55%-70% 

document classification accuracy) while reducing gender 

inference accuracy to random guesses (~50%) at various 

noise levels. 

● Bozkir et al. [33] evaluated two DP-based 

perturbations: the standard Laplacian Perturbation 

Algorithm (LPA) [73] and the Fourier Perturbation 

Algorithm (FPA) [239]. They proposed a modification to 

FPA that splits eye data into chunks before adding noise to 

reduce temporal correlations, which often require more 

noise for privacy. This modification achieved similar 

document type classification results to Steil et al. [265] 

while providing better privacy guarantees (more noise). 

● Liu et al. [156] presented a DP-based solution to 

anonymize eye tracking data aggregated as a heatmap 

(attentional landscape). The privacy goal was to protect 

individual gaze maps while preserving the utility of the 

aggregated heatmap. Their experiments with random 

selection and additive noise (Gaussian, Laplacian) showed 

Gaussian noise was best for good privacy guarantees 

without visually distorting hotspots. 

● David-John et al. [57] worked on protecting eye 

tracking data from VR/AR headsets. They proposed 

Gaussian noise injection, temporal down-sampling, and 

spatial down-sampling for one interface model. Gaussian 

noise injection was found most effective in reducing 

subject identification rates with high variance values. 

Wilson et al. [295] also proposed adding Gaussian noise to 

eye tracking data, showing similar results. 

● Hu et al. [119] proposed a local differential private 

mechanism, Otus, for generating synthetic eye movement 

trajectories. Their technique separates the field of view 

into tiles, constructs a graph encoding gaze duration and 

transition probability, perturbs the graph using the 

Laplacian mechanism, and then sends it to a server. The 

server averages user graphs and generates new 

trajectories via random walks. 

● Li et al. [153] proposed Kaleido, a plugin system for 

anonymizing eye gaze trajectories with differential 

privacy guarantees. They extended geo-

indistinguishability [14] and w-event privacy [137] to 

account for areas of interest, noting protection primarily 
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against spatial information, not temporal. They defined 

an adaptive algorithm to allocate privacy budget per time 

window. Their results showed user identification 

reduced to near chance level, though utility was also 

close to chance. 

Coarsening 

This involves reducing the resolution or detail of eye gaze 

data. 

● The temporal and spatial down-sampling 

techniques proposed by David-John et al. [57] are both 

coarsening-based. Temporal down-sampling showed 

only a small reduction in identification accuracy, while 

spatial down-sampling had a larger effect but required 

significant scaling. 

● Wilson et al. [295] proposed a spatial down-

sampling approach for the eye gaze angle, mapping 180∘ 

to 2,160 points and coarsening the gaze angle. This 

appeared more effective than temporal down-sampling. 

Continuous Conversion 

This involves transforming eye gaze data into a new, 

continuous representation. 

● Wilson et al. [295] proposed smoothing eye gaze 

using a sliding window approach, showing that a 

sufficiently large window reduces identification rates. 

● David-John et al. [55] applied k-anonymity to eye 

movements by grouping and averaging user trajectories. 

They showed significant drops in identification accuracy 

even with small k values, though high utility was 

questionable due to separate processing of feature 

vectors per task. 

● In a follow-up, David-John et al. [56] proposed two 

synthetic data generation approaches for eye gaze: k-

same synth (k-anonymity on fitted Gaussian mixture 

model parameters to generate fixations and saccades) 

and event-synth-PD (conditional variational 

autoencoder to generate new data with given 

characteristics). They showed event-synth-PD achieved 

plausible deniability and comparable privacy/utility to 

Kaleido. 

● Fuhl et al. [86] performed eye gaze anonymization 

using an autoencoder combined with reinforcement 

learning. The autoencoder learns a latent representation, 

which a manipulation agent modifies to prevent, e.g., 

gender classification. A classifier then evaluates the 

manipulation, providing a loss for training the agent. 

5.4.4 Evaluation 

Proposals by Steil et al. [265] and Bozkir et al. [33] 

measure anonymization quality for attribute inference 

protection using classification accuracy for both the main 

task and the attribute inference task. For re-identification 

protection, they assume an attacker with prior 

knowledge (training classifiers on clean data and testing 

on anonymized data), also using accuracy. They report 

the privacy loss parameter (epsilon, ϵ) from DP theory, 

quantifying the maximum difference between data points 

of two individuals (smaller ϵ means better privacy). 

Liu et al. [156] analyzed the privacy-utility trade-off of 

anonymized heatmaps using the correlation coefficient 

(CC) and mean square error (MSE) of noisy heatmaps 

under different privacy levels (ϵ). These metrics, 

combined with visual representations, help stakeholders 

decide acceptable noise levels. 

