
EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 60

Service Placement Strategies Across the Cloud-Fog-Edge Continuum: A Comprehensive
Survey

John M. Pando
Department of Computer Science and Technology, University of Cambridge, United Kingdom

Gianna Trentini

Department of Information Engineering, University of Padua, Italy

V0LUME01 ISSUE01 (2024)

Published Date: 19 December 2024 // Page no.: - 60-78

ABSTRACT

The proliferation of Internet of Things (IoT) devices and latency-sensitive applications has driven a paradigm shift from
centralized cloud computing to a more distributed continuum encompassing fog and edge computing. This integrated
environment, often referred to as the Cloud-Fog-Edge continuum, brings computation and services closer to data sources,
addressing critical concerns such as latency, bandwidth, and energy consumption. However, efficiently placing services
within this heterogeneous and dynamic infrastructure is a complex, NP-hard problem. This survey provides a
comprehensive review of service placement algorithms and strategies proposed for integrated Cloud-Fog-Edge
environments. We categorize existing approaches based on their underlying methodologies, including optimization-
based, heuristic and meta-heuristic, graph-based, and machine learning-driven techniques. Furthermore, we discuss key
challenges, such as mobility, resource heterogeneity, multi-objective optimization, and the increasing adoption of
microservices and containerization. Finally, we highlight open research directions and future trends to guide further
advancements in this critical area.

Keywords: Service Placement, Cloud Computing, Fog Computing, Edge Computing, IoT, Distributed Systems, Optimization,
Heuristics, Machine Learning, Microservices, Containerization.

INTRODUCTION

The rapid evolution of information technology has seen

cloud computing emerge as a dominant paradigm,

offering on-demand access to a shared pool of

configurable computing resources [65]. This centralized

model, characterized by vast data centers, has

traditionally provided scalable and flexible solutions for

various computational needs. However, with the

exponential growth of Internet of Things (IoT) devices,

projected to reach 100 billion by 2030 [4, 60], and the

emergence of latency-sensitive applications (e.g.,

augmented reality, autonomous vehicles, smart cities),

the traditional centralized cloud model faces significant

challenges. These challenges primarily relate to high

latency due to geographical distance, bandwidth

limitations, and network congestion caused by the

massive data generated at the edge [22, 58].

To address these critical issues, new computing

paradigms, namely fog computing and edge computing,

have emerged, extending the cloud's capabilities closer to

the data sources [29, 72]. Fog computing acts as an

intermediary layer between the edge devices and the

distant cloud data centers, providing localized

computation, storage, and networking services. This

distributed nature allows for reduced data transfer to the

cloud, leading to lower latency and bandwidth usage [11].

Edge computing, on the other hand, refers to processing

data at or near the source of data generation, directly on

edge devices or nearby edge servers, offering the lowest

possible latency for real-time applications [29].

The seamless integration of cloud, fog, and edge

computing forms a cohesive continuum, enabling flexible

and efficient resource utilization across diverse

geographical locations and computational capabilities.

This distributed architecture offers significant benefits,

including reduced latency, decreased bandwidth

consumption, improved security, and enhanced energy

efficiency, which is becoming increasingly important given

the environmental impact of growing digital infrastructure

[4, 29]. The energy required for connected objects is

estimated to exceed global energy production by 2040,

highlighting the urgent need for sustainable computing

solutions [4, 24].

A critical and complex challenge within this integrated

Cloud-Fog-Edge environment is the efficient placement of

services and applications [15, 94, 102]. Service placement,

also known as application placement or task offloading,

involves deciding where to deploy various components of

an application (e.g., virtual machines, containers,

microservices) across the available cloud, fog, and edge

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 61

nodes. The goal is to meet specific Quality of Service

(QoS) requirements, such as minimizing latency,

throughput, energy consumption, and cost, while

maximizing resource utilization and ensuring reliability

[3, 15, 36, 110]. The problem is further compounded by

the dynamic nature of these environments, including

device mobility [59, 77], fluctuating resource availability,

and varying application demands. The inherent

complexity of service placement problems often renders

them NP-hard [42], necessitating the development of

sophisticated algorithms that can provide near-optimal

solutions within acceptable timeframes.

The increasing adoption of microservices architecture

further complicates service placement. Microservices are

small, independent services that communicate with each

other, offering significant benefits such as improved

scalability, maintainability, reliability, reusability, and

faster response times compared to monolithic

applications [16, 28, 52]. The ease of implementing such

architectures is facilitated by containerization

technologies, which require fewer resources than virtual

machines and enhance application management and

orchestration [19, 78]. However, deploying and

orchestrating these fine-grained services across a

distributed continuum requires careful consideration of

inter-service dependencies, resource requirements, and

network topology to minimize communication overhead

and optimize overall system performance [79, 81].

