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ABSTRACT 

 
The proliferation of Internet of Things (IoT) devices and latency-sensitive applications has driven a paradigm shift from 
centralized cloud computing to a more distributed continuum encompassing fog and edge computing. This integrated 
environment, often referred to as the Cloud-Fog-Edge continuum, brings computation and services closer to data sources, 
addressing critical concerns such as latency, bandwidth, and energy consumption. However, efficiently placing services 
within this heterogeneous and dynamic infrastructure is a complex, NP-hard problem. This survey provides a 
comprehensive review of service placement algorithms and strategies proposed for integrated Cloud-Fog-Edge 
environments. We categorize existing approaches based on their underlying methodologies, including optimization-
based, heuristic and meta-heuristic, graph-based, and machine learning-driven techniques. Furthermore, we discuss key 
challenges, such as mobility, resource heterogeneity, multi-objective optimization, and the increasing adoption of 
microservices and containerization. Finally, we highlight open research directions and future trends to guide further 
advancements in this critical area. 

Keywords: Service Placement, Cloud Computing, Fog Computing, Edge Computing, IoT, Distributed Systems, Optimization, 
Heuristics, Machine Learning, Microservices, Containerization. 

 

INTRODUCTION 

The rapid evolution of information technology has seen 

cloud computing emerge as a dominant paradigm, 

offering on-demand access to a shared pool of 

configurable computing resources [65]. This centralized 

model, characterized by vast data centers, has 

traditionally provided scalable and flexible solutions for 

various computational needs. However, with the 

exponential growth of Internet of Things (IoT) devices, 

projected to reach 100 billion by 2030 [4, 60], and the 

emergence of latency-sensitive applications (e.g., 

augmented reality, autonomous vehicles, smart cities), 

the traditional centralized cloud model faces significant 

challenges. These challenges primarily relate to high 

latency due to geographical distance, bandwidth 

limitations, and network congestion caused by the 

massive data generated at the edge [22, 58]. 

To address these critical issues, new computing 

paradigms, namely fog computing and edge computing, 

have emerged, extending the cloud's capabilities closer to 

the data sources [29, 72]. Fog computing acts as an 

intermediary layer between the edge devices and the 

distant cloud data centers, providing localized 

computation, storage, and networking services. This 

distributed nature allows for reduced data transfer to the 

cloud, leading to lower latency and bandwidth usage [11]. 

Edge computing, on the other hand, refers to processing 

data at or near the source of data generation, directly on 

edge devices or nearby edge servers, offering the lowest 

possible latency for real-time applications [29]. 

The seamless integration of cloud, fog, and edge 

computing forms a cohesive continuum, enabling flexible 

and efficient resource utilization across diverse 

geographical locations and computational capabilities. 

This distributed architecture offers significant benefits, 

including reduced latency, decreased bandwidth 

consumption, improved security, and enhanced energy 

efficiency, which is becoming increasingly important given 

the environmental impact of growing digital infrastructure 

[4, 29]. The energy required for connected objects is 

estimated to exceed global energy production by 2040, 

highlighting the urgent need for sustainable computing 

solutions [4, 24]. 

A critical and complex challenge within this integrated 

Cloud-Fog-Edge environment is the efficient placement of 

services and applications [15, 94, 102]. Service placement, 

also known as application placement or task offloading, 

involves deciding where to deploy various components of 

an application (e.g., virtual machines, containers, 

microservices) across the available cloud, fog, and edge 
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nodes. The goal is to meet specific Quality of Service 

(QoS) requirements, such as minimizing latency, 

throughput, energy consumption, and cost, while 

maximizing resource utilization and ensuring reliability 

[3, 15, 36, 110]. The problem is further compounded by 

the dynamic nature of these environments, including 

device mobility [59, 77], fluctuating resource availability, 

and varying application demands. The inherent 

complexity of service placement problems often renders 

them NP-hard [42], necessitating the development of 

sophisticated algorithms that can provide near-optimal 

solutions within acceptable timeframes. 

The increasing adoption of microservices architecture 

further complicates service placement. Microservices are 

small, independent services that communicate with each 

other, offering significant benefits such as improved 

scalability, maintainability, reliability, reusability, and 

faster response times compared to monolithic 

applications [16, 28, 52]. The ease of implementing such 

architectures is facilitated by containerization 

technologies, which require fewer resources than virtual 

machines and enhance application management and 

orchestration [19, 78]. However, deploying and 

orchestrating these fine-grained services across a 

distributed continuum requires careful consideration of 

inter-service dependencies, resource requirements, and 

network topology to minimize communication overhead 

and optimize overall system performance [79, 81]. 

Several existing surveys have addressed aspects of 

service placement in cloud, fog, or edge environments 

individually [45, 75, 94, 102]. However, a comprehensive 

review focusing specifically on service placement 

algorithms within the integrated Cloud-Fog-Edge 

continuum, considering the intricate interplay between 

these hierarchical layers and the diverse algorithmic 

approaches, is still needed. This survey aims to fill this 

gap by providing a structured overview of the state-of-

the-art service placement algorithms, categorizing them 

based on their methodological foundations, and 

discussing the challenges and future research directions 

in this evolving landscape. We also emphasize the 

growing importance of green computing and the need for 

energy-efficient placement strategies. 

The remainder of this article is structured as follows: 

Section 2 outlines the methodology used for this survey. 

Section 3 provides essential background on the Service 

Placement Problem (SPP) architecture, including 

environmental considerations, application types, 

placement modes, and criteria. Section 4 delves into 

problem modeling and exact approaches. Sections 5, 6, 

and 7 present a detailed taxonomy and analysis of graph-

based, heuristic, and machine learning solutions, 

respectively. Section 8 offers a comprehensive analysis 

and discussion of the surveyed works, highlighting 

trends, limitations, and the prioritization of various 

criteria. Section 9 identifies open research challenges and 

future directions. Finally, Section 10 concludes the 

survey. An Appendix is also provided for a list of important 

acronyms used throughout the survey. 

METHODOLOGY 

This survey was conducted using a systematic literature 

review approach to ensure comprehensive coverage and 

minimize bias. The methodology largely aligns with 

established guidelines for systematic reviews, such as 

PRISMA (Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses) [41, 70], adapted for the 

scope of a survey article. This structured approach helps 

in identifying, selecting, and critically appraising relevant 

research, thereby providing a robust foundation for the 

survey's findings. 

2.1 Search Strategy 

The literature search was primarily performed on major 

academic databases and digital libraries, including IEEE 

Xplore, ACM Digital Library, SpringerLink, ScienceDirect, 

and Google Scholar. These platforms were chosen for their 

extensive coverage of computer science, networking, and 

distributed systems literature. The search queries 

combined keywords related to the computing paradigms 

and the core problem, using boolean operators to refine 

the search: 

● Core Problem Keywords: "service placement" OR 

"application placement" OR "task offloading" OR "service 

migration" 

● Computing Environment Keywords: "cloud-fog" OR 

"cloud-edge" OR "fog-edge" OR "cloud-fog-edge 

continuum" OR "edge computing" OR "fog computing" 

● Algorithmic Approach Keywords: "algorithms" OR 

"optimization" OR "heuristic" OR "meta-heuristic" OR 

"machine learning" OR "reinforcement learning" OR 

"graph-based" 

The search focused on publications from 2015 to 2024, 

given the relatively recent emergence and widespread 

adoption of fog and edge computing concepts. However, 

foundational works pre-dating this period were also 

considered if they significantly contributed to the 

understanding of service placement problems relevant to 

the continuum. The initial search focused on titles and 

abstracts to quickly filter out less relevant papers. 

2.2 Selection Criteria 

To ensure the relevance and quality of the included 

literature, strict inclusion and exclusion criteria were 

applied during the screening process: 

Inclusion Criteria: 

● Peer-reviewed journal articles, conference papers, 

and book chapters. 

● Publications explicitly addressing service 

placement, deployment, or offloading in integrated cloud-

fog-edge environments. This includes studies that 

consider the interaction and hierarchy between these 
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layers. 

● Works proposing or analyzing specific algorithms, 

models, or frameworks for service placement, with a 

focus on their methodological details. 

● Articles written exclusively in English. 

Exclusion Criteria: 

● Publications solely focused on cloud-only or edge-

only environments without considering the continuum. 

● Articles that do not propose or analyze specific 

placement algorithms (e.g., general surveys without 

algorithmic details, conceptual papers without technical 

contributions). 

● Short papers, posters, workshop abstracts, or 

extended abstracts lacking substantial technical content 

and detailed methodology. 

● Duplicate publications across different databases 

or different versions of the same paper (e.g., workshop 

version and journal version, prioritizing the most 

complete and recent version). 

2.3 Data Extraction and Categorization 

From the selected papers, relevant information was 

systematically extracted to facilitate analysis and 

categorization. The extracted data points included: 

● The proposed algorithm/approach: Detailed 

description of the core technique used (e.g., Genetic 

Algorithm, Q-learning, Graph Partitioning). 

● The computing environment: Specification of the 

architectural layers considered (e.g., Cloud, Fog, Edge, 

Cloud-Fog, Fog-Edge, Cloud-Fog-Edge). 

● The primary objective(s) of the placement: 

Explicitly stated goals of the proposed solution (e.g., 

minimizing latency, energy consumption, cost; 

maximizing throughput, resource utilization, reliability, 

Quality of Experience (QoE)). 

● The type of service: The granularity of the 

application component being placed (e.g., Virtual 

Machine (VM), container, microservice, Virtual Network 

Function (VNF)). 

● The evaluation methodology: How the proposed 

solution was tested (e.g., simulation, testbed, theoretical 

analysis, real-world deployment). 

● Key findings and performance metrics: 

Quantitative or qualitative results demonstrating the 

effectiveness of the approach. 

Based on the underlying principles and techniques 

employed, the extracted algorithms were then 

categorized into a comprehensive taxonomy. This 

categorization forms the basis of the results section, 

allowing for a structured analysis of the state-of-the-art 

and a clear comparison of different algorithmic 

paradigms. The process involved iterative refinement of 

categories as more papers were reviewed, ensuring that 

the taxonomy accurately reflects the diversity of 

approaches in the literature. 

Background on SPP Architecture 

The Service Placement Problem (SPP) in integrated Cloud-

Fog-Edge (iCFE) environments is a multifaceted challenge 

influenced by various architectural and operational 

factors. To understand the complexities of SPP, it is crucial 

to first establish a foundational understanding of the 

underlying infrastructure patterns, the types of 

applications being deployed, the different modes of 

placement, and the diverse criteria that drive placement 

decisions. This section elaborates on these foundational 

elements, as illustrated in Figure 1 of the accompanying 

PDF, which provides a useful taxonomy of SPP 

dependencies. 

3.1 Environment and Infrastructure Pattern 

The modern computing infrastructure is typically 

structured in a hierarchical manner, comprising three 

distinct yet interconnected layers: Cloud, Fog, and Edge. 

Service placement strategies are highly dependent on the 

characteristics and capabilities of each of these layers. 