Datasets play a crucial role. The largest available is 

GazeBaseVR [160], with 407 participants performing five 

tasks across multiple sessions using a VR headset. Steil et 

al. [265] collected data from 20 participants reading 

documents in VR, extracting 52 eye movement features 

related to fixations, saccades, blinks, and pupil diameter. 

This dataset is publicly available and used by Bozkir et al. 

[33]. EHTask [120] contains recordings of 30 people 

performing four eye gaze tasks in VR. DGaze [71] captures 

43 people in five scenes. Liu et al. [156] used a synthetic 

simulated dataset for heatmap anonymization. 

Beyond technical analysis, Steil et al. [265] uniquely 

considered user privacy concerns, conducting a large-scale 

survey (N=164) to explore willingness to share gaze data 

for different services. Their findings indicated discomfort 

with inferences (gender, race, sexual orientation) and 

objections to sharing data if such attributes could be 

leaked. Users generally agreed to share with governmental 

health agencies or for research but objected to sharing 

with companies. These insights are a vital step towards 

user-centered privacy design for behavioral data. 

5.5 Heartbeat 

An electrocardiogram (ECG) is a graphical representation 

of voltage over time, capturing the intricate electrical 

activities of the heart's muscle during depolarization and 

repolarization with each beat. As depicted in Figure 8 in 

the original document, a normal cardiac cycle in an ECG 

graph comprises a distinct sequence of waves: 

● P-wave: Reflects the atrial depolarization process 

(contraction of the atria). 

● QRS complex: Represents the ventricular 

depolarization process (contraction of the ventricles), 

typically the most prominent part of the waveform. 

● T-wave: Denotes the ventricular repolarization 

(relaxation of the ventricles). 

Other significant portions of the ECG signal include the PR, 

ST, and QT intervals, which represent specific time 

durations between these waves [323]. 

Like other biometric systems, ECGs are often converted 

into abstract, compressed representations, known as 

biometric templates, before being used for identification 

tasks. ECG biometric template methods are broadly 

classified based on the features exploited: 

● Fiducial-based techniques: Utilize characteristic 
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points on the ECG signal (e.g., peaks and boundaries of P, 

QRS, and T-waves) to extract temporal, amplitude, 

envelope, slope, and area features [207]. 

● Non-fiducial-based methods: Do not rely on 

specific characteristic points, instead using techniques 

like autocorrelation coefficients, Fourier transforms, and 

wavelet transforms [207]. 

● Hybrid methods: Combine both fiducial and non-

fiducial features. 

5.5.1 Utility 

ECG data finds critical applications in two primary 

domains: healthcare and biometric systems. 

● Healthcare: ECGs are indispensable for the 

diagnosis of various heart diseases and monitoring 

cardiac health [158]. They are often integrated into 

stand-alone services or comprehensive e-health systems 

that provide real-time feedback to patients and hospitals, 

serving as warnings for impending medical emergencies 

or as monitoring aids during physical activities. 

● Biometrics: ECGs are increasingly used for 

identification and authentication purposes due to their 

unique physiological characteristics [284]. 

5.5.2 Threat Space 

Despite their utility, ECGs are classified as health data 

and are inherently sensitive, requiring robust protection 

under data-protection regulations. 

● Health Condition Inference: The most direct 

privacy threat is the inference of a patient's physiological 

or pathological condition (e.g., arrhythmias, heart 

disease) [158, 323, 23, 190]. Such inferences could lead 

to adverse consequences like increased insurance 

premiums or discrimination in employment. 

● Other Sensitive Inferences: Less commonly 

known, ECG data can also reveal sensitive information 

such as cocaine use [118] or psychological stress levels 

[224]. The ability to derive both desirable (healthcare-

related) and sensitive (privacy-invasive) inferences from 

the same time-series data presents a significant practical 

dilemma. 

5.5.3 Anonymization Techniques 

We survey relevant privacy-protection techniques for 

ECG data. 

Feature Removal 

This involves extracting and removing specific features 

from ECG signals to obscure sensitive information. 

● Kalai et al. [317] proposed a template protection 

scheme for ECG data. They compute the Discrete Cosine 

Transform (DCT) of the ECG signal's autocorrelation 

coefficients and then remove those with the lowest 

energy, forming the biometric template. Two keys are 

derived: one for authentication and a private key from 

the complete DCT. Zaghouani et al. [318] presented a 

similar approach using a quantization step after obtaining 

the DCT-template. 