Several existing surveys have addressed aspects of

service placement in cloud, fog, or edge environments

individually [45, 75, 94, 102]. However, a comprehensive

review focusing specifically on service placement

algorithms within the integrated Cloud-Fog-Edge

continuum, considering the intricate interplay between

these hierarchical layers and the diverse algorithmic

approaches, is still needed. This survey aims to fill this

gap by providing a structured overview of the state-of-

the-art service placement algorithms, categorizing them

based on their methodological foundations, and

discussing the challenges and future research directions

in this evolving landscape. We also emphasize the

growing importance of green computing and the need for

energy-efficient placement strategies.

The remainder of this article is structured as follows:

Section 2 outlines the methodology used for this survey.

Section 3 provides essential background on the Service

Placement Problem (SPP) architecture, including

environmental considerations, application types,

placement modes, and criteria. Section 4 delves into

problem modeling and exact approaches. Sections 5, 6,

and 7 present a detailed taxonomy and analysis of graph-

based, heuristic, and machine learning solutions,

respectively. Section 8 offers a comprehensive analysis

and discussion of the surveyed works, highlighting

trends, limitations, and the prioritization of various

criteria. Section 9 identifies open research challenges and

future directions. Finally, Section 10 concludes the

survey. An Appendix is also provided for a list of important

acronyms used throughout the survey.

METHODOLOGY

This survey was conducted using a systematic literature

review approach to ensure comprehensive coverage and

minimize bias. The methodology largely aligns with

established guidelines for systematic reviews, such as

PRISMA (Preferred Reporting Items for Systematic

Reviews and Meta-Analyses) [41, 70], adapted for the

scope of a survey article. This structured approach helps

in identifying, selecting, and critically appraising relevant

research, thereby providing a robust foundation for the

survey's findings.

2.1 Search Strategy

The literature search was primarily performed on major

academic databases and digital libraries, including IEEE

Xplore, ACM Digital Library, SpringerLink, ScienceDirect,

and Google Scholar. These platforms were chosen for their

extensive coverage of computer science, networking, and

distributed systems literature. The search queries

combined keywords related to the computing paradigms

and the core problem, using boolean operators to refine

the search:

● Core Problem Keywords: "service placement" OR

"application placement" OR "task offloading" OR "service

migration"

● Computing Environment Keywords: "cloud-fog" OR

"cloud-edge" OR "fog-edge" OR "cloud-fog-edge

continuum" OR "edge computing" OR "fog computing"

● Algorithmic Approach Keywords: "algorithms" OR

"optimization" OR "heuristic" OR "meta-heuristic" OR

"machine learning" OR "reinforcement learning" OR

"graph-based"

The search focused on publications from 2015 to 2024,

given the relatively recent emergence and widespread

adoption of fog and edge computing concepts. However,

foundational works pre-dating this period were also

considered if they significantly contributed to the

understanding of service placement problems relevant to

the continuum. The initial search focused on titles and

abstracts to quickly filter out less relevant papers.

2.2 Selection Criteria

To ensure the relevance and quality of the included

literature, strict inclusion and exclusion criteria were

applied during the screening process:

Inclusion Criteria:

● Peer-reviewed journal articles, conference papers,

and book chapters.

● Publications explicitly addressing service

placement, deployment, or offloading in integrated cloud-

fog-edge environments. This includes studies that

consider the interaction and hierarchy between these

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 62

layers.

● Works proposing or analyzing specific algorithms,

models, or frameworks for service placement, with a

focus on their methodological details.

● Articles written exclusively in English.

Exclusion Criteria:

● Publications solely focused on cloud-only or edge-

only environments without considering the continuum.

● Articles that do not propose or analyze specific

placement algorithms (e.g., general surveys without

algorithmic details, conceptual papers without technical

contributions).

● Short papers, posters, workshop abstracts, or

extended abstracts lacking substantial technical content

and detailed methodology.

● Duplicate publications across different databases

or different versions of the same paper (e.g., workshop

version and journal version, prioritizing the most

complete and recent version).

2.3 Data Extraction and Categorization

From the selected papers, relevant information was

systematically extracted to facilitate analysis and

categorization. The extracted data points included:

● The proposed algorithm/approach: Detailed

description of the core technique used (e.g., Genetic

Algorithm, Q-learning, Graph Partitioning).

● The computing environment: Specification of the

architectural layers considered (e.g., Cloud, Fog, Edge,

Cloud-Fog, Fog-Edge, Cloud-Fog-Edge).

● The primary objective(s) of the placement:

Explicitly stated goals of the proposed solution (e.g.,

minimizing latency, energy consumption, cost;

maximizing throughput, resource utilization, reliability,

Quality of Experience (QoE)).