● Cloud: As the furthest tier from end-users, the 

Cloud represents a centralized environment composed of 

vast physical resources, such as large data centers and 

powerful servers [65]. It offers virtually unlimited 

computing, storage, and networking capabilities, ensuring 

high levels of performance and scalability. However, the 

geographical distance between cloud data centers and 

edge devices often results in higher latency and response 

times, making it unsuitable for applications requiring real-

time processing [58]. The Cloud primarily serves as a 

repository for large-scale data analytics, long-term 

storage, and non-latency-critical applications. 

● Fog: Positioned as the middle tier, Fog computing 

extends the cloud's capabilities closer to the edge of the 

network. It is geographically distributed, hierarchical, and 

decentralized, providing localized computing, storage, and 

networking resources to users [22]. Fog nodes can vary 

significantly in their availability and resource capacities, 

ranging from powerful micro-data centers to industrial 

controllers and routers. These devices can be organized 

into clusters or cells based on their location and 

capabilities, with higher-level fog nodes possessing 

greater resources suitable for more demanding 

components [100]. Increasingly, the distinction between 

Cloud and Fog is blurring, with many integrated Cloud-Fog 

frameworks treating the Cloud as the highest hierarchical 

level of the Fog, fostering a seamless continuum [72]. This 

survey adopts this integrated perspective to address the 

challenges of SPP. 

● Edge: This tier is the closest to the end-users and 

data sources, aiming to minimize network response time 

and bandwidth overhead. Edge devices are geographically 
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distributed and typically have limited processing 

capabilities, embedded in sensors, wearable devices, 

smart appliances, and other measurement and 

computing units [29]. They are ideal for initial data 

processing, filtering, and real-time decision-making that 

requires ultra-low latency. 

The efficient distribution of application sub-tasks—

including monitoring, analyzing, executing, and 

planning—across these hierarchical layers is crucial for 

optimizing performance, reducing latency, and 

enhancing scalability [11, 58]. 

3.2 Types of Applications 

The structure and characteristics of applications 

significantly influence service placement decisions. 

According to Salaht et al. [94], IoT-related applications 

can be broadly classified into three main structural 

groups: 

● Monolithic Applications: These represent 

complex applications where several closely coupled 

functions are encompassed within a single, cohesive 

component. If such a monolithic service is stopped, all its 

functionalities are affected. Deploying a monolithic 

application requires placing the entire single component 

on a single physical node. While simpler in deployment 

for isolated cases, their rigidity makes them less suitable 

for dynamic, distributed environments where flexibility 

and fault tolerance are paramount. 

● Inter-dependent Services: This category refers to 

applications that are divided into a set of services, with 

each service responsible for a particular task. Such 

applications are typically developed with an enterprise 

scope, and individual services cannot be put into 

production independently, similar to traditional Service-

Oriented Architectures (SOA). The dependencies 

between these services necessitate careful co-location or 

optimized communication paths to minimize latency and 

ensure overall application performance. 

● Independent Services (Microservices): In this 

model, applications are decomposed into small, 

independent modules, each responsible for a specific 

task. These modules communicate with each other, 

typically through well-defined APIs, to fulfill user 

requests. Lewis and Fowler [52] define microservices as 

a functional decomposition driven by logical domain and 

business design. Each service is autonomous, meaning 

that changing the implementation of one service does not 

affect others. Microservices applications and their 

interactions can often be represented as a connected 

directed acyclic graph (DAG), where vertices model 

individual services and edges represent the 

communications or interdependencies between them. 

This granular structure, while offering flexibility and 

scalability, introduces significant complexity in service 

placement due to the sheer number of components and 

their intricate communication patterns. 

Service placement decisions are thus influenced by both 

the specific resource requirements of individual services 

(e.g., CPU, memory, storage) and the capacities of the 

available nodes. For multi-component applications, 

especially those built on microservices, the volume and 

nature of inter-service communication play a crucial role, 

often necessitating the co-location of highly 

communicative services to minimize latency and enhance 

overall system performance. 

3.3 Placement Mode 

The mode of service placement adapts to the dynamism 

and resource availability of the network, varying 

significantly from the static, centralized nature often 

associated with traditional cloud deployments to more 

dynamic and decentralized approaches prevalent in fog 

and edge environments. 

● Centralized Placement: In this mode, all 

information regarding environment resources and 

application services must be known in advance by a 

central orchestrator. While this approach can theoretically 

provide an optimal solution from a global resource 

perspective [8], it is rarely considered practical in large-

scale IoT contexts due to excessive latency and bandwidth 

limitations associated with collecting and processing all 

information at a single point [114]. 

● Decentralized Placement: This mode offers greater 

flexibility by enabling local optimization decisions based 

on each node's resources and data usage. Decisions are 

made independently of the total number of devices, 

allowing for dynamic management of system model 

changes. While highly powerful locally, decentralized 

solutions generally do not guarantee a globally optimal 

solution [38]. 

● Static Placement: This assumes an a priori known 

state of the infrastructure, where the assignment of 

services to nodes is decided upfront and remains fixed. 

This mode does not account for node mobility or changes 

in network conditions and resource capacities [54]. 

● Dynamic Placement: In contrast to static 

placement, dynamic placement can effectively deal with 

the perpetual changes in devices, application structures, 

and resource capacities. This is particularly efficient in 

Fog/Edge environments, where adaptive configurations 

manage the heterogeneous and distributed environment 

and, in some cases, predict future requirements [77]. 

● Reactive Service Placement: In a reactive scenario, 

service migration occurs only when run-time nodes 

become overloaded or no longer possess sufficient 

resources to handle new user requests. The goal is to 

alleviate processing burdens and restore system 

performance after a problem has manifested [59]. 

● Proactive Service Placement: This advanced mode 

anticipates the interdependence of services, user mobility, 

and network dynamism. Initial placement and subsequent 

migrations are planned to foresee and mitigate future 
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problems before they impact performance. This 

approach aims to prevent issues rather than reacting to 

them [90]. 

3.4 Placement Criteria 

The algorithms surveyed in this article attempt to 

optimize service placement according to various 

objectives, reflecting the diverse priorities of different 

applications and system operators. The criteria most 

commonly used in the literature include: 

● Resources: This encompasses metrics used to 

evaluate resource usage and requirements, including 

CPU utilization, memory consumption, storage capacity, 

and network bandwidth. It also represents the 

correlation between resource use patterns and other 

performance measures [53]. Efficient resource allocation 

is crucial for maximizing infrastructure utilization and 

avoiding bottlenecks. 

● Cost: This criterion represents any financial costs 

associated with the SPP, including service deployment 

costs, infrastructure operational costs, and data 

transmission costs. Costs can vary significantly 

depending on the service provider, geographical location, 

and resource consumption [77]. Minimizing operational 

costs is a key objective for service providers. 

● Energy and Greenhouse/CO2 Gas Emissions: This 

refers to the total energy consumption and associated 

greenhouse gas emissions of the entire system. It 

depends on the number and types of servers used, the 

resource utilization within each server, and the overhead 

energy consumption of communication between servers 

and nodes. Additionally, CO2 emissions are influenced 

not only by the amount of energy consumed but also by 

the sources of that energy, as different energy sources 

have varying levels of carbon intensity. This criterion is 

gaining increasing importance due to environmental 

concerns [4]. 

● Latency: Representing the time required for a 

data packet to travel from a source to a destination in the 

network, latency is a crucial criterion for delay-sensitive 

applications. The main components affecting latency 

include transmission media, propagation delays, router 

processing times, and storage delays. Minimizing end-to-

end latency is often a primary objective for real-time IoT 

applications [61]. 

● Quality of Service (QoS): QoS refers to the level of 

user satisfaction and performance achieved by placing 

services on appropriate nodes in a distributed 

environment. It is a broad metric that can encompass 

various factors, including latency, throughput, reliability, 

and resource availability. Ensuring high QoS is 

paramount for delivering a satisfactory user experience. 

● Performance: This is a comprehensive criterion 

that includes all other parameters considered for the SPP, 

such as violations of Service-Level Agreements (SLAs), 

congestion probability, and Quality of Experience (QoE). 

QoE, in particular, is a user-centric metric that captures the 

overall subjective experience of an application or service 

[62]. 

In addition to service placement, other critical concepts 

such as task scheduling and offloading are actively studied 

to enhance computing environments. While SPP focuses 

on the strategic deployment of application components to 

ensure optimal QoS, scheduling involves the real-time 

allocation and sequencing of tasks based on available 

resources and current workloads, ensuring efficient 

execution [6]. Offloading, however, refers to the delegation 

of computational tasks to edge servers to optimize 

processing efficiency and reduce latency, particularly for 

mobile devices [55]. Thus, SPP sets the foundational 

deployment of services, whereas scheduling and 

offloading manage the dynamic execution of tasks within 

that deployed framework. These concepts are often 

intertwined and require a holistic approach for optimal 

system management. 

Problem Modeling and Exact Approaches 

The Service Placement Problem (SPP) in integrated Cloud-

Fog-Edge (iCFE) environments is fundamentally a complex 

optimization challenge. This section formalizes the 

problem, discusses its inherent computational difficulty, 

and reviews exact solution approaches, highlighting their 

applicability and limitations. 

4.1 Problem Formulation 

The SPP can be formally defined as an optimization 

problem where the goal is to map a set of application 

components to a set of available computing nodes within 

the iCFE infrastructure, subject to various constraints and 

aiming to optimize one or more objectives. Using notations 

similar to those found in the literature [61], we consider 

the following sets: 

● H={a1,a2,...,ai}: The set of applications to be placed. 

● S={s1,s2,...,sj}: The set of services or components, 

where each application a∈H consists of a subset of these 

services. In microservices architectures, these sj are fine-

grained, independent modules. 

● N={n1,n2,...,nk}: The set of available computing 

nodes within the iCFE infrastructure. These nodes 

represent data centers, servers, Fog nodes, edge devices, 

and so on, each with specific resource capacities. 

● Q={q1,q2,...,ql}: The set of requests, where each 

request q∈Q has a source, a destination, and associated 

parameters or constraints (e.g., a maximum allowable 

latency). 

Each service/component s∈S of each application a∈H must 

be placed and executed on one node n∈N to respond to the 

incoming requests q∈Q. Conversely, each node n can 

execute several application components up to its capacity 

limits. The core of the problem lies in determining the 

optimal assignment of services to nodes. 
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The generic formulation of the optimization problem can 

be expressed as: 

● Mono-objective Optimization: 

x∈XminF(x)S.t. C1,C2,C3,...,Cn. 

 

Here, X represents the set of all feasible solutions (i.e., 

valid service placements), F(x) is a single objective 

function that evaluates the quality of a given placement 

x∈X, and Ci are additional constraints that must be 

satisfied. For instance, if the primary objective is to 

minimize latency, as explored in Reference [61], the 

objective function could be F(x)=∑q∈Qr(q,x), where 

r(q,x) quantifies the difference between the required 

latency and the achieved latency for a request q, given the 

placement x. Solving this problem aims to minimize the 

total deviation from desired latencies across all requests. 