● Mahmoud et al. [166] proposed decomposing the 

ECG signal into its wavelet transform, eliminating low-

frequency coefficients, and reconstructing the signal for 

release. Only authorized personnel with a secret key can 

reconstruct the original ECG. Privacy is evaluated via the 

Percentage Root Mean Square Difference (PRD) [172], 

which quantifies distortion between original and 

protected ECG. 

● Djelouat et al. [70] proposed an approach based on 

Compressive Sensing (CS) [38], combining sampling and 

compression through random projections. This 

compresses the ECG signal at the time of sensing, reducing 

the need to store sensitive data on wearable devices. CS 

allows for good reconstruction of the original signal at the 

provider side under certain assumptions. 

Continuous Conversion 

These methods transform ECG data into a new, continuous 

representation to preserve privacy. 

● Bennis et al. [23] proposed a simple k-anonymity 

scheme for ECG data. They transform the signal into the 

frequency domain, select the k closest neighbors, 

aggregate them into a new signal, and then transform it 

back into the time domain. 

● Piacentino et al. [222] used a Generative 

Adversarial Network (GAN) to generate synthetic ECG 

data for training epilepsy monitoring systems, though no 

privacy evaluation of the synthetic data was performed. 

● Jafarlou et al. [126] also used a GAN to generate 

anonymized ECG data samples. Their approach uses the 

original ECG sequence as GAN input and incorporates 

identification accuracy into the training loss. Their 

evaluation showed lower identification accuracies while 

still allowing arrhythmia detection. 

● Nolin-Lapalme et al. [204] used a GAN for ECG 

anonymization, specifically aiming to generate sex-neutral 

ECG samples by including sex classification as part of the 

GAN loss. 

● Pascual et al. [216] used a GAN to generate 

synthetic epileptic brain activity (EEG) data for training 

epilepsy monitoring systems, focusing on inter-ictal 

signals. Their results showed synthetic data reached 

identification rates close to chance level, but this was more 

of a pseudonymization as synthetic values for a patient 

could still be linked. 

Random Perturbation + Noise Injection 

● Chou et al. [46] addressed the vulnerability of CS to 

information-theoretic attacks [238] by proposing 

principal component analysis and SVD on a CS scheme 

where ECG data is encrypted at the wearable sensor with 

signal-dependent noise. They measured privacy as mutual 
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information between original and encrypted ECG, 

showing high classification accuracy while providing 

privacy beyond computational secrecy. 

Discrete Conversion + Noise Injection 

● Zare-Mirakabad et al. [319] aimed to publish ECG 

data with privacy guarantees by converting time series 

into symbolic representations using Symbolic Aggregate 

Approximation (SAX). They then built an n-gram model 

from the symbol string and ensured a minimum 

frequency of occurrence for each n-gram (similar to k-

anonymity) by adding fake n-grams. Experimental 

results showed minimal information loss for k up to 20. 

Continuous Conversion + Random Perturbation 

● Chen et al. [44] and Wu et al. [296] addressed the 

revocability of ECG-based biometric templates, a crucial 

property for practical use. They proposed generating 

cancelable templates as random projections of an ECG 

data block, allowing distinct templates for the same 

biometrics. The goal is to make recovery of the original 

biometric infeasible. Re-identification rates of over 95% 

were reported using the multiple-signal classification 

algorithm [26]. 

● Hong et al. [117] proposed a template-free 

identification system to prevent privacy issues from 

compromised templates. They convert ECG data into 

images using spatial and temporal correlations and use 

deep learning to train a classifier, reporting over 90% 

identification rates. 

Continuous Conversion + Noise Injection 

● Sufi et al. [268] proposed building templates of P, 

QRS, and T waves through cross-correlations and 

obfuscating them with synthetically generated additive 

noise in a concatenated fashion (output of one wave 

obfuscation serves as input for the next). This creates 

noisy forms of the waves and templates, accessible to 

authorized personnel with a key for reconstruction, 

while unauthorized users only see the noisy signal. 

● Huang et al. [121] proposed an authentication 

system protecting ECG templates with differential 

privacy in an interactive setting. An analyst queries for 

Legendre polynomial coefficients (used to fit and 

compress ECG), and Laplace noise is added based on 

sensitivity. The privacy parameter (ϵ) regulates the 

trade-off. However, they appeared to miscompute 

sensitivity, potentially invalidating their results. 