● The type of service: The granularity of the

application component being placed (e.g., Virtual

Machine (VM), container, microservice, Virtual Network

Function (VNF)).

● The evaluation methodology: How the proposed

solution was tested (e.g., simulation, testbed, theoretical

analysis, real-world deployment).

● Key findings and performance metrics:

Quantitative or qualitative results demonstrating the

effectiveness of the approach.

Based on the underlying principles and techniques

employed, the extracted algorithms were then

categorized into a comprehensive taxonomy. This

categorization forms the basis of the results section,

allowing for a structured analysis of the state-of-the-art

and a clear comparison of different algorithmic

paradigms. The process involved iterative refinement of

categories as more papers were reviewed, ensuring that

the taxonomy accurately reflects the diversity of

approaches in the literature.

Background on SPP Architecture

The Service Placement Problem (SPP) in integrated Cloud-

Fog-Edge (iCFE) environments is a multifaceted challenge

influenced by various architectural and operational

factors. To understand the complexities of SPP, it is crucial

to first establish a foundational understanding of the

underlying infrastructure patterns, the types of

applications being deployed, the different modes of

placement, and the diverse criteria that drive placement

decisions. This section elaborates on these foundational

elements, as illustrated in Figure 1 of the accompanying

PDF, which provides a useful taxonomy of SPP

dependencies.

3.1 Environment and Infrastructure Pattern

The modern computing infrastructure is typically

structured in a hierarchical manner, comprising three

distinct yet interconnected layers: Cloud, Fog, and Edge.

Service placement strategies are highly dependent on the

characteristics and capabilities of each of these layers.

● Cloud: As the furthest tier from end-users, the

Cloud represents a centralized environment composed of

vast physical resources, such as large data centers and

powerful servers [65]. It offers virtually unlimited

computing, storage, and networking capabilities, ensuring

high levels of performance and scalability. However, the

geographical distance between cloud data centers and

edge devices often results in higher latency and response

times, making it unsuitable for applications requiring real-

time processing [58]. The Cloud primarily serves as a

repository for large-scale data analytics, long-term

storage, and non-latency-critical applications.

● Fog: Positioned as the middle tier, Fog computing

extends the cloud's capabilities closer to the edge of the

network. It is geographically distributed, hierarchical, and

decentralized, providing localized computing, storage, and

networking resources to users [22]. Fog nodes can vary

significantly in their availability and resource capacities,

ranging from powerful micro-data centers to industrial

controllers and routers. These devices can be organized

into clusters or cells based on their location and

capabilities, with higher-level fog nodes possessing

greater resources suitable for more demanding

components [100]. Increasingly, the distinction between

Cloud and Fog is blurring, with many integrated Cloud-Fog

frameworks treating the Cloud as the highest hierarchical

level of the Fog, fostering a seamless continuum [72]. This

survey adopts this integrated perspective to address the

challenges of SPP.

● Edge: This tier is the closest to the end-users and

data sources, aiming to minimize network response time

and bandwidth overhead. Edge devices are geographically

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 63

distributed and typically have limited processing

capabilities, embedded in sensors, wearable devices,

smart appliances, and other measurement and

computing units [29]. They are ideal for initial data

processing, filtering, and real-time decision-making that

requires ultra-low latency.

The efficient distribution of application sub-tasks—

including monitoring, analyzing, executing, and

planning—across these hierarchical layers is crucial for

optimizing performance, reducing latency, and

enhancing scalability [11, 58].

3.2 Types of Applications

The structure and characteristics of applications

significantly influence service placement decisions.

According to Salaht et al. [94], IoT-related applications

can be broadly classified into three main structural

groups:

● Monolithic Applications: These represent

complex applications where several closely coupled

functions are encompassed within a single, cohesive

component. If such a monolithic service is stopped, all its

functionalities are affected. Deploying a monolithic

application requires placing the entire single component

on a single physical node. While simpler in deployment

for isolated cases, their rigidity makes them less suitable

for dynamic, distributed environments where flexibility

and fault tolerance are paramount.

● Inter-dependent Services: This category refers to

applications that are divided into a set of services, with

each service responsible for a particular task. Such

applications are typically developed with an enterprise

scope, and individual services cannot be put into

production independently, similar to traditional Service-

Oriented Architectures (SOA). The dependencies

between these services necessitate careful co-location or

optimized communication paths to minimize latency and

ensure overall application performance.

● Independent Services (Microservices): In this

model, applications are decomposed into small,

independent modules, each responsible for a specific

task. These modules communicate with each other,

typically through well-defined APIs, to fulfill user

requests. Lewis and Fowler [52] define microservices as

a functional decomposition driven by logical domain and

business design. Each service is autonomous, meaning

that changing the implementation of one service does not

affect others. Microservices applications and their

interactions can often be represented as a connected

directed acyclic graph (DAG), where vertices model

individual services and edges represent the

communications or interdependencies between them.