● Multi-objective Optimization: 

{minx∈X(F1(x),F2(x),...,Fp(x)),s.t.c1,c2,c3,...,cn, 

In real-world scenarios, SPP often involves multiple, 

conflicting objectives. For example, F1(x) might 

represent latency deviation, F2(x) energy consumption, 

and F3(x) network costs. Since it is generally not possible 

to find a single placement x that simultaneously 

minimizes all Fi functions, multi-objective optimization 

approaches are employed [66]. One common strategy is 

to search for Pareto optimal solutions—placements 

where no objective can be improved without degrading 

at least one other objective. Another classical approach is 

scalarization, which transforms the multi-objective 

problem into a single-objective one, often using a linear 

combination: F(x)=∑i=1...pwiFi(x), where wi are weights 

assigned to each objective to reflect their relative 

importance. 

The placement problem is also subject to several key 

constraints that reflect the physical and operational 

realities of the iCFE environment. Typical constraints 

found in the literature include: 

● Computing Resource Constraints [39]: Each node 

n∈N has limited resources (e.g., CPU, memory, storage). 

The total resource requirement of all services placed on 

a node cannot exceed its capacity: 

q∈Q∑s∈S∑xsnq⋅Rs≤Rn∀n∈N 

where xsnq is a binary variable (1 if service s is placed on 

node n for query q, 0 otherwise), Rs is the resource 

requirement of service s, and Rn is the total resource 

available on node n. 

● Latency Constraints [61]: The sum of latencies 

incurred for a given request must not exceed a 

predefined limit: 

(n1,n2)∈N×N∑an1n2q⋅Δn1n2≤Λq∀q∈Q 

 

where an1n2q is a binary variable indicating that nodes n1 

and n2 are involved in processing request q, Δn1n2 is the 

latency between nodes n1 and n2, and Λq is the maximum 

allowable latency for request q. 

● Limitation on the Number of Queries [1]: Each 

service s on each node n can serve at most t queries: 

q∈Q∑xsnq≤t∀s∈S,∀n∈N 

where xsnq is 1 if service s is placed on node n for query q, 

and 0 otherwise. 

The service placement problem, particularly in its multi-

criteria and discrete nature (combinatorial optimization), 

is inherently NP-hard [40, 42]. This means that the 

computational time required to find an optimal solution 

grows exponentially with the size of the problem instance, 

making it infeasible for large-scale, real-world 

deployments. 

4.2 Exact Solutions 

Despite the NP-hard nature of the SPP, some researchers 

have proposed exact mathematical models, primarily 

based on Integer Linear Programming (ILP) or Mixed 

Integer Linear Programming (MILP). These formulations 

aim to provide optimal solutions by precisely defining the 

problem as a set of linear equations and inequalities. 

● ILP and MILP Formulations: ILP formulations 

handle problems with linear objective functions and 

discrete (integer) variables, while MILP formulations 

allow for both discrete and continuous variables. Both are 

NP-hard problems [44, 94] that can be solved using 

techniques like the simplex method or Branch and Bound 

(B&B) algorithms. B&B systematically explores the 

solution space, pruning branches that cannot lead to an 

optimal solution. However, even with B&B, the search 

space for complex combinatorial problems is often too 

vast. 

○ VNF Placement and Routing: Addis et al. [1] 

formulated two ILP problems to address the service 

function chain of Virtual Network Functions (VNFs), 

aiming to minimize the number of service instances. Their 

modeling strategy involved splitting each demand path 

into sub-paths and installing service instances at 

articulation points of biconnected components. This 

model, solved with CPLEX using SNDlib network data, 

focused on a single VNF type. 

○ Network Resource Optimization: Gupta et al. [39] 

developed an ILP model for service function chains to 

optimize network-resource consumption. Their findings 

indicated that near-optimal resource consumption could 

be achieved by selectively upgrading nodes to support 

VNFs and carefully managing core allocation and traffic. 

○ Cloud Service Modeling: Espling et al. [30] utilized 

graph structures to represent service specifications, 

component relationships, and placement constraints. They 

formulated an ILP to minimize the total service affinity 

placement of VMs across multiple nodes, subject to various 
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constraints. However, their evaluation was limited to a 

very small testbed. 

○ Ultra-low Latency Microservices: Magnouche et 

al. [61] proposed an optimization model for service 

function chains, specifically targeting ultra-low latency 

for microservices. 

● Multi-objective Optimization with Scalarization: 

Liu et al. [56] addressed the multi-objective problem of 

mobile device (MD) placement, balancing energy 

consumption, response time, and cost. They employed 

three queuing models for MD, Fog, and Cloud data 

centers, considering data rate and wireless link power 

consumption. The multi-objective problem was 

converted into a single-objective one using linear 

scalarization, which was then solved using the Interior 

Point Method (IPM). Their results showed a trade-off: 

energy consumption decreased with increased offloading 

probability, but execution time increased. 

Limitations of Exact Approaches: 

While exact methods guarantee optimal solutions, their 

high computational complexity makes them impractical 

for large-scale, real-world iCFE environments. The 

exponential growth of the solution space means that even 

with sophisticated solvers, these methods can only 

handle small problem instances. This limitation has 

driven the research community to focus predominantly 

on approximate algorithms, which can provide near-

optimal solutions within reasonable timeframes, as 

discussed in the subsequent sections. 

4.3 SPP Approaches Categorization 

Given the computational intractability of exact solutions 

for most real-world SPP instances, the majority of 

research has focused on approximate algorithms. Rather 

than categorizing solutions solely by the architecture 

(Cloud, Fog, Edge) they target, this survey adopts a 

classification based on the fundamental algorithmic 

approaches employed. This choice is motivated by the 

observation that these methods are often generic enough 

to be adapted across different iCFE contexts, even if their 

initial application might be limited. For instance, 

metaheuristics offer robust exploration of vast search 

spaces, while graph-based methods leverage network 

topology for efficient placement. 

We have grouped the proposed solutions for the SPP into 

three main families, based on their underlying 

algorithmic principles, as depicted in Figure 3 of the 

accompanying PDF: 

● Graph-based Approaches: Graphs are ubiquitous 

in modeling service placement problems. They are used 

to represent the physical network of resources (nodes 

and links) and the communication dependencies 

between application components (e.g., microservices as 

Directed Acyclic Graphs or DAGs). Consequently, many 

algorithmic solutions leverage methods from graph 

theory or complex networks, such as graph partitioning, 

graph traversal, or matrix-based solutions using adjacency 

matrices. These approaches often originate from the graph 

theory or complex network communities. 

● Heuristic and Meta-heuristic Solutions: Since exact 

solutions are impractical for most cases, a significant 

portion of the literature focuses on approximate methods. 

This category includes heuristics specifically designed for 

SPP, as well as tailored implementations of traditional 

meta-heuristics (primarily population-based algorithms 

like Genetic Algorithms, Ant Colony Optimization, Particle 

Swarm Optimization). These methods are often developed 

by the operational research community, aiming to guide 

the exploration of the search space to find local or global 

optima efficiently. 

● Machine Learning (ML) Algorithms: The dynamic 

and data-rich nature of iCFE environments makes them 

well-suited for machine learning techniques. This category 

includes approaches based on supervised learning, 

reinforcement learning, and neural networks (including 

deep learning). These solutions leverage historical data to 

train models that can make predictive or optimized 

decisions for service placement, often originating from the 

data mining and machine learning communities. 

It is important to note that while we propose a strict 

categorization, many solutions in the literature combine 

principles from different families. In such cases, we 

classify the proposal based on its primary or most 

significant algorithmic contribution. These families, while 

distinct in their core methodologies, are not mutually 

exclusive and often complement each other in hybrid 

approaches. The following sections delve into each of 

these categories in detail, discussing their strengths, 

weaknesses, and specific applications within the SPP 

domain. 

Graph-based Approaches 

Graphs provide a powerful and intuitive abstraction for 

modeling the complex relationships inherent in service 

placement problems within the Cloud-Fog-Edge 

continuum. In this context, computing resources (data 

centers, fog nodes, edge devices) are typically represented 

as nodes, and network links between them are 

represented as edges. Similarly, microservices 

applications can be modeled as Directed Acyclic Graphs 

(DAGs), where services are nodes and inter-service 

communications are weighted edges (representing cost, 

latency, or data volume). This section explores various 

graph-based solutions for SPP, categorized by their 

primary graph-theoretic technique. Table 3 in the 

accompanying PDF provides a summary of these 

approaches. 

5.1 Graph Partitioning Techniques 

Graph partitioning and community detection are 

processes of dividing a network graph into smaller, 

cohesive subgraphs or "communities," where nodes 

within a community are more densely connected to each 
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other than to nodes outside the community. These 

techniques are highly relevant to SPP as they can help in 

grouping services or resources that exhibit strong 

interactions or geographical proximity. Many off-the-

shelf solutions exist for community detection [33], and 

researchers have adapted them for SPP. The general 

principle involves identifying these communities and 

then using heuristics to place services on the compute 

nodes within these identified communities. 

● Community Detection for Dynamic 

Environments: Coimbra et al. [23] proposed an approach 

for service placement in community networks, involving 

two steps: a centralized community detection based on 

graph properties, followed by a decentralized election 

heuristic. This method allows for incremental processing 

of services and adapts to network variations and 

dynamism, demonstrating good performance in 

simulations. 

● Availability-Aware Placement: Lera et al. [51] 

presented a two-phase placement approach focused on 

service availability and QoS. They first mapped and 

partitioned the graph of connections between Fog nodes 

using community detection. Subsequently, a first-fit 

decreasing approach was used to place applications 

within these communities based on execution deadlines. 

The second phase involved allocating application 

services to devices within a selected fog community by 

analyzing the transitive closure of the application graph. 

While effective, the community detection algorithm used 

[76] might not be the most efficient in terms of speed and 

quality compared to more recent advancements. 

● Energy- and Resource-Aware Microservices 

Placement: Taleb et al. [105] introduced a new model and 

heuristic for microservices placement in the iCFE 

continuum, specifically designed to optimize energy 

consumption while adhering to resource constraints and 

ensuring acceptable response times. This approach 

leverages community detection to identify groups of 

densely connected network nodes. Following community 

identification, a greedy best-fit algorithm allocates 

microservices based on their resource requirements and 

the capabilities of the selected nodes. Experimental 

results indicate significant reductions in energy 

consumption while maintaining acceptable response 

times. 

● VNF Placement and Migration in Data Centers: Zu 

et al. [122] investigated the placement and migration of 

Virtual Network Functions (VNFs) in data centers, 

focusing on the user's Service Function Chain (SFC). 

Their objective was to minimize long-term operational 

costs by formulating the problem as a dynamic 

programming model. They proposed a two-stage online 

heuristic algorithm, combining a greedy algorithm based 

on community detection (using the Louvain algorithm 

[12]) with an iterative migration algorithm. Simulations 

showed successful traffic prediction and good 

performance. 