● Saleheen et al. [249] investigated inferences from 

time series data by a dynamic Bayesian network 

adversary. When sensitive inferences (e.g., conversation, 

running, smoking) are likely, corresponding data 

segments are substituted with plausible non-sensitive 

data. They proposed a variation of differential privacy to 

bound leaked information. Utility loss was computed as 

the absolute difference in inference probability for non-

sensitive states. While showing small utility loss for 

ϵ∈[0.05,0.65], the solution is limited to dynamic Bayesian 

network adversaries and assumes pre-available time-

series data, precluding real-time application. 

5.5.4 Evaluation 

ECG anonymization techniques are evaluated by 

measuring service functionality degradation using 

common machine learning metrics like precision, recall, 

and accuracy. Less frequently, Dynamic Time Warping 

(DTW) and Percentage Root Mean Square Difference 

(PRD) are used to assess similarity between original and 

protected time series [4]. Privacy levels are assessed 

through various notions, including membership inference 

attack accuracy, the ϵ parameter of differential privacy, 

mutual information between original and encrypted ECG, 

the probability of correct inferences on sensitive 

attributes (with and without protection), and a notion 

similar to k-anonymity. The MIT-BIH arrhythmia database 

[190], containing ECG samples from 47 individuals, and 

the Physikalisch Technische Bundesanstalt (PTB) 

Database [32] are commonly used datasets. 

5.6 Brain Activity 

Brainwaves are measurable electrical impulses generated 

by the complex interactions of billions of neurons within 

the human brain. Since Hans Berger first recorded the 

human electroencephalogram (EEG) in 1924 [101], 

significant advancements have been made in both 

hardware devices for measuring brain activity and 

analytical techniques for processing these signals. 

Brainwave measurement technologies are broadly 

categorized as invasive and non-invasive methods. 

Invasive methods involve directly implanting electrodes 

near the brain's surface to record signals within the cortex 

[133]. These are typically restricted to critical clinical 

applications due to their inherent risks. In contrast, non-

invasive methods are more frequently used and applicable 

to a wider range of fields beyond medicine, such as brain-

computer interfaces (BCIs). The most portable and 

common non-invasive technique is EEG, which records 

electrical activity through sensors placed on the scalp 

surface. 

An EEG signal is a composite of different brainwave types, 

each oscillating at distinct frequencies and carrying 

different kinds of information about the brain's current 

state [10]. Researchers have attempted to associate 

specific mental states with these brainwave types. Table 1 

in the original document provides a summary of the most 

important wave types, their respective frequencies, 

originating locations in the brain, and associated mental 

states: 

● Gamma (γ): 30-100 Hz, Somatosensory cortex, 

associated with active information processing and strong 

responses to visual stimuli [2]. 

● Beta (β): 13-30 Hz, Both hemispheres, frontal lobe, 

associated with increased alertness, anxious thinking, and 

focused attention. 
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● Alpha (α): 8-13 Hz, Posterior regions, both 

hemispheres; high amplitude waves, associated with 

resting, eyes closed, no attention [139], and is often the 

most dominant rhythm. 

● Theta (θ): 4-8 Hz, No special location, associated 

with idling, dreaming, imagining, quiet focus, and 

memory retrieval. 

● Delta (δ): 0.5-4 Hz, Frontal regions; high 

amplitude waves, associated with dreamless and deep 

sleep, and unconsciousness. 

BCI technologies primarily operate on continuous EEG 

data recordings (time series data). However, many 

applications also rely on extracting time-locked brain 

variations that occur in response to external stimuli. 

These variations, known as event-related potentials 

(ERPs) [269], are widely used to detect neurological 

diseases. In both continuous EEG and ERP-based 

applications, features are computed from the brainwave 

data, which can belong to the time and/or frequency 

domain and span one or multiple channels. Commonly 

used features include Autoregressive coefficients, 

Fourier transforms, and Wavelet transforms. 

5.6.1 Utility 

The utility to be preserved when processing brainwave 

data is highly dependent on the specific application: 

● Clinical Applications: In clinical settings (e.g., for 

diagnosis or controlling brain-controlled prostheses), the 

raw EEG information might be critically needed for 

proper diagnosis or safe operation. Regulations like the 

HIPAA Privacy Rule [111] are typically in place to protect 

this personal identifiable information. 

● Less-Regulated Fields: In applications outside 

critical medical contexts, the need for full raw EEG data 

may not be justified. Prominent EEG applications include: 

○ User Authentication: Recognizing the user based 

on their unique brainwave patterns [99]. 

○ Personalization of Gaming Experiences: Adapting 

game dynamics based on a player's cognitive state. 

○ Brain-Controlled Interfaces: Providing responsive 

interfaces for various tasks. 