This granular structure, while offering flexibility and

scalability, introduces significant complexity in service

placement due to the sheer number of components and

their intricate communication patterns.

Service placement decisions are thus influenced by both

the specific resource requirements of individual services

(e.g., CPU, memory, storage) and the capacities of the

available nodes. For multi-component applications,

especially those built on microservices, the volume and

nature of inter-service communication play a crucial role,

often necessitating the co-location of highly

communicative services to minimize latency and enhance

overall system performance.

3.3 Placement Mode

The mode of service placement adapts to the dynamism

and resource availability of the network, varying

significantly from the static, centralized nature often

associated with traditional cloud deployments to more

dynamic and decentralized approaches prevalent in fog

and edge environments.

● Centralized Placement: In this mode, all

information regarding environment resources and

application services must be known in advance by a

central orchestrator. While this approach can theoretically

provide an optimal solution from a global resource

perspective [8], it is rarely considered practical in large-

scale IoT contexts due to excessive latency and bandwidth

limitations associated with collecting and processing all

information at a single point [114].

● Decentralized Placement: This mode offers greater

flexibility by enabling local optimization decisions based

on each node's resources and data usage. Decisions are

made independently of the total number of devices,

allowing for dynamic management of system model

changes. While highly powerful locally, decentralized

solutions generally do not guarantee a globally optimal

solution [38].

● Static Placement: This assumes an a priori known

state of the infrastructure, where the assignment of

services to nodes is decided upfront and remains fixed.

This mode does not account for node mobility or changes

in network conditions and resource capacities [54].

● Dynamic Placement: In contrast to static

placement, dynamic placement can effectively deal with

the perpetual changes in devices, application structures,

and resource capacities. This is particularly efficient in

Fog/Edge environments, where adaptive configurations

manage the heterogeneous and distributed environment

and, in some cases, predict future requirements [77].

● Reactive Service Placement: In a reactive scenario,

service migration occurs only when run-time nodes

become overloaded or no longer possess sufficient

resources to handle new user requests. The goal is to

alleviate processing burdens and restore system

performance after a problem has manifested [59].

● Proactive Service Placement: This advanced mode

anticipates the interdependence of services, user mobility,

and network dynamism. Initial placement and subsequent

migrations are planned to foresee and mitigate future

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 64

problems before they impact performance. This

approach aims to prevent issues rather than reacting to

them [90].

3.4 Placement Criteria

The algorithms surveyed in this article attempt to

optimize service placement according to various

objectives, reflecting the diverse priorities of different

applications and system operators. The criteria most

commonly used in the literature include:

● Resources: This encompasses metrics used to

evaluate resource usage and requirements, including

CPU utilization, memory consumption, storage capacity,

and network bandwidth. It also represents the

correlation between resource use patterns and other

performance measures [53]. Efficient resource allocation

is crucial for maximizing infrastructure utilization and

avoiding bottlenecks.

● Cost: This criterion represents any financial costs

associated with the SPP, including service deployment

costs, infrastructure operational costs, and data

transmission costs. Costs can vary significantly

depending on the service provider, geographical location,

and resource consumption [77]. Minimizing operational

costs is a key objective for service providers.

● Energy and Greenhouse/CO2 Gas Emissions: This

refers to the total energy consumption and associated

greenhouse gas emissions of the entire system. It

depends on the number and types of servers used, the

resource utilization within each server, and the overhead

energy consumption of communication between servers

and nodes. Additionally, CO2 emissions are influenced

not only by the amount of energy consumed but also by

the sources of that energy, as different energy sources

have varying levels of carbon intensity. This criterion is

gaining increasing importance due to environmental

concerns [4].

● Latency: Representing the time required for a

data packet to travel from a source to a destination in the

network, latency is a crucial criterion for delay-sensitive

applications. The main components affecting latency

include transmission media, propagation delays, router

processing times, and storage delays. Minimizing end-to-

end latency is often a primary objective for real-time IoT

applications [61].

● Quality of Service (QoS): QoS refers to the level of

user satisfaction and performance achieved by placing

services on appropriate nodes in a distributed

environment. It is a broad metric that can encompass

various factors, including latency, throughput, reliability,

and resource availability. Ensuring high QoS is

paramount for delivering a satisfactory user experience.

● Performance: This is a comprehensive criterion

that includes all other parameters considered for the SPP,

such as violations of Service-Level Agreements (SLAs),

congestion probability, and Quality of Experience (QoE).

QoE, in particular, is a user-centric metric that captures the

overall subjective experience of an application or service

[62].