● Multilayer Resource-Aware Partitioning: Samani et 

al. [95] considered the heterogeneity of Fog computing 

devices, modeling Fog resources as a four-layered graph 

where each layer represents a resource type (network, 

CPU, memory, storage). Each layer is partitioned using the 

Louvain community detection algorithm to group similar 

nodes. A "compressed" graph is then constructed, with 

nodes representing these groups and edges representing 

inter-community connections. This compressed graph is 

further split into disjoint clusters of similar Fog device 

resources, onto which applications are placed according to 

their requirements. This method demonstrated reduced 

resource usage and improved adherence to application 

request deadlines compared to existing methods. 

● K-way Partitioning for IoT Data Placement: Naas et 

al. [73] presented a heuristic for IoT data placement in Fog 

environments, aiming to decrease data access time. They 

modeled the physical infrastructure as an undirected 

weighted graph, where vertex weights represent data 

storage needs and edge weights represent data flow. 

Instead of traditional community detection, they divided 

the graph into k subgraphs using the Metis k-way 

partitioning method [48]. This process ensures an even 

distribution of vertex weights among sub-graphs and 

minimizes the sum of cut edge weights, showing proximity 

to optimal solutions for a fixed number of partitions. 

● Clustering for Micro-cloud Service Deployment: 

Selimi et al. [98] proposed an approach to reduce the 

complexity of service deployment in community micro-

clouds by leveraging network state information. Their 

heuristic algorithm, "Bandwidth and Availability-aware 

Service Placement," adapts to changing compute node 

topologies. It involves three parts: K-means clustering to 

check node availability, aggregation to find cluster heads 

maximizing bandwidth, and cluster recompilation and 

placement. Experimental results showed a significant 

improvement in bandwidth gain compared to random 

placement strategies. 

5.2 Graph Traversal Solutions 

Another category of graph-based approaches models the 

problem using graphs but primarily relies on graph 

traversal algorithms to find placement solutions. 

● Latency-Optimized Microservice Placement: Wang 

et al. [113] introduced a latency estimator for Microservice 

Placement in Edge-Cloud Collaborative Smart 

Manufacturing (MPCSM) to minimize end-to-end latency 

while respecting resource and location constraints. They 

modeled the system as a directed graph of devices and 

communication links, representing applications as DAGs 

with microservice dependencies. Services are sorted by 

latency sensitivity, and Breadth-first Search (BFS) is used 

to assign placement orders. Microservices are then placed 

on edge devices with the lowest latency that meet the 

specified constraints. While showing improved 

performance, the training process for this approach can be 

time-consuming and static, limiting dynamic adaptation. 
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● Energy and Carbon Emission-Efficient Placement: 

Ahvar et al. [2] proposed DECA (Dynamic Energy cost and 

Carbon emission-efficient Application) placement 

method for Edge Cloud computing. This method 

optimizes both initial service placement on Edge-Clouds 

(ECs) and manages migrations to re-optimize costs. It 

considers geographical distribution, energy costs of 

network equipment, and associated CO2 emissions. Each 

EC is represented as a weighted graph, and applications 

are sets of components with communication represented 

by a matrix. To tackle the optimization, the authors 

combine an A* traversal algorithm with a solution to 

select the best additional vertex at each step, balancing 

energy and cost metrics. Simulations demonstrated a 

good trade-off between these objectives. 

5.3 Adjacency Matrix and Eigenvectors 

Some graph-based approaches utilize the adjacency 

matrix of microservices calls, or variations thereof, 

combined with eigenvector computations or 

eigendecompositions to determine service assignments. 

● Rank-based Matrix Optimization for Green 

Computing: Saboor et al. [93] developed a rank matrix 

optimization technique for dynamic provisioning of 

containerized microservices placement in a Cloud 

environment. They construct a stochastic matrix from the 

adjacency matrix of microservices call graphs. If a 

microservice Mi calls other microservices {O1,...,ON}, it 

passes 1/N of its value to each Oj. This iterative process 

of value distribution converges to an eigenvector 

associated with eigenvalue 1, yielding ranks for 

microservices. Microservices with the highest rank are 

grouped into a container and deployed on data centers 

with the highest Green Energy Index (optimized for 

carbon emission and renewable energy use). However, 

this solution's relevance diminishes for non-strongly 

connected graphs (e.g., DAGs), as sources (uncalled MS) 

will have the lowest rank and sinks (no outgoing calls) 

the highest. 

● Eigendecomposition for Service Function Chains: 

Mechtri et al. [64] combined greedy and ILP models for 

service placement, proposing a novel 

eigendecomposition of the adjacency matrix using an 

analytical approach. This method efficiently matches 

weighted VNF graphs to the infrastructure graph of 

nodes, extending Umeyama's [108] solution for weighted 

graph matching. They employed eigendecompositions of 

adjacency matrices and the Hungarian method to find a 

mapping function that minimizes a similarity distance 

metric between nodes. Since Umeyama's solution 

requires graphs of the same size and a one-to-one 

mapping, the authors provided a MILP formulation to 

improve the joint solution. A greedy algorithm based on 

bipartite graphs was used to benchmark the 

eigendecomposition algorithm's performance across 

various metrics like network property, system load, and 

request size. 

Heuristic Solutions 

Given the NP-hard nature of the Service Placement 

Problem (SPP), exact solutions are often computationally 

prohibitive for real-world, large-scale Cloud-Fog-Edge 

environments. Consequently, heuristic and meta-heuristic 

approaches are widely employed. A heuristic is a 

computational method that aims to solve an optimization 

problem faster than exhaustive techniques, typically by 

iteratively improving a candidate solution. While 

heuristics may get stuck in local optima, they provide 

good, near-optimal solutions within a reasonable time. 

Meta-heuristics, as defined by Blum and Roli [13], are 

"general algorithmic frameworks which can be applied to 

different optimization problems with relatively few 

modifications." They guide the exploration of the search 

space to find local or global optima more effectively than 

simple heuristics. This section presents various heuristic 

and meta-heuristic solutions adapted for the SPP, 

categorized by their underlying principles. Table 4 in the 

accompanying PDF provides a comprehensive list of these 

approaches. 

6.1 Fuzzy Logic Algorithms 

Fuzzy logic is a computational approach that deals with 

imprecision and uncertainty in decision-making, 

mimicking human-like reasoning. It converts input 

variables into fuzzy sets, applies a set of rules to combine 

them, and assigns degrees of truth to statements rather 

than binary true/false values [118]. This makes fuzzy logic 

suitable for complex environments where exact 

measurements or clear-cut rules are difficult to establish. 

Some SPP optimization solutions leverage fuzzy logic 

system rules to make informed decisions at each step. 

● Combined Fuzzy Logic and ACO for VNF 

Optimization: Shokouhifar et al. [99] proposed a hybrid 

heuristic-metaheuristic algorithm combining a fuzzy logic 

system with Ant Colony Optimization (ACO) for VNF 

placement. This approach aims to leverage the speed of 

fuzzy-logic-based heuristics and the high quality of 

metaheuristics. Their multi-objective function includes 

total power consumption, total path reliability, and total 

end-to-end latency. The algorithm also adapts to changes 

in application requirements by readjusting objective 

function weights. Fuzzy logic is used for both server and 

link selection: a fuzzy score is calculated for servers based 

on distance, load, and available resources, and for links 

based on bandwidth, delay, and congestion. Ants then use 

these scores to select optimal servers and links, balancing 

solution quality and convergence speed. 

● Fuzzy Logic for QoE Maximization: Mahmud et al. 

[62] introduced a fuzzy-logic-based algorithm combined 

with an ILP approach to allocate requested services across 

nodes. The primary objectives were to maximize user 

Quality of Experience (QoE) and ensure service access, 

resource consumption, and service delivery. Their method 

calculates application rating and Capacity Class Score 

(CCS) using various parameters mapped to fuzzy sets via 
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membership functions and fuzzy rules. This fuzzy logic 

approach considers multiple status parameters to 

determine the CCS, even for applications with relaxed 

expectation parameters. Evaluated in the iFogSim Fog-

Cloud environment, the method demonstrated 

effectiveness, though it was based solely on the Fog 

architecture. 

6.2 Greedy Algorithms 

A greedy algorithm is a straightforward strategy that 

makes the locally optimal choice at each step, with the 

expectation that this will lead to a globally optimal or 

near-optimal solution. Its main advantages are simplicity 

of implementation and computational speed. However, 

greedy algorithms can often get trapped in local optima, 

failing to find the true global optimum. 

● FOGPLAN Framework for QoS and Latency: 

Yousefpour et al. [116] proposed the FOGPLAN 

framework for dynamic Fog service provisioning, 

formulating the optimization problem as an Integer Non-

linear Programming (INLP) to support low latency and 

QoS requirements. They introduced two greedy 

algorithms to solve the INLP. The first minimizes delay 

violation for IoT devices by prioritizing Fog nodes with 

higher incoming traffic and releasing services from low-

traffic nodes if it doesn't cause violations. It can also 

deploy/release services on the Cloud if resources are 

available. The second greedy algorithm minimizes 

service deployment cost by sorting incoming traffic rates 

to Fog nodes and checking if deployment or release 

reduces costs and increases revenue. 

● Resource Provisioning with Branch and Bound 

and First Fit: Rakshith et al. [89] developed a resource 

provisioning framework for IoT applications in Fog 

environments, aiming to reduce latency and resource 

usage. They combined a Branch and Bound (B&B) 

algorithm with a first-fit greedy algorithm. The first-fit 

approach processes items sequentially, assigning each to 

the first available bin with sufficient space; if no such bin 

exists, a new one is created. While B&B guarantees 

overall optimality, the first-fit heuristic ensures timely 

deployment. Their approach also analyzes provisioning 

time and required resources, with future work 

considering service scaling. 

● DRACeo Simulator for Energy-Efficient 

Microservices: Valera et al. [109] introduced DRACeo, a 

simulator for microservices-based application 

deployments, designed to optimize energy consumption 

without degrading QoS. DRACeo schedules microservices 

based on environmental changes and dependencies. It 

employs classical heuristic algorithms for centralized 

and non-centralized adaptive planning. One heuristic 

determines QoS based on required and obtained 

hardware resources, while another greedy heuristic 

selects the microservice with the lowest QoS to limit 

overall application QoS, without considering broader 

system impact. The simulator allows users to specify QoS 

and energy consumption expectations for tracking. 

● Dynamic Service Placement for Mobile Micro-

clouds: Wang et al. [111] presented a solution based on 

linear problem modeling to minimize average cost over 

time. They proposed an offline algorithm to predict future 

instance placement costs based on user preferences within 

a time window, solvable by dynamic programming for 

optimal solutions. For increased complexity with multiple 

instances, they used an online approximate algorithm with 

polynomial time complexity to dynamically handle 

runtime instance placement. This algorithm calculates cost 

differences for each instance in available slots, selects the 

instance with the largest minimum difference, and places 

it in the slot with the smallest difference. 

● Priority, Network, and Energy-Aware Placement 

(MinRE): Hassan et al. [43] proposed MInRE, an efficient 

policy solution addressing response time, energy 

consumption, and resource usage. It categorizes services 

into critical (requiring fast response, optimized by MinRes 

heuristic) and normal (energy reduction focus, optimized 

by MinEng heuristic). MinRes sorts critical services and 

Fog node delays, placing services on the main Fog cluster 

node with minimum delay. If capacity is insufficient, it 

seeks a neighbor node. MinEng sorts services by deadline, 

selecting nodes with less network delay and minimum 

energy consumption, following a similar neighbor strategy 

if resources are insufficient. Simulations showed improved 

delay and energy consumption, but the model did not 

include applications with multiple dependent services or 

cost resource nodes. 