In these cases, the preserved utility should be sufficient 

to ensure a useful application, meaning accurate user 

recognition, effective personalized options, and 

responsive interfaces with tolerable error rates that do 

not compromise the service's security or usability. 

5.6.2 Threat Space 

Brain activity is an incredibly rich source of information, 

making it highly susceptible to privacy threats. 

● Unique Identification: Brainwaves possess unique 

characteristics that allow for individual identification, 

leading to the development of several biometric systems 

based on brain activity [99]. 

● Correlation with Sensitive Attributes: The 

acquisition of EEG signals raises significant privacy 

concerns because brainwaves correlate with mental 

states, cognitive abilities, and various medical conditions 

[269]. 

● Side-Channel Attacks: Martinovic et al. [173] 

demonstrated that by manipulating images presented to 

users, their EEG signals could inadvertently reveal highly 

private information, such as bank card numbers, PINs, 

areas of living, or even whether they knew a particular 

person. This highlights the potential for sophisticated side-

channel attacks. 

5.6.3 Anonymization Techniques 

A growing number of anonymization techniques for brain 

activity data rely on machine learning methods, with 

Generative Adversarial Networks (GANs) and adversarial 

perturbation schemes being particularly dominant. The 

increasing availability of EEG datasets has spurred 

research in this area. 

Feature Removal 

This involves selecting and removing specific features 

from EEG data to conceal sensitive information. 

● Matovu et al. [174] explored reducing private 

information leakage from EEG user authentication 

templates, specifically targeting the inference of 

alcoholism by an unscrupulous database administrator. 

Their attribute protection mechanism hypothesized that 

different template designs (features, channels, 

frequencies) impact the amount of non-authentication 

information inferred. They demonstrated this by selecting 

two templates and calculating their predictive capability 

for authentication and alcohol consumption. 

● Yao et al. [310] proposed using GANs [96] to filter 

sensitive information from EEG data, aiming to reduce 

alcoholism inference while maintaining utility for 

detecting mental tasks (e.g., predicting visual stimulus). 

Their GAN-based filter uses deep neural networks for 

domain transformation, translating EEGs from a source 

domain with both desired and privacy-related features to 

a target domain with only desired features. Their results 

showed a significant reduction in classifying EEG 

sequences from alcoholic users as such (from 90.6% to 

0.6%), with only a minor drop in mental task classification 

accuracy (4.2%). However, the initial mental task classifier 

accuracy was not strong, raising questions about its 

generalizability. 

Continuous Conversion 

These methods transform EEG data into a new, continuous 

representation. 

● Pascual et al. [216] used a GAN to generate 

synthetic EEG data for training epilepsy monitoring 

systems, addressing the privacy concerns of sharing large 

medical EEG datasets. Their generator, a convolutional 

autoencoder, translates a latent code into an ictal (seizure) 
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sample, which the discriminator compares to real ictal 

samples. Their results showed synthetic data reaching 

identification rates close to chance level, even with few 

patients, though this was more of a pseudonymization as 

synthetic values for a specific patient could still be linked. 

● Bethge et al. [25] proposed "privacy encoders" to 

remove sensitive information from brain activity data 

streams before classification. They trained a 

convolutional neural network as an encoder using 

Maximum Mean Discrepancy (MMD) between different 

encoded datasets as a loss function, aiming for domain-

invariant representations. Testing on four datasets, they 

showed classification of data origin dropping from 99% 

to 52%, while emotion classification only reduced from 

51% to 49%. The preservation of subject identity 

remains an open question. 

● Meng et al. [181] proposed a similar approach, 

learning a perturbation vector added to the EEG signal 

via an adversarial scheme, using an action classifier for 

utility and a biometric recognition system for privacy. 

● Singh et al. [258] proposed another adversarial 

approach using an autoencoder for the transformation. 

Continuous Conversion + Noise Injection 

● Debie et al. [62] also used a GAN to generate 

synthetic data from original EEG data. Their approach 

differs by employing differentially private stochastic 

gradient descent on the discriminator, reducing the 

influence of individual data points on gradient 

computations. Evaluated on the Graz dataset A (9 

subjects), their results showed good utility preservation, 

but no additional privacy evaluation was performed. 

5.6.4 Evaluation 

EEG anonymization works, similar to gait anonymization, 

evaluate inference protection quality by comparing 

prediction accuracy for the protected attribute before 

and after modifying EEG data. Typical machine learning 

metrics like accuracy, false positive rates, and false 

negative rates are used. Utility loss is assessed by 

measuring the reduction in classification accuracy when 

using original versus anonymized EEG data. 