In addition to service placement, other critical concepts

such as task scheduling and offloading are actively studied

to enhance computing environments. While SPP focuses

on the strategic deployment of application components to

ensure optimal QoS, scheduling involves the real-time

allocation and sequencing of tasks based on available

resources and current workloads, ensuring efficient

execution [6]. Offloading, however, refers to the delegation

of computational tasks to edge servers to optimize

processing efficiency and reduce latency, particularly for

mobile devices [55]. Thus, SPP sets the foundational

deployment of services, whereas scheduling and

offloading manage the dynamic execution of tasks within

that deployed framework. These concepts are often

intertwined and require a holistic approach for optimal

system management.

Problem Modeling and Exact Approaches

The Service Placement Problem (SPP) in integrated Cloud-

Fog-Edge (iCFE) environments is fundamentally a complex

optimization challenge. This section formalizes the

problem, discusses its inherent computational difficulty,

and reviews exact solution approaches, highlighting their

applicability and limitations.

4.1 Problem Formulation

The SPP can be formally defined as an optimization

problem where the goal is to map a set of application

components to a set of available computing nodes within

the iCFE infrastructure, subject to various constraints and

aiming to optimize one or more objectives. Using notations

similar to those found in the literature [61], we consider

the following sets:

● H={a1,a2,...,ai}: The set of applications to be placed.

● S={s1,s2,...,sj}: The set of services or components,

where each application a∈H consists of a subset of these

services. In microservices architectures, these sj are fine-

grained, independent modules.

● N={n1,n2,...,nk}: The set of available computing

nodes within the iCFE infrastructure. These nodes

represent data centers, servers, Fog nodes, edge devices,

and so on, each with specific resource capacities.

● Q={q1,q2,...,ql}: The set of requests, where each

request q∈Q has a source, a destination, and associated

parameters or constraints (e.g., a maximum allowable

latency).

Each service/component s∈S of each application a∈H must

be placed and executed on one node n∈N to respond to the

incoming requests q∈Q. Conversely, each node n can

execute several application components up to its capacity

limits. The core of the problem lies in determining the

optimal assignment of services to nodes.

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 65

The generic formulation of the optimization problem can

be expressed as:

● Mono-objective Optimization:

x∈XminF(x)S.t. C1,C2,C3,...,Cn.

Here, X represents the set of all feasible solutions (i.e.,

valid service placements), F(x) is a single objective

function that evaluates the quality of a given placement

x∈X, and Ci are additional constraints that must be

satisfied. For instance, if the primary objective is to

minimize latency, as explored in Reference [61], the

objective function could be F(x)=∑q∈Qr(q,x), where

r(q,x) quantifies the difference between the required

latency and the achieved latency for a request q, given the

placement x. Solving this problem aims to minimize the

total deviation from desired latencies across all requests.

● Multi-objective Optimization:

{minx∈X(F1(x),F2(x),...,Fp(x)),s.t.c1,c2,c3,...,cn,

In real-world scenarios, SPP often involves multiple,

conflicting objectives. For example, F1(x) might

represent latency deviation, F2(x) energy consumption,

and F3(x) network costs. Since it is generally not possible

to find a single placement x that simultaneously

minimizes all Fi functions, multi-objective optimization

approaches are employed [66]. One common strategy is

to search for Pareto optimal solutions—placements

where no objective can be improved without degrading

at least one other objective. Another classical approach is

scalarization, which transforms the multi-objective

problem into a single-objective one, often using a linear

combination: F(x)=∑i=1...pwiFi(x), where wi are weights

assigned to each objective to reflect their relative

importance.

The placement problem is also subject to several key

constraints that reflect the physical and operational

realities of the iCFE environment. Typical constraints

found in the literature include:

● Computing Resource Constraints [39]: Each node

n∈N has limited resources (e.g., CPU, memory, storage).

The total resource requirement of all services placed on

a node cannot exceed its capacity:

q∈Q∑s∈S∑xsnq⋅Rs≤Rn∀n∈N

where xsnq is a binary variable (1 if service s is placed on

node n for query q, 0 otherwise), Rs is the resource

requirement of service s, and Rn is the total resource

available on node n.

● Latency Constraints [61]: The sum of latencies

incurred for a given request must not exceed a

predefined limit:

(n1,n2)∈N×N∑an1n2q⋅Δn1n2≤Λq∀q∈Q

where an1n2q is a binary variable indicating that nodes n1

and n2 are involved in processing request q, Δn1n2 is the

latency between nodes n1 and n2, and Λq is the maximum

allowable latency for request q.

● Limitation on the Number of Queries [1]: Each

service s on each node n can serve at most t queries:

q∈Q∑xsnq≤t∀s∈S,∀n∈N

where xsnq is 1 if service s is placed on node n for query q,

and 0 otherwise.