● QoS-aware Deployment with Fail-first: Brogi and 

Forti [14] proposed a model to improve QoS, developing 

placement algorithms for design, simulation, deployment, 

and execution in Fog environments. They reduce the 

search space by mapping software components only to 

feasible fog nodes and cloud data centers that meet all 

requirements, using a K-key-value map. A greedy fail-first 

algorithm then selects a single placement node. FogTorch, 

a Java tool simulator, was used for performance 

evaluation. 

● Container Migration for Energy Reduction: 

Chhikara et al. [21] suggested an approach for placing and 

migrating service containers from overused to underused 

nodes to reduce energy consumption and resource 

utilization. Their algorithm classifies hosts as overloaded, 

underloaded, or balanced using k-means and hierarchical 

clustering to select migration targets. Containers causing 

overload (based on CPU/RAM) are migrated using a best-

fit greedy approach to find the optimal destination host. 

6.3 Population-based Heuristics 

Population-based metaheuristics are inspired by natural 

selection and the collective behavior of groups (e.g., flocks 

of birds, swarms of bees, ant colonies, whale pods). These 

algorithms maintain a population of candidate solutions 

that evolve over iterations, exploring the search space to 

find optimal or near-optimal solutions. While they do not 
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guarantee global optimality, they are effective for 

complex problems with large search spaces. 

● Genetic Algorithms (GAs): Inspired by natural 

selection and evolution [67], GAs maintain a population 

of chromosomes (candidate solutions) that evolve 

through operations like crossover and mutation. Fitter 

individuals are stochastically selected, ensuring the next 

generation is more optimized while maintaining 

diversity. 

○ Service Placement in Fog: Skarlat et al. [101] used 

a GA for service placement in Fog environments, aiming 

to maximize services placed on Fog nodes and minimize 

network communication delays and resource usage. 

Chromosomes encode placement plans, with genes 

indicating service placement on specific fog resources 

and system state (CPU, RAM, storage). Crossovers and 

mutations combine or modify plans, and a fitness 

function evaluates constraint adherence (capacity, 

delay). Compared to greedy and exact methods, the GA 

showed improved response time. 

○ Proactive Data Positioning: Canali and Lancellotti 

[17] developed a GA-based heuristic for proactively 

positioning data on Fog nodes, considering current load 

and sensor communication latency. Genes represent 

which Fog node receives data from a sensor. Evaluated 

on smart city scenarios, their approach yielded results 

equivalent to direct optimization. 

○ Business-Driven IT Service Component 

Placement: Tortonesi et al. [107] proposed a GA 

optimization technique for business-driven IT service 

component placement in dynamic, distributed Cloud 

systems. The GA finds optimal IT service placement on 

Cloud data centers based on operational costs, calculated 

from provider fees. Experiments with a realistic two-tier 

scenario and real-life prices showed improved quality. 

○ Multi-objective IoT Service Placement: Natesha 

and Guddeti [74] provided an elitism-based GA to solve a 

multi-objective placement problem, minimizing energy 

consumption, response time, and cost while ensuring 

QoS. Chromosomes represent service numbers, and 

genes represent Fog node numbers. Fitness values are 

calculated based on weighted service time, cost, and 

energy. Elitism selects best individuals, and 

crossover/mutation operations produce diverse 

offspring. 

○ Comparison of Evolutionary Algorithms: 

Guerrero et al. [37] compared three GA-based 

evolutionary algorithms—Weighted Sum Genetic 

Algorithm (WSGA), Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) [70], and Multi-objective 

Evolutionary Algorithm based on Decomposition 

(MOEA/D)—for optimizing network latency, service 

spread, and resource requirements in Fog service 

placement. WSGA is a single-objective GA using weighted 

sum transformation. NSGA-II is a multi-objective 

algorithm ordering solutions by dominance. MOEA/D 

decomposes the problem into multiple scalar fitness 

optimizations. Experiments on a random Barabasi-Albert 

network [10] showed varying performance based on 

objectives, with NSGA-II achieving highest goal 

optimizations and diversity, while MOEA/D was faster. 

● Particle Swarm Optimization (PSO): PSO [63] is a 

computational method where a population of candidate 

solutions (particles) move in the search space, guided by 

their own best-found position and the global best-found 

position. 

○ Microservices Placement for Resource and Energy 

Optimization: Yu et al. [117] designed a workload model 

for microservices placement as a bi-criteria optimization 

problem. They proposed a three-stage mathematical 

algorithm to optimize trade-off decisions. First, a multi-

objective PSO meta-heuristic creates instances and 

calculates the Pareto front for optimized MS instances and 

thread allocation. Second, requests are routed to 

established microservice instances in a balanced way 

(similar to a bin packing problem). Finally, a load-

balancing algorithm (LEGO) selects the minimum number 

of servers. Experiments showed better and faster 

performance than baselines. 

○ Energy-Aware Edge Server Placement: Li and 

Wang [54] devised a PSO energy-aware placement method 

for Edge server devices to ensure low energy 

consumption. They adapted PSO for a discrete problem, 

improving basic PSO equations. The algorithm takes base 

station datasets, Edge server coverage radius, particle 

swarm size, and iterations as input, assigning base stations 

to Edge servers and updating particle positions/velocities 

to find an optimal placement. Evaluated on a real Shanghai 

base station dataset, it showed over 10% energy 

consumption reduction, but lacked dynamic optimization 

for changing demands. 

○ QoS-aware Multi-objective Set-based PSO: 

Pallewatta et al. [80] provided a QoS-aware Multi-

objective Set-based PSO for batch placement of 

microservice applications in Fog environments, defining 

QoS by budget, makespan, and throughput. This approach 

is combined with the Learning Particle Swarm 

Optimization (S-CLPSO) algorithm to improve 

convergence. It initializes a particle population, computes 

fitness, updates positions, and selects the best swarm 

position over iterations, returning optimal microservice-

to-device mapping. Experiments demonstrated improved 

makespan satisfaction and budget. 

○ Discrete Particle Swarm Optimization for IoT 

Services: Djemai et al. [26] approached service placement 

as an optimization problem to reduce energy consumption 

and minimize delays in IoT applications. Their method 

uses a discrete particle swarm optimization (DPSO) 

algorithm with real-valued speeds to identify efficient 

service locations. Physical infrastructure is a graph, and 

IoT applications are modeled as DAGs. 

● Ant Colony Optimization (ACO): ACO algorithms 
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[27] are inspired by the foraging behavior of ant colonies, 

where ants find optimal paths by leaving pheromone 

trails. The optimization problem is transformed into 

finding the shortest path in a graph. 

○ Multi Replicas Pareto ACO (MRPACO): Huang et al. 

[47] presented MRPACO to manage the geographic 

distribution of Fog nodes and multi-objective service 

replicas, including latency time and deployment cost. The 

algorithm creates multiple pheromone trails and uses 

single heuristic information. Ants decide the next data 

flow direction for scheduled source-service pairs. 

Experiments showed increased convergence speed and 

enhanced Pareto front accuracy, maximizing objective 

placement. 

○ Modified ACO for VNF Placement and Routing: 

Farshin et al. [31] modified ACO to propose a chaotic 

grey-wolf-optimized (GWO) knowledge-based system 

for VNF placement and path allocation. The GWO 

algorithm mimics grey wolf hunting behavior [69]. The 

proposed framework performed well in placement and 

routing. 

● Whale Optimization Algorithm (WOA): WOA [68] 

mimics the hunting strategy of humpback whales, who 

communicate and coordinate movements to encircle 

prey using bubble nets. 

○ Cost-Efficient IoT Service Placement: Ghobaei-

Arani and Shahidinejad [35] proposed a cost-efficient IoT 

service placement approach using WOA in a fog 

computing environment. 

○ CREW Heuristic for Reliability and Cost: Martin et 

al. [83] introduced CREW, a heuristic method addressing 

conflicting criteria of maximizing service reliability while 

minimizing monetary cost. Due to the exponential 

solution space, CREW uses an Eagle strategy based on 

multi-Whale optimization for placement decisions. The 

Eagle strategy is a two-stage hybrid method combining 

random global and local search for stochastic 

optimization [115]. Simulations showed CREW 

outperforming existing multi-objective meta-heuristics 

like NSGA-II and MOWOA. However, the model only 

considered CPU and memory, not storage or network 

bandwidth. 

○ Self-managing WOA for IoT Services: Ghobaei-

Arani and Shahidinejad [35] outlined a self-managing 

approach using WOA for IoT services deployment across 

a three-tiered fog architecture, focusing on QoS for 

enhanced throughput. 

● Cuckoo Search (CS): Mortazavi et al. [71] 

introduced a custom cuckoo search algorithm for service 

placement (CSA-SP) to optimize service positioning in fog 

nodes, minimizing energy consumption while 

considering data transfer constraints and resource 

availability. 

6.4 SPP Specific Heuristics 

Beyond the established meta-heuristic families, several 

heuristics have been specifically designed or tailored for 

the SPP, addressing unique aspects of the problem in iCFE 

environments. 

● Markov Chain-based Service Placement: Carlini et 

al. [18] pioneered a Markov chain-based service 

placement method with point-to-point interactions and 

discrete cross-step algorithms to reduce energy, time, and 

cost. Simulations demonstrated convergence in a 

distributed setting, but the approach did not account for 

dynamic service arrival/completion. 

● Distributed Placement with Markov 

Approximation: Kayal and Liebeherr [49] proposed a fully 

distributed placement strategy in Fog/Edge environments 

based on Markov approximation. This method optimizes 

communication costs between microservices and energy 

consumption. Microservices are initially placed randomly 

on Fog nodes and then moved to neighboring nodes 

according to Markov Chain transitions that approximate 

the optimization problem. Experimental results showed 

comparable solutions to existing centralized methods. 

● Decentralized Microservices-based IoT Application 

Placement: Pallewatta et al. [79] developed a 

decentralized approach for microservices-based IoT 

application placement. Their main objective was to place 

latency- and bandwidth-critical microservices as close as 

possible to the data source using a heuristic placement 

algorithm that scales microservices in heterogeneous 

nodes. Each Fog layer is considered a cluster with a 

controller node managing microservices placement and 

load balancing. The controller uses three algorithms: 

selecting the closest Fog node (for latency/communication 

cost), selecting the Fog node with the lowest load (for 

resource balancing), and combining these results for a 

final placement decision. 

Machine Learning Algorithms 

The dynamic, complex, and data-intensive nature of Cloud-

Fog-Edge environments makes Machine Learning (ML) 

algorithms particularly well-suited for optimizing service 

placement. These models can learn patterns from 

historical execution data to make proactive and adaptive 

placement decisions. This section categorizes ML 

approaches used for SPP into supervised learning, 

reinforcement learning, and neural/deep neural networks. 