Various EEG datasets are used for evaluations. The 

largest is the Temple University Hospital EEG data corpus 

[206] (579 subjects), followed by the BCI2000 dataset 

[251] (106 subjects). The dataset by Arias et al. [15] (56 

people) was specifically recorded for authentication. A 

unique dataset is the SUNY medical dataset [134, 203], 

containing EEG data from alcoholic and control subjects 

viewing visual stimuli. Several smaller datasets also exist 

[114, 266, 293]. 

DISCUSSION 

The systematic review of anonymization techniques for 

behavioral biometric data reveals several overarching 

characteristics, commonalities, differences, and 

persistent challenges across various traits. 

6.1 Commonalities and Differences Across Traits 

All reviewed behavioral biometric traits share a 

fundamental characteristic: they are captured as time-

series data, tracking changes in the trait over time. This 

temporal dimension is crucial and often implicitly encodes 

identifying and sensitive information. 

A significant distinction among traits lies in their 

observability: 

● Overt Traits: Many traits, such as gait, hand 

motions, voice, and eye gaze, are overt, meaning they can 

be observed from a distance and do not necessarily 

require the active participation or explicit consent of the 

subject. These traits are frequently captured as a 

byproduct of other recordings, such as video surveillance 

or audio recordings in public spaces. This inherent 

observability makes them particularly vulnerable to 

passive data collection and subsequent privacy invasions. 

● Secret Traits: In contrast, traits like EEG and ECG 

are secret; they can primarily only be recorded by directly 

attaching specialized sensors to the subject. This typically 

implies a more active and intentional participation from 

the individual, and often occurs in controlled 

environments (e.g., medical settings, research labs). While 

this reduces the risk of passive, unnoticed collection, the 

data itself is highly sensitive. 

In terms of research attention, we observed a disparity: 

voice anonymization is an established and extensively 

researched field, boasting a large body of literature and 

dedicated initiatives like the VoicePrivacy Challenge. 

Conversely, other behavioral biometric traits, particularly 

EEG, have received comparatively less attention in the 

context of anonymization. For some traits, such as touch, 

thermal, and lip-facial expressions, we found no 

anonymization mechanisms that met our rigorous 

inclusion criteria, indicating significant gaps in current 

research. 

The utility of these traits is highly diverse and often unique 

to each trait and its specific application. It ranges from the 

critical need for naturalness in de-identified motion (e.g., 

for realistic avatars in VR or for video quality) to the 

paramount importance of intelligibility in anonymized 

speech (e.g., for voice assistants). 

Despite these differences in utility and observability, the 

threat space across traits exhibits striking similarities due 

to the pervasive nature of digital capturing devices. 

Wearables and mobile devices, being continuously 

attached to or carried by individuals, are of particular 

concern as they enable continuous capture of behavioral 

data. As our literature review has consistently shown, all 

surveyed traits can be exploited for both identity inference 

and attribute inference. This inherent vulnerability can be 

abused for a wide variety of privacy threats, including 

pervasive surveillance, sophisticated identity theft, and 

the unauthorized inference of private attributes (e.g., 

health conditions, emotional states, or personal interests). 
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Consequently, the fundamental privacy goals – identity 

protection and attribute protection – remain consistent 

across all behavioral biometric traits. However, voice 

stands out with an additional privacy goal: making the 

semantic content of speech unintelligible to protect 

against content-based privacy breaches. 

6.2 Analysis of Anonymization Techniques 

Our analysis of the surveyed techniques (summarized in 

Table 2 and Table 3 in the original document) reveals that 

continuous conversion methods are the most prevalent, 

followed by feature removal and noise injection. Random 

perturbation and discrete conversion (mostly for 

template protection) are less common, with coarsening 

being the least represented category. 

Several critical observations emerged regarding these 

categories: 

● Removal Methods: While removal methods 

(coarsening, feature removal) aim to be irreversible, the 

high redundancy often present in behavioral biometric 

data poses a challenge. This redundancy means that even 

if certain features are removed, an intelligent attacker 

might still be able to reconstruct or infer the missing data 

from the remaining correlated information. The 

effectiveness of removal, therefore, needs careful re-

evaluation against stronger adversaries. 

● Conversion Methods: For conversion techniques, 

we frequently observed that the parameter space for the 

anonymizations is often rather small. If an attacker 

knows the anonymization technique, they might be able 

to link clear and anonymized data by brute-forcing the 

limited parameter space. This highlights a need for 

larger, more complex, or dynamically changing 

parameter spaces to enhance security. The general 

reversibility (or rather, the practical irreversibility) of 

conversion techniques still requires more rigorous 

evaluation. 