The service placement problem, particularly in its multi-

criteria and discrete nature (combinatorial optimization),

is inherently NP-hard [40, 42]. This means that the

computational time required to find an optimal solution

grows exponentially with the size of the problem instance,

making it infeasible for large-scale, real-world

deployments.

4.2 Exact Solutions

Despite the NP-hard nature of the SPP, some researchers

have proposed exact mathematical models, primarily

based on Integer Linear Programming (ILP) or Mixed

Integer Linear Programming (MILP). These formulations

aim to provide optimal solutions by precisely defining the

problem as a set of linear equations and inequalities.

● ILP and MILP Formulations: ILP formulations

handle problems with linear objective functions and

discrete (integer) variables, while MILP formulations

allow for both discrete and continuous variables. Both are

NP-hard problems [44, 94] that can be solved using

techniques like the simplex method or Branch and Bound

(B&B) algorithms. B&B systematically explores the

solution space, pruning branches that cannot lead to an

optimal solution. However, even with B&B, the search

space for complex combinatorial problems is often too

vast.

○ VNF Placement and Routing: Addis et al. [1]

formulated two ILP problems to address the service

function chain of Virtual Network Functions (VNFs),

aiming to minimize the number of service instances. Their

modeling strategy involved splitting each demand path

into sub-paths and installing service instances at

articulation points of biconnected components. This

model, solved with CPLEX using SNDlib network data,

focused on a single VNF type.

○ Network Resource Optimization: Gupta et al. [39]

developed an ILP model for service function chains to

optimize network-resource consumption. Their findings

indicated that near-optimal resource consumption could

be achieved by selectively upgrading nodes to support

VNFs and carefully managing core allocation and traffic.

○ Cloud Service Modeling: Espling et al. [30] utilized

graph structures to represent service specifications,

component relationships, and placement constraints. They

formulated an ILP to minimize the total service affinity

placement of VMs across multiple nodes, subject to various

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 66

constraints. However, their evaluation was limited to a

very small testbed.

○ Ultra-low Latency Microservices: Magnouche et

al. [61] proposed an optimization model for service

function chains, specifically targeting ultra-low latency

for microservices.

● Multi-objective Optimization with Scalarization:

Liu et al. [56] addressed the multi-objective problem of

mobile device (MD) placement, balancing energy

consumption, response time, and cost. They employed

three queuing models for MD, Fog, and Cloud data

centers, considering data rate and wireless link power

consumption. The multi-objective problem was

converted into a single-objective one using linear

scalarization, which was then solved using the Interior

Point Method (IPM). Their results showed a trade-off:

energy consumption decreased with increased offloading

probability, but execution time increased.

Limitations of Exact Approaches:

While exact methods guarantee optimal solutions, their

high computational complexity makes them impractical

for large-scale, real-world iCFE environments. The

exponential growth of the solution space means that even

with sophisticated solvers, these methods can only

handle small problem instances. This limitation has

driven the research community to focus predominantly

on approximate algorithms, which can provide near-

optimal solutions within reasonable timeframes, as

discussed in the subsequent sections.

4.3 SPP Approaches Categorization

Given the computational intractability of exact solutions

for most real-world SPP instances, the majority of

research has focused on approximate algorithms. Rather

than categorizing solutions solely by the architecture

(Cloud, Fog, Edge) they target, this survey adopts a

classification based on the fundamental algorithmic

approaches employed. This choice is motivated by the

observation that these methods are often generic enough

to be adapted across different iCFE contexts, even if their

initial application might be limited. For instance,

metaheuristics offer robust exploration of vast search

spaces, while graph-based methods leverage network

topology for efficient placement.

We have grouped the proposed solutions for the SPP into

three main families, based on their underlying

algorithmic principles, as depicted in Figure 3 of the

accompanying PDF:

● Graph-based Approaches: Graphs are ubiquitous

in modeling service placement problems. They are used

to represent the physical network of resources (nodes

and links) and the communication dependencies

between application components (e.g., microservices as

Directed Acyclic Graphs or DAGs). Consequently, many

algorithmic solutions leverage methods from graph

theory or complex networks, such as graph partitioning,

graph traversal, or matrix-based solutions using adjacency

matrices. These approaches often originate from the graph

theory or complex network communities.

● Heuristic and Meta-heuristic Solutions: Since exact

solutions are impractical for most cases, a significant

portion of the literature focuses on approximate methods.

This category includes heuristics specifically designed for

SPP, as well as tailored implementations of traditional

meta-heuristics (primarily population-based algorithms

like Genetic Algorithms, Ant Colony Optimization, Particle

Swarm Optimization). These methods are often developed

by the operational research community, aiming to guide

the exploration of the search space to find local or global

optima efficiently.