Table 5 in the accompanying PDF summarizes these 

machine learning solutions. 

7.1 Supervised Learning 

Supervised learning involves training models on labeled 

datasets, where both inputs and corresponding desired 

outputs are provided. The trained model can then predict 

unknown outputs for new input data. 

● Classification and Regression Tree for Task 

Offloading: Rahbari and Nickray [87] proposed a 

placement method based on the Classification and 

Regression Tree (CART) algorithm, named MPCA, for task 
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offloading in mobile fog computing. They utilized the 

power consumption of mobile devices for the training 

phase, incorporating decision parameters such as cost, 

integrity, availability, speed, and capacity for Fog node 

selection. They also introduced the MPMCP method to 

optimize MPCA by analyzing the probability of network 

resource utilization. The proposed algorithm 

demonstrated superior performance compared to the 

First Fit algorithm in terms of consumption, response 

time, and overall efficiency. 

● Gradient Boosting Regression for Serverless 

Edge/Cloud Optimization: Das et al. [25] presented a 

framework for performance optimization in serverless 

Edge/Cloud environments using dynamic task 

placement, based on Gradient Boosting Regression. Their 

machine learning model was trained on three real-world 

application use cases (image resizing, face detection, and 

speech-to-text) to predict latency and cost. Evaluated 

using AWS, the framework achieved end-to-end latency 

prediction with less than 6% error. However, the model 

was trained on a relatively small sample of use cases, 

which might limit its generalization. 

7.2 Reinforcement Learning 

Reinforcement Learning (RL) is a classical machine 

learning paradigm where an agent learns to make 

sequential decisions by interacting with an environment 

through trial and error. The agent receives rewards or 

punishments as feedback for its actions, aiming to 

maximize cumulative reward over time [104]. For SPP 

optimization, various RL techniques, such as Q-Learning 

(QL) and State-Action-Reward-State-Action (SARSA), 

have been employed. 

● Q-Learning for Dynamic Service Migration: Chen 

et al. [20] introduced a service migration mechanism in 

Edge Cognitive Computing to achieve higher energy 

efficiency and Quality of Experience (QoE). Their 

migration and placement strategies are based on RL, 

using a Q-learning algorithm to select optimal nodes for 

each service. Experimental results showed that this 

architecture improves QoE, particularly when user needs 

are not precisely predicted. 

● Q-placement for SDN Service Placement: Zhang et 

al. [120] developed a RL-based algorithm called Q-

placement for Software-Defined Networking (SDN) 

switches service placement. The primary objective was 

to minimize the average accumulated service costs for 

end-users while guaranteeing performance. This work 

demonstrated that the proposed method improves cost 

savings and outperforms classical service placement 

algorithms. A key advantage is its on-demand decision-

making process, unlike traditional optimization 

algorithms with fixed optimization levels. 

● Dyna-Q RL for Proactive Microservice Placement: 

Ray et al. [90] developed a RL-based proactive 

microservice placement and migration mechanism for 

Edge servers to adapt to user movement and requests. 

They modeled a linear workflow of microservices as a 

graph and applied a combination of QL and RL models 

called Dyna-Q RL [104]. Experiments conducted on a real-

world San Francisco taxi dataset [85] showed that their 

method improved response time and reduced latency 

compared to existing literature. 

● RL for Energy-Efficient Smart City Management: 

Reddy et al. [91] investigated an approach to optimize 

energy consumption and service delay in Fog computing 

for smart city infrastructure management while 

maintaining QoS. They introduced a reinforcement 

learning-based duty cycling approach to balance energy 

usage and QoS, where Fog nodes send state information to 

a prediction agent that updates its knowledge through 

rewards or penalties. Additionally, they developed the 

SCS-GA algorithm for virtual machine allocation, reducing 

service request failures and minimizing latency. 

Simulations using iFogSim demonstrated that combining 

SCS-GA with RL reduced migrations and energy 

consumption compared to using SCS-GA alone. 

● RL for Elastic Container Deployment: Rossi et al. 

[92] presented a network-aware heuristic for container 

placement deployed on geo-distributed Clouds. They 

introduced an RL solution to control the elasticity of 

containers and then used a network adaptive heuristic to 

solve the linear programming problem. The approach 

improved QoS and resource utilization, though the sample 

used did not include highly diverse Cloud nodes. 

7.3 Neural and Deep Neural Networks 

Neural networks, and more specifically deep learning, are 

a subfield of machine learning inspired by the human 

brain's structure and function. These networks consist of 

multiple layers (dozens to thousands), where each layer is 

responsible for interpreting, extracting features, and 

training based on the output of the previous layer from 

input data. Through iterative adjustments based on 

"wrong" answers, the model is trained in a high-

dimensional space to describe the input data as precisely 

as possible. 

● Neural Network for Auto-scaling Prediction in 5G 

Networks: Subramanya et al. [103] proposed a machine 

learning model based on the Multi-Layer Perceptron 

(MLP) neural network (classifier and regressor) to 

enhance auto-scaling prediction for Network Function 

Virtualization (NFV) demands in 5G networks, based on 

traffic from a commercial real operator. The authors 

evaluated the models by examining the number of User 

Plane Function (UPF) instances to be processed. Both 

models proved efficient for auto-scaling prediction. 

● Random Neural Networks and Cognitive Network 

Map for Fog Services: Fröhlich and Gelenbe [34] developed 

a combination of Random Neural Networks (RNN) and 

Cognitive Network Map (CNM) for optimal fog services 

placement in SDN IoT networks, aiming to optimize QoS 

and resource usage. Experimental results showed that 

RNN provided an effective solution for optimizing 
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parameters and ensuring good client service. Their 

combined solution adapted well to changes in both large 

and small networks, leading to efficient service 

placement. 

● Deep Reinforcement Learning for Proactive 

Service Placement: Sami et al. [97] provided a deep 

reinforcement learning (DRL) approach based on 

scalable Markov Decision Process (MDP) for proactive 

service placement. The objective was to make placement 

decisions before user demands, thereby improving the 

Quality of Experience (QoE). They also presented an end-

to-end architecture incorporating a service scheduler 

and a bootstrapper. Data from connected users, services, 

and source IPs were collected from applications to train 

the algorithm. Authors used real-life datasets extracted 

from the Google Cluster Trace 2011-2 dataset and NASA 

Server Logs. 

● Deep Q-learning for Container Migration: Tang et 

al. [106] proposed a deep Q-learning algorithm to reduce 

power consumption cost and delay for container 

migration. They modeled the container strategy as a 

multi-dimensional MDP and used deep reinforcement 

learning to reduce the dimensionality of large MDP 

spaces, enabling faster decision-making. This study, 

conducted on a real-world data driver (San Francisco taxi 

traces [85]) application, demonstrated that the proposed 

approach enhanced delay, power consumption, and 

migration cost compared to baseline approaches. 

● Reward Sharing Deep Q-Learning for 

Microservice Deployment: Lv et al. [57] addressed a 

multi-objective microservice deployment problem in 

Edge computing, aiming to minimize communications. 

They represented inter-microservice communication as 

an undirected, weighted interaction graph and applied a 

learning-based algorithm called Reward Sharing Deep Q-

Learning (RSDQL). They also proposed a dynamic Elastic 

Scaling algorithm based on heuristics to improve 

scalability. Experiments conducted using Kubernetes 

showed shorter response times and better load balancing 

and scalability. 

● Deep Learning for Joint Routing and Placement: 

Pham et al. [84] introduced a joint routing and placement 

problem that dynamically allocates resources based on 

workload demand to reduce long-term operational costs. 

This framework employs a deep learning module to 

mimic the Branch and Bound (B&B) algorithm while 

limiting the search space. The algorithm uses a decision 

neural network to classify nodes and a dataset of visited 

nodes for training. It iteratively selects a node, solves its 

relaxed problem, aggregates the dataset, and uses 

branching to explore the search space for an optimal 

solution. Simulation results showed that the method 

surpassed baselines in convergence and operational cost. 

DISCUSSIONS 

This section provides a comprehensive analysis of the 

surveyed works, focusing on the prevalence and 

effectiveness of different algorithmic approaches, the 

types of datasets utilized, the prioritization of various 

optimization criteria, and the evaluation tools employed. 

This discussion aims to identify current trends, highlight 

limitations, and pinpoint areas requiring further research 

in the context of Service Placement Problems (SPP) within 

the Cloud-Fog-Edge continuum. 

8.1 Approaches and Algorithms 

The classification and analysis of research works on SPP 

formulations and resolution approaches reveal distinct 

trends in algorithmic preferences. As illustrated in Figure 

4 of the accompanying PDF, population-based and greedy 

heuristics are the two most widely used approaches for 

SPP, followed by graph partitioning, reinforcement 

learning, and neural network methods. 

● Heuristics (Greedy and Population-based): These 

approaches dominate the literature, which is unsurprising 

given the NP-hard nature of SPP. Heuristics are favored for 

their ability to compute suboptimal solutions rapidly, 

providing good quality results by iteratively improving 

candidate solutions. Their main advantage lies in their 

speed and relative simplicity of implementation. However, 

a significant limitation is their tendency to get stuck in 

local optima, meaning they do not guarantee a globally 

optimal solution. Furthermore, explicit approximation 

ratios—guarantees on how close the solution is to the 

optimum—are rarely provided, with only one identified 

approach [89] offering such a guarantee. This highlights a 

gap in the theoretical understanding and performance 

bounds of many heuristic solutions. 

● Graph-based Approaches: Graph representations 

are highly effective for modeling network connections and 

inter-service communications in SPP. This explains the 

frequent use of graph-based algorithms, particularly those 

based on community detection, to determine optimized 

placements. These approaches are often unsupervised, 

relying on data analysis to discover patterns, create 

clusters, and identify communities. They are well-suited 

for problems where network topology and communication 

patterns are critical factors. 

● Machine Learning (ML) Approaches: ML-based 

approaches, especially reinforcement learning and deep 

learning, are increasingly recognized for their 

effectiveness in proactive and dynamic placement 

strategies. Their ability to learn from historical data allows 

them to adapt to dynamic environments and optimize 

resource utilization, leading to more efficient and 

adaptable placement decisions. When combined with 

heuristic algorithms, ML solutions can yield quick and 

accurate results. The emergence of deep and neural 

networks in SPP is relatively recent, with the first 

reference to deep learning for SPP dating back to 2019 [9]. 

As more data becomes available for training and 

validation, the adoption of these sophisticated models is 

expected to grow. However, ML-based approaches come 

with their own set of challenges: they often require 
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significant computing power for training and inference, 

which can be a constraint in resource-limited fog 

environments. Their effectiveness is also highly 

dependent on the availability and quality of training data; 

insufficient or biased data can lead to suboptimal or 

unfair placement decisions. Therefore, balancing the 

benefits of adaptability and optimization with resource 

constraints and data quality is essential for successful ML 

implementation in SPP. A recent survey [81] specifically 

explores AI in this domain, offering more specific 

insights. 