● Noise Injection Techniques: A significant 

challenge for noise injection methods is the strong 

dependencies, both temporal and physiological, within 

behavioral biometric data. These dependencies can be 

exploited by an attacker to filter out the injected noise, 

thereby recovering the original, sensitive information. 

This suggests that simple noise addition might be 

insufficient against sophisticated filtering algorithms. 

● Differential Privacy (DP): While several methods 

claim to provide differential privacy guarantees, we 

observed a critical limitation: none of them can be used 

continuously over time without eventually 

compromising user privacy. This is due to the 

fundamental property of sequential composition in 

differential privacy [179], where the privacy budget is 

necessarily finite and is consumed with each query or 

release. This contradicts the intended use of many 

behavioral biometric applications, such as continuous 

monitoring in healthcare or ongoing authentication 

services, which are clearly not single-use. More research is 

urgently needed on how to effectively apply differential 

privacy to continuous behavioral data streams without 

exhausting the privacy budget. The use of related privacy 

notions intended for continuous observations (e.g., w-

event differential privacy [137]) may offer promising 

avenues. 

● Temporal Aspect Neglect: A striking observation 

was that most methods do not explicitly manipulate the 

temporal aspect of their data. Notable exceptions include 

Hirose et al. [112] and Maiti et al. [168]. Given that all 

behavioral traits inherently manifest as time-series data, 

exploring techniques that perturb the temporal order or 

alter time differences between events could lead to more 

general and robust anonymization techniques applicable 

across multiple traits. 

● Intrinsic Attribute Anonymization: For attribute 

protection, anonymizing intrinsic attributes (e.g., age, sex, 

health conditions) proves particularly difficult because it 

is often unclear which specific parts of the behavioral data 

are relevant for these attributes. In this regard, generative 

machine learning approaches (e.g., GANs) appear 

promising, as these models can learn the complex, intrinsic 

dependencies between data and attributes, potentially 

allowing for the generation of synthetic data that retains 

utility but is decoupled from sensitive attributes. 

● User Privacy Awareness: We also noticed a 

significant lack of even a basic understanding of users' 

privacy awareness and concerns regarding behavioral 

privacy in the literature. To design truly effective and user-

accepted protection techniques, it is necessary to conduct 

more user studies to understand their needs and 

requirements. 

6.3 Evaluation Methodology Critique 

The evaluation methodology employed across different 

traits and methods in the surveyed literature is 

remarkably similar, yet often rudimentary. Typically, an 

inference or recognition system is applied to both the clear 

(original) and the anonymized data, and the difference in 

accuracy is reported. Crucially, this is often done without 

retraining the inference system on the anonymized data. 

This approach implicitly assumes a weak attacker model – 

one who is unaware that the data has been anonymized 

and therefore uses models trained on clean data. This 

assumption leads to an overestimation of the 

anonymization performance, as a sophisticated, informed 

attacker would retrain their models on the anonymized 

data or even attempt to reverse-engineer the 

anonymization process. 

A notable exception to this trend is the more recent work 

in voice anonymization, which increasingly relies on the 

benchmarking framework of the VoicePrivacy Challenge 

[279]. This initiative explicitly includes retraining speaker 

verification systems with anonymized speech data to test 

against an informed attacker, providing a more realistic 

assessment of privacy guarantees. This demonstrates how 
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community-driven initiatives can significantly improve 

the overall evaluation methodology and comparability 

within a research field. 

Furthermore, we found a scarcity of formal approaches 

[237, 321] to quantify the privacy of behavioral biometric 

anonymization methods; most evaluations rely on 

empirical privacy estimations. Another issue is that the 

evaluation methodology often too closely mirrors the 

evaluation of recognition systems (which aim to infer 

persons in large datasets with potentially poor data 

quality), whereas an anonymization method should 

ideally also work effectively for smaller group sizes with 

high data quality, where re-identification risks are 

different. 

The lack of readily available and diverse datasets (as 

highlighted in Table 4 in the original document) is a 

significant impediment, particularly for less-researched 

behavioral biometric traits. Without standardized, large-

scale, and publicly accessible datasets, it remains 

challenging to compare different anonymization 

techniques rigorously and to foster robust research in 

these areas. 

6.4 Future Directions 

Based on the identified gaps and challenges, several 

promising avenues for future research emerge: 

● Robust Differential Privacy for Continuous Data: 

Developing and refining differentially private 

mechanisms that can effectively handle continuous 

streams of behavioral data without rapidly depleting the 

privacy budget. This might involve exploring alternative 

DP notions or novel budget allocation strategies. 