● Machine Learning (ML) Algorithms: The dynamic

and data-rich nature of iCFE environments makes them

well-suited for machine learning techniques. This category

includes approaches based on supervised learning,

reinforcement learning, and neural networks (including

deep learning). These solutions leverage historical data to

train models that can make predictive or optimized

decisions for service placement, often originating from the

data mining and machine learning communities.

It is important to note that while we propose a strict

categorization, many solutions in the literature combine

principles from different families. In such cases, we

classify the proposal based on its primary or most

significant algorithmic contribution. These families, while

distinct in their core methodologies, are not mutually

exclusive and often complement each other in hybrid

approaches. The following sections delve into each of

these categories in detail, discussing their strengths,

weaknesses, and specific applications within the SPP

domain.

Graph-based Approaches

Graphs provide a powerful and intuitive abstraction for

modeling the complex relationships inherent in service

placement problems within the Cloud-Fog-Edge

continuum. In this context, computing resources (data

centers, fog nodes, edge devices) are typically represented

as nodes, and network links between them are

represented as edges. Similarly, microservices

applications can be modeled as Directed Acyclic Graphs

(DAGs), where services are nodes and inter-service

communications are weighted edges (representing cost,

latency, or data volume). This section explores various

graph-based solutions for SPP, categorized by their

primary graph-theoretic technique. Table 3 in the

accompanying PDF provides a summary of these

approaches.

5.1 Graph Partitioning Techniques

Graph partitioning and community detection are

processes of dividing a network graph into smaller,

cohesive subgraphs or "communities," where nodes

within a community are more densely connected to each

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 67

other than to nodes outside the community. These

techniques are highly relevant to SPP as they can help in

grouping services or resources that exhibit strong

interactions or geographical proximity. Many off-the-

shelf solutions exist for community detection [33], and

researchers have adapted them for SPP. The general

principle involves identifying these communities and

then using heuristics to place services on the compute

nodes within these identified communities.

● Community Detection for Dynamic

Environments: Coimbra et al. [23] proposed an approach

for service placement in community networks, involving

two steps: a centralized community detection based on

graph properties, followed by a decentralized election

heuristic. This method allows for incremental processing

of services and adapts to network variations and

dynamism, demonstrating good performance in

simulations.

● Availability-Aware Placement: Lera et al. [51]

presented a two-phase placement approach focused on

service availability and QoS. They first mapped and

partitioned the graph of connections between Fog nodes

using community detection. Subsequently, a first-fit

decreasing approach was used to place applications

within these communities based on execution deadlines.

The second phase involved allocating application

services to devices within a selected fog community by

analyzing the transitive closure of the application graph.

While effective, the community detection algorithm used

[76] might not be the most efficient in terms of speed and

quality compared to more recent advancements.

● Energy- and Resource-Aware Microservices

Placement: Taleb et al. [105] introduced a new model and

heuristic for microservices placement in the iCFE

continuum, specifically designed to optimize energy

consumption while adhering to resource constraints and

ensuring acceptable response times. This approach

leverages community detection to identify groups of

densely connected network nodes. Following community

identification, a greedy best-fit algorithm allocates

microservices based on their resource requirements and

the capabilities of the selected nodes. Experimental

results indicate significant reductions in energy

consumption while maintaining acceptable response

times.

● VNF Placement and Migration in Data Centers: Zu

et al. [122] investigated the placement and migration of

Virtual Network Functions (VNFs) in data centers,

focusing on the user's Service Function Chain (SFC).

Their objective was to minimize long-term operational

costs by formulating the problem as a dynamic

programming model. They proposed a two-stage online

heuristic algorithm, combining a greedy algorithm based

on community detection (using the Louvain algorithm

[12]) with an iterative migration algorithm. Simulations

showed successful traffic prediction and good

performance.

● Multilayer Resource-Aware Partitioning: Samani et

al. [95] considered the heterogeneity of Fog computing

devices, modeling Fog resources as a four-layered graph

where each layer represents a resource type (network,

CPU, memory, storage). Each layer is partitioned using the

Louvain community detection algorithm to group similar

nodes. A "compressed" graph is then constructed, with

nodes representing these groups and edges representing

inter-community connections. This compressed graph is

further split into disjoint clusters of similar Fog device

resources, onto which applications are placed according to

their requirements. This method demonstrated reduced

resource usage and improved adherence to application

request deadlines compared to existing methods.

● K-way Partitioning for IoT Data Placement: Naas et

al. [73] presented a heuristic for IoT data placement in Fog

environments, aiming to decrease data access time. They

modeled the physical infrastructure as an undirected

weighted graph, where vertex weights represent data

storage needs and edge weights represent data flow.