● Exact Approaches: While exact approaches are 

the only family guaranteed to provide optimal solutions, 

their high computational cost and long processing times 

make them impractical for large-scale SPP instances. The 

vast search space, even with techniques like Branch and 

Bound, limits their applicability to very small problem 

sizes, often guided by the linearity of the objective 

function and constraints. This explains their limited 

presence in the literature compared to approximate 

methods. 

8.2 Datasets 

A significant challenge in SPP research, particularly 

concerning microservices, is the scarcity of publicly 

available open-source projects and datasets that capture 

microservices patterns, connections, dependencies, and 

placement details. This lack of standardized datasets 

often forces researchers to compare microservices 

placement and chaining results with those of monolithic 

service functions, which is not entirely relevant. 

Microservices architectures are inherently more 

granular and distributed, with distinct communication 

patterns and dependencies, meaning placement 

strategies effective for monolithic services (treated as 

single, cohesive units) do not adequately address the 

complexities of microservices environments. This also 

hinders the full exploitation of parallelism and 

mutualization characteristics offered by microservices. 

● Limited Public Datasets: Rahman et al. [88] made 

a notable contribution by proposing a small dataset of 20 

microservices graphs to address this gap. Additionally, 

Sami et al. [97] utilized real-life datasets extracted from 

the Google Cluster Trace 2011-2 dataset and NASA 

Server Logs, providing more realistic scenarios for 

evaluating placement strategies. 

● Synthetic Data Generation: To overcome the 

scarcity of real-world datasets, many researchers [26, 71, 

95] resort to generating random graphs for both network 

topology and service/microservice dependency graphs. 

Commonly used generators include Barabasi-Albert 

networks [10] and growing random networks [50]. While 

useful for theoretical exploration, these synthetic 

datasets may not fully capture the complexities and 

nuances of real-world deployments. 

● Mobility Trajectories: To address the dynamic 

nature of nodes and resources, particularly in mobile 

edge environments, some researchers incorporate 

mobility trajectories. For example, the San Francisco Taxi 

dataset [85] has been used in studies by Ray et al. [90] and 

Tang et al. [106] to simulate dynamic user movement and 

its impact on SPP. 

The need for more comprehensive, dynamic, and publicly 

accessible datasets that accurately reflect the Cloud-Fog-

Edge continuum remains a critical open challenge for 

advancing SPP research. 

8.3 Prioritized Criteria 

Based on the extensive literature review, the top three 

criteria most frequently optimized by researchers for the 

SPP are latency, cost, and Quality of Service (QoS). Table 6 

in the accompanying PDF provides a detailed list of articles 

for each criterion. The prioritization of these criteria is 

partially related to their practical importance in real 

applications, but also significantly influenced by the ease 

with which they can be measured, modeled, and 

optimized. 

● Latency: This is the most frequently optimized 

placement criterion. Its prominence can be attributed to 

several factors: it directly impacts user experience, 

especially for real-time applications [5, 43, 96, 110, 114]. 

Latency is influenced by measurable factors such as 

distance between user and service, available bandwidth, 

propagation delay, and processing power. These factors 

are relatively straightforward to quantify, predict, and 

optimize, often independently of other criteria. The 

additive nature of latencies across a path simplifies its 

calculation and optimization compared to more complex, 

intertwined parameters. 

● Cost: Cost minimization is a primary objective for 

users and service providers in SPP. The aim is to find 

solutions that reduce service delivery expenses and 

minimize overall financial and operational costs [18, 20, 

25, 30, 38, 49, 56, 64, 74, 83, 84, 87, 101, 106, 107, 111, 

119, 120, 122]. Generally, cost is associated with limits on 

execution nodes, which are relatively easy to incorporate 

into SPP models. 

● Quality of Service (QoS): User satisfaction is a 

significant concern for researchers, leading to the frequent 

inclusion of QoS as an optimization criterion [14, 20, 23, 

32, 34, 37, 38, 43, 62, 64, 77, 80, 87, 92, 95, 97, 100, 109, 

116]. QoS can encompass various metrics such as 

availability, reliability, throughput, and response time. It is 

a critical concern for applications requiring high 

availability and reliability. 

● Energy/CO2 Gas Emissions: Despite growing 

environmental concerns, energy consumption and CO2 

emissions are less frequently optimized compared to 

latency, cost, and QoS [2, 18, 20, 43, 54, 56, 74, 82, 91, 93, 

99, 105, 106, 109, 117]. The existing works that do 

consider energy typically focus only on hardware 

consumption (CPU, GPU, RAM) and electrical power of 

inter/intra-execution nodes, often neglecting the energy 
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generated by communication links to avoid introducing 

excessive parameters. Energy optimization in SPP is 

often modeled as a complex combination of constraints, 

making it harder to understand and justify. Furthermore, 

minimizing energy consumption can sometimes conflict 

with other objectives, such as latency (e.g., selecting a 

node further away to save energy might increase 

latency), necessitating a careful trade-off. There is a clear 

need for more holistic models that account for all energy-

related factors across the continuum. 

● Resources: Resource utilization is also a key 

criterion, ensuring efficient use of CPU, memory, storage, 

and bandwidth [21, 26, 34, 38, 39, 53, 62, 71, 89, 91, 117, 

122]. 

8.4 Evaluation Tools 

To evaluate their proposed methodologies, researchers 

in SPP utilize a diverse set of simulation frameworks, 

experimental platforms, and analytical tools. 

● Simulation Frameworks: 

○ YAFS (Yet Another Fog Simulator): This Python-

based tool is specifically designed for analyzing Fog 

Computing architectures, including resource placement, 

deployment costs, and network design, making it highly 

suitable for IoT environments. 

○ CloudSim: A Java-based simulation framework 

widely used for modeling and evaluating cloud 

infrastructures. It supports the simulation of data 

centers, Virtual Machine (VM) management, resource 

allocation, and energy consumption analysis. 

○ iFogSim: An extension of CloudSim, iFogSim is 

designed to assess resource management strategies and 

application architectures in Fog Computing 

environments, providing specialized support for Fog 

scenarios. 

● Experimental Platforms/Testbeds: Some studies 

use small-scale physical testbeds (e.g., Raspberry Pi 

devices [89]) to validate their approaches in more 

realistic settings, albeit with limited scalability. 

● Analytical Tools and Solvers: General-purpose 

programming languages like Java, C++, and Matlab are 

frequently used for implementing algorithms and 

conducting simulations. These are often combined with 

commercial or open-source optimization solvers such as 

IBM CPLEX or Gurobi for solving complex mathematical 

programming models. 

● Custom-built Simulators: In some cases, 

researchers develop custom-built simulators (e.g., 

DRACeo [109], custom Java EE 8 Platform simulations 

[93]) to precisely model their specific problem settings 

and evaluate their algorithms. 

The choice of evaluation tool often depends on the 

complexity of the proposed model, the scale of the 

desired simulation, and the specific metrics being 

optimized. While simulations offer flexibility and control, 

real-world deployments and large-scale testbeds are 

crucial for validating the practical applicability and 

scalability of proposed solutions. 

Open Challenges and Future Directions 

Based on the comprehensive analysis of the existing 

literature on service placement in the Cloud-Fog-Edge 

continuum, several significant open challenges and 

promising future research directions emerge. Addressing 

these areas will be crucial for unlocking the full potential 

of distributed computing architectures and for developing 

truly intelligent, adaptive, and sustainable service 

placement solutions. 

9.1 Application Architecture: Evolving Microservices 

and Beyond 

Microservices-based applications are increasingly favored 

for IoT deployments due to their inherent modularity, 

loose coupling, and reusability across various applications. 

This architectural style enables greater agility, scalability, 

and resilience. However, they introduce complexities 

related to data consistency, inter-service communication 

overhead, and privacy concerns in a highly distributed 

environment. 

● Context-Aware Placement: Future placement 

strategies should consider the specific operational 

contexts of applications and the characteristics of data 

(e.g., sensitivity, volume, velocity) before deploying 

microservices. This involves understanding not just 

resource requirements but also data flow patterns, 

security policies, and compliance regulations. 

● Enhanced Security and Privacy: With 

microservices distributed across a vast continuum, 

ensuring end-to-end security and data privacy becomes 

paramount. Research is needed on developing placement 

algorithms that incorporate security and privacy as first-

class optimization objectives, potentially leveraging 

homomorphic encryption, federated learning, or secure 

multi-party computation techniques to protect sensitive 

data and computations. 

● Standardized Protocols and Interoperability: While 

microservices communicate via APIs, the lack of 

standardized protocols for service discovery, 

orchestration, and inter-service communication across 

heterogeneous Cloud-Fog-Edge environments can hinder 

interoperability. Future advancements may focus on 

developing unified frameworks and protocols that 

simplify deployment and management across diverse 

platforms. 

● Serverless Functions and Function-as-a-Service 

(FaaS): The rise of serverless computing, where 

developers write and deploy individual functions without 

managing underlying infrastructure, presents new 

opportunities and challenges for service placement. 

Optimizing the placement of these ephemeral, event-

driven functions across the continuum requires novel 
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approaches that consider cold start latencies, resource 

pooling, and dynamic scaling in highly bursty workloads. 

9.2 Collection and Sharing of Comprehensive 

Datasets 

As highlighted in Section 8.2, a significant impediment to 

progress in SPP research is the notable lack of publicly 

available, open-source projects and datasets that 

accurately represent real-world microservices patterns, 

connections, dependencies, and dynamic placement 

scenarios. 

● Bridging the Gap between Synthetic and Real-

world Data: While random graphs [10, 50] and mobility 

datasets [85] are useful for theoretical exploration, they 

often fail to capture the intricate complexities and 

nuances of real-world deployments. This limits the 

ability to rigorously compare and validate different SPP 

methods and tools. 

● Need for Large-Scale, Dynamic Datasets: The 

research community urgently needs to address this issue 

by releasing comprehensive datasets on large-scale 

microservices applications. These datasets should 

include: 

○ The number and types of services. 

○ Detailed inter-service dependencies and 

communication patterns (e.g., call graphs, data volumes). 

○ Resource requirements and utilization profiles for 

individual microservices. 

○ Network topology and characteristics of iCFE 

nodes (CPU, memory, storage, bandwidth, latency). 

○ Sufficiently long runtime traces to replay real-life 

scenarios, including fluctuating workloads, node failures, 

and user mobility. 

○ Metrics related to energy consumption and 

carbon footprint, if possible. 

● Collaborative Data Collection Initiatives: 

Fostering collaborative initiatives among industry and 

academia to collect and anonymize real-world 

operational data could significantly accelerate research 

and enable more realistic evaluations of SPP solutions. 

9.3 Dynamic Placement Approaches: Beyond 

Reactive Strategies 

Most existing literature proposals often focus on static or 

reactive placement, which are neither very realistic nor 

efficient in the highly dynamic Cloud-Fog-Edge 

continuum. To accommodate object mobility, fluctuating 

workloads, and rapid system changes, proactive and 

adaptive placement strategies are essential. 

● Predictive Models for Proactive Placement: 

Future research should focus on developing 

sophisticated predictive models (e.g., using advanced 

machine learning, time series analysis) that can forecast 

resource demands, network conditions, user mobility 

patterns, and potential node failures. These predictions 

can then inform proactive placement and migration 

decisions, preventing performance degradation before it 

occurs [90, 111]. 