● Temporal Anonymization: Investigating 

anonymization techniques that explicitly manipulate the 

temporal aspects of behavioral time-series data (e.g., 

altering event timings, shuffling temporal segments) to 

enhance privacy across multiple traits. 

● Advanced Generative Models: Further research 

into generative machine learning approaches (e.g., 

advanced GAN architectures, variational autoencoders) 

for creating high-fidelity, synthetic behavioral data that 

is statistically representative of the original but provably 

unlinkable to individuals. This is particularly promising 

for anonymizing intrinsic attributes. 

● Stronger Attacker Models in Evaluation: 

Standardizing evaluation methodologies to consistently 

incorporate informed attacker models, including 

scenarios where the attacker knows the anonymization 

technique and can retrain their inference models on 

anonymized data. This would provide a more realistic 

assessment of privacy guarantees. 

● Community-Driven Evaluation Frameworks: 

Expanding the model of the VoicePrivacy Challenge to 

other behavioral biometrics. Establishing common 

benchmarking frameworks, shared datasets (where 

feasible and ethical), and standardized metrics would 

significantly increase comparability and rigor in privacy 

and utility evaluations across the field. 

● User-Centered Privacy Design: Conducting more 

extensive user studies to understand privacy perceptions, 

concerns, and preferences regarding behavioral data 

collection and anonymization. This user-centric approach 

is vital for designing protection techniques that are not 

only technically sound but also socially acceptable and 

usable. 

● Anonymization for Digital Twins and Mixed 

Reality: As the concept of digital twins and immersive 

mixed reality environments gains traction, an open 

question is whether independently anonymizing 

individual behavioral traits is sufficient to create privacy-

friendly digital twins. Research is needed on holistic 

anonymization strategies for combined, multi-modal 

behavioral data in these complex environments. 

● Real-time Applicability: Many current 

anonymization techniques are computationally intensive. 

Future work should focus on developing low-latency, real-

time anonymization solutions, especially crucial for 

interactive applications like VR/AR and continuous 

authentication. 

● Explainable Anonymization: Developing methods 

that can explain how and why certain features or data 

points contribute to identity or attribute leakage, and how 

the anonymization process mitigates this. This could aid in 

designing more targeted and effective privacy-preserving 

transformations. 

Concluding Remarks 

The increasing ubiquity of sensors and the growing 

sophistication of data analytics have made behavioral 

biometrics a powerful yet double-edged sword. While 

offering unprecedented opportunities for seamless 

interaction, enhanced security, and personalized services, 

the inherent richness of behavioral data simultaneously 

poses significant threats to individual privacy. Our 

comprehensive literature review has underscored the 

critical importance of anonymizing behavioral biometric 

data to protect people's identities and sensitive attributes. 

We have identified a diverse array of behavioral traits, 

each with unique characteristics and vulnerabilities. Our 

proposed taxonomy, classifying anonymization 

techniques by the type of data transformation they 

perform (random perturbation, noise injection, 

coarsening, feature removal, and continuous/discrete 

conversion), provides a structured framework for 

understanding the current landscape. While voice 

anonymization stands as a relatively mature research field 

with numerous insights and a robust evaluation 

framework (e.g., VoicePrivacy Challenge), many other 

behavioral biometric traits have received comparatively 

less attention in terms of dedicated anonymization 

solutions. Their effective protection, therefore, remains a 
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significant open research question. 

A critical finding from our analysis is the widespread use 

of rudimentary evaluation methodologies, often relying 

on the assumption of a weak attacker who is unaware of 

the anonymization. This leads to an overestimation of 

privacy guarantees. Improving the evaluation 

methodology by adopting more rigorous, informed 

attacker models and establishing community-driven 

benchmarking initiatives is paramount for advancing the 

field. Furthermore, we observed that the temporal aspect 

of behavioral data, which is inherently time-series in 

nature, has largely been neglected in anonymization 

approaches. Few techniques explicitly perturb temporal 

order or time differences, representing a missed 

opportunity for developing more generalizable and 

robust anonymization strategies across multiple traits. 

In conclusion, the journey towards truly privacy-

preserving behavioral biometric systems is ongoing and 

complex. It necessitates continued innovation in 

anonymization techniques, a shift towards more rigorous 

and realistic evaluation methodologies, and a deeper 

understanding of user privacy concerns. By fostering 

interdisciplinary collaboration and addressing the 

identified challenges, we can strive to harness the 

immense potential of behavioral biometrics while 

safeguarding the fundamental right to privacy in our 

increasingly data-driven world. 
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