Instead of traditional community detection, they divided

the graph into k subgraphs using the Metis k-way

partitioning method [48]. This process ensures an even

distribution of vertex weights among sub-graphs and

minimizes the sum of cut edge weights, showing proximity

to optimal solutions for a fixed number of partitions.

● Clustering for Micro-cloud Service Deployment:

Selimi et al. [98] proposed an approach to reduce the

complexity of service deployment in community micro-

clouds by leveraging network state information. Their

heuristic algorithm, "Bandwidth and Availability-aware

Service Placement," adapts to changing compute node

topologies. It involves three parts: K-means clustering to

check node availability, aggregation to find cluster heads

maximizing bandwidth, and cluster recompilation and

placement. Experimental results showed a significant

improvement in bandwidth gain compared to random

placement strategies.

5.2 Graph Traversal Solutions

Another category of graph-based approaches models the

problem using graphs but primarily relies on graph

traversal algorithms to find placement solutions.

● Latency-Optimized Microservice Placement: Wang

et al. [113] introduced a latency estimator for Microservice

Placement in Edge-Cloud Collaborative Smart

Manufacturing (MPCSM) to minimize end-to-end latency

while respecting resource and location constraints. They

modeled the system as a directed graph of devices and

communication links, representing applications as DAGs

with microservice dependencies. Services are sorted by

latency sensitivity, and Breadth-first Search (BFS) is used

to assign placement orders. Microservices are then placed

on edge devices with the lowest latency that meet the

specified constraints. While showing improved

performance, the training process for this approach can be

time-consuming and static, limiting dynamic adaptation.

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 68

● Energy and Carbon Emission-Efficient Placement:

Ahvar et al. [2] proposed DECA (Dynamic Energy cost and

Carbon emission-efficient Application) placement

method for Edge Cloud computing. This method

optimizes both initial service placement on Edge-Clouds

(ECs) and manages migrations to re-optimize costs. It

considers geographical distribution, energy costs of

network equipment, and associated CO2 emissions. Each

EC is represented as a weighted graph, and applications

are sets of components with communication represented

by a matrix. To tackle the optimization, the authors

combine an A* traversal algorithm with a solution to

select the best additional vertex at each step, balancing

energy and cost metrics. Simulations demonstrated a

good trade-off between these objectives.

5.3 Adjacency Matrix and Eigenvectors

Some graph-based approaches utilize the adjacency

matrix of microservices calls, or variations thereof,

combined with eigenvector computations or

eigendecompositions to determine service assignments.

● Rank-based Matrix Optimization for Green

Computing: Saboor et al. [93] developed a rank matrix

optimization technique for dynamic provisioning of

containerized microservices placement in a Cloud

environment. They construct a stochastic matrix from the

adjacency matrix of microservices call graphs. If a

microservice Mi calls other microservices {O1,...,ON}, it

passes 1/N of its value to each Oj. This iterative process

of value distribution converges to an eigenvector

associated with eigenvalue 1, yielding ranks for

microservices. Microservices with the highest rank are

grouped into a container and deployed on data centers

with the highest Green Energy Index (optimized for

carbon emission and renewable energy use). However,

this solution's relevance diminishes for non-strongly

connected graphs (e.g., DAGs), as sources (uncalled MS)

will have the lowest rank and sinks (no outgoing calls)

the highest.

● Eigendecomposition for Service Function Chains:

Mechtri et al. [64] combined greedy and ILP models for

service placement, proposing a novel

eigendecomposition of the adjacency matrix using an

analytical approach. This method efficiently matches

weighted VNF graphs to the infrastructure graph of

nodes, extending Umeyama's [108] solution for weighted

graph matching. They employed eigendecompositions of

adjacency matrices and the Hungarian method to find a

mapping function that minimizes a similarity distance

metric between nodes. Since Umeyama's solution

requires graphs of the same size and a one-to-one

mapping, the authors provided a MILP formulation to

improve the joint solution. A greedy algorithm based on

bipartite graphs was used to benchmark the

eigendecomposition algorithm's performance across

various metrics like network property, system load, and

request size.

Heuristic Solutions

Given the NP-hard nature of the Service Placement

Problem (SPP), exact solutions are often computationally

prohibitive for real-world, large-scale Cloud-Fog-Edge

environments. Consequently, heuristic and meta-heuristic

approaches are widely employed. A heuristic is a

computational method that aims to solve an optimization

problem faster than exhaustive techniques, typically by

iteratively improving a candidate solution. While

heuristics may get stuck in local optima, they provide

good, near-optimal solutions within a reasonable time.

Meta-heuristics, as defined by Blum and Roli [13], are

"general algorithmic frameworks which can be applied to

different optimization problems with relatively few

modifications." They guide the exploration of the search

space to find local or global optima more effectively than

simple heuristics. This