● Online Learning and Adaptive Control: Developing 

Reinforcement Learning (RL) agents that can learn and 

adapt their placement policies in real-time, based on 

continuous feedback from the environment, is a promising 

direction. These agents need to handle non-stationary 

environments and explore optimal strategies without 

explicit programming. 

● Self-Organizing and Autonomous Systems: The 

ultimate goal is to move towards fully self-organizing and 

autonomous SPP systems that can dynamically adjust 

service placements without human intervention, reacting 

intelligently to unforeseen events and optimizing for 

multiple objectives simultaneously. This requires robust 

control loops, intelligent agents, and distributed decision-

making mechanisms. 

● Mobility-Aware Service Provisioning: With 

increasing user and device mobility, service placement 

must explicitly account for movement patterns. This 

involves strategies for efficient service migration, state 

transfer, and context awareness to ensure seamless 

service continuity and minimal disruption as users move 

between edge nodes [59, 77, 112]. 

9.4 Microservices Task Scheduling and Offloading: An 

Integrated View 

Efficient task scheduling in microservice architectures is 

challenging due to variable traffic and dynamic resource 

availability. Poor scheduling can lead to increased energy 

consumption, SLA breaches, and reduced user satisfaction. 

Task offloading, the transfer of computational tasks to 

remote resources, complements service placement by 

optimizing processing efficiency and reducing latency for 

local devices [3]. 

● Integrated Network Management Pipelines: 

Currently, many studies tend to focus on isolated aspects 

of network management (e.g., only placement, only 

scheduling, or only offloading). A more holistic and 

integrated view is necessary. Future research should 

develop comprehensive frameworks that seamlessly 

integrate service placement, task scheduling, and 

computation offloading decisions. This involves designing 

complete pipelines that consider the interdependencies 

between these processes to ensure cohesive and efficient 

system operation. 

● Joint Optimization of Placement, Scheduling, and 

Offloading: The goal should be to develop algorithms that 

jointly optimize these three aspects, considering their 

combined impact on system performance, energy 

consumption, and user experience. This would likely 

involve complex multi-objective optimization problems 

solved using advanced meta-heuristics or AI techniques. 

● Resource Contention and Load Balancing: Effective 
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scheduling and offloading are critical for managing 

resource contention in heterogeneous environments. 

Algorithms need to dynamically balance workloads 

across the continuum, preventing hotspots and ensuring 

fair resource allocation among competing services and 

tasks. 

9.5 Better Consideration of the Energy Criterion: 

Towards Green Computing 

Despite the growing awareness of environmental impact, 

research on energy consumption and resource 

management in SPP remains somewhat limited, often 

focusing only on hardware energy. The massive increase 

in energy and CO2 emissions from digital infrastructure 

necessitates a more comprehensive approach to green 

computing in SPP. 

● Holistic Energy Modeling: The majority of existing 

research articles consider only the energy consumption 

of hardware components (CPU, GPU, RAM). However, 

distributed services significantly increase the energy 

consumption of communication links. Future models 

must account for the energy cost of data transfer across 

the network, including wired and wireless 

communication. 

● Expanded Placement Criteria for Sustainability: 

Beyond basic energy consumption, SPP criteria should 

explicitly include: 

○ Gray Energy and Primary Energy Emissions: 

Measured in kWh, accounting for the energy embedded 

in the manufacturing and disposal of devices. 

○ Relative Carbon Footprint Emissions: Considering 

the carbon intensity of different energy sources used by 

computing nodes (e.g., renewable vs. fossil fuels). 

○ Life Cycle Analysis (LCA): A comprehensive 

assessment of the environmental impacts of all terminal 

devices throughout their entire life cycle (manufacturing, 

use, and end-of-life). 

○ Utilization of Renewable Energy Sources: 

Placement decisions could prioritize nodes powered by 

renewable energy sources like wind turbines or solar 

panels. 

● Interdisciplinary Collaboration: Incorporating 

such a wide array of criteria makes the SPP significantly 

more complex. This necessitates interdisciplinary 

collaboration between computer scientists, operational 

researchers, environmental scientists, and economists to 

develop robust models that accurately capture the 

interplay of these factors. The scientific community 

needs to work on establishing standardized models and 

metrics for evaluating the environmental footprint of 

service deployments. 

● Trade-offs with Performance Metrics: Minimizing 

energy consumption can sometimes conflict with other 

critical objectives like QoS or latency (e.g., placing a 

service further away to leverage a greener data center 

might increase latency). Future research must explore 

sophisticated multi-objective optimization techniques that 

effectively manage these complex trade-offs, finding 

solutions that are both environmentally sustainable and 

performant. 

CONCLUSION 

In this comprehensive survey, we have presented a 

detailed classification and analysis of the algorithmic 

solutions employed to address the Service Placement 

Problem (SPP) within the integrated Cloud-Fog-Edge 

(iCFE) computing environments. Our study has focused on 

the algorithmic approaches, considering various 

influencing parameters such as the infrastructure 

environment, the type of application components (e.g., 

monolithic, inter-dependent, microservices), and the 

chosen placement mode (e.g., centralized, decentralized, 

static, dynamic, reactive, proactive). We have thoroughly 

examined key optimization objectives, including latency, 

quality of service, cost, energy efficiency, and resource 

utilization, recognizing that the quest for optimal 

placement in such complex, multi-criteria scenarios 

constitutes a challenging combinatorial problem. 

The survey categorized existing solutions into four main 

families: exact optimization-based approaches, graph-

based approaches, heuristic and meta-heuristic solutions, 

and machine learning-driven algorithms. For each 

category, we have provided an in-depth review of specific 

algorithms, their working principles, and their application 

to SPP, supported by extensive citations to the relevant 

literature. 

Our analysis and discussion have highlighted several 

critical aspects of the current state-of-the-art. We 

observed the prevalence of heuristic and meta-heuristic 

methods due to the NP-hard nature of the problem, 

alongside the growing adoption of graph-based and 

machine learning techniques for their ability to handle 

dynamic environments and complex dependencies. A 

significant limitation identified is the scarcity of 

comprehensive, real-world datasets for microservices, 

which hinders robust comparative evaluations. 

Furthermore, while latency, cost, and QoS are frequently 

prioritized, a more holistic consideration of energy 

consumption and environmental impact remains an 

underexplored area. 

Building upon these insights, we have proposed several 

crucial avenues for future research. These include 

developing more sophisticated context-aware and 

dynamic placement strategies for evolving application 

architectures (especially serverless and advanced 

microservices), fostering collaborative initiatives for 

collecting and sharing large-scale, dynamic datasets, and 

creating integrated network management pipelines that 

jointly optimize placement, scheduling, and offloading. 

Most importantly, there is a pressing need for a more 

comprehensive and holistic approach to green computing 

in SPP, incorporating detailed energy modeling and a 
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broader range of environmental criteria throughout the 

entire life cycle of digital infrastructure. By addressing 

these challenges, the research community can pave the 

way for truly ubiquitous, responsive, and 

environmentally sustainable computing in the Cloud-

Fog-Edge continuum. 

REFERENCES 

Bernardetta Addis, Giuliana Carello, and Meihui Gao. 

2020. On a virtual network functions placement and 

routing problem: Some properties and a comparison of 

two formulations. Networks 75, 2 (2020), 158–182. 

Ehsan Ahvar, Shohreh Ahvar, Zoltán Ádám Mann, Noel 

Crespi, Roch Glitho, and Joaquin Garcia-Alfaro. 2021. 

DECA: A dynamic energy cost and carbon emission-

efficient application placement method for edge clouds. 

IEEE Access 9 (2021), 70192–70213. 

Mohammad Yahya Akhlaqi and Zurina Binti Mohd 

Hanapi. 2023. Task offloading paradigm in mobile edge 

computing-current issues, adopted approaches, and 

future directions. J. Netw. Comput. Appl. 212 (2023), 

103568. 

Mahmoud A. M. Albreem, Ayman A. El-Saleh, Muzamir 

Isa, Wael Salah, M. Jusoh, M. M. Azizan, and A. Ali. 2017. 

Green internet of things (IoT): An overview. In 

Proceedings of the IEEE 4th International Conference on 

Smart Instrumentation, Measurement and Application 

(ICSIMA’17). IEEE, Putrajaya, Malaysia, 1–6. 

https://doi.org/10.1109/ICSIMA. 2017.8312021 

Yasser Aldwyan and Richard O. Sinnott. 2019. Latency-

aware failover strategies for containerized web 

applications in distributed clouds. Future Gen. Comput. 

Syst. 101 (2019), 1081–1095. 

Mohammad Reza Alizadeh, Vahid Khajehvand, Amir 

Masoud Rahmani, and Ebrahim Akbari. 2020. Task 

scheduling approaches in fog computing: A systematic 

review. Int. J. Commun. Syst. 33, 16 (2020), e4583. 

Gabriel Araújo, Vandirleya Barbosa, Luiz Nelson Lima, 

Arthur Sabino, Carlos Brito, Iure Fé, Paulo Rego, Eunmi 

Choi, Dugki Min, Tuan Anh Nguyen et al. 2024. Energy 

consumption in microservices architectures: A 

systematic literature review. IEEE Access 12 (2024), 

186710–186729. 

Onur Ascigil, Truong Khoa Phan, Argyrios G Tasiopoulos, 

Vasilis Sourlas, Ioannis Psaras, and George Pavlou. 2017. 

On uncoordinated service placement in edge-clouds. In 

Proceedings of the IEEE International Conference on 

Cloud Computing Technology and Science 

(CloudCom’17). IEEE, Hong Kong, Hong Kong, 41–48. 

Yixin Bao, Yanghua Peng, and Chuan Wu. 2019. Deep 

learning-based job placement in distributed machine 

learning clusters. In Proceedings of the Conference on 

Computer Communications (INFOCOM’19). IEEE, Paris, 

France, 505–513. 

Albert-László Barabási and Réka Albert. 1999. Emergence 

of scaling in random networks. Science 286, 5439 (1999), 

509–512. 

Kay Bierzynski, Antonio Escobar, and Matthias Eberl. 

2017. Cloud, fog and edge: Cooperation for the future?. In 

Proceedings of the 2nd International Conference on Fog 

and Mobile Edge Computing (FMEC’17). IEEE, Valencia, 

Spain, 62–67. 

Vincent D. Blondel, Jean-Loup Guillaume, Renaud 

Lambiotte, and Etienne Lefebvre. 2008. Fast unfolding of 

communities in large networks. J. Stat. Mech.: Theory 

Exper. 2008, 10 (2008), P10008. 

Christian Blum and Andrea Roli. 2001. Metaheuristics in 

combinatorial optimization: Overview and conceptual 

comparison. ACM Comput. Surv. 35 (01 2001), 268–308. 

https://doi.org/10.1145/937503.937505 

Antonio Brogi and Stefano Forti. 2017. QoS-aware 

deployment of IoT applications through the Fog. IEEE 

Internet Things J. 4 (2017), 1185–1192. 

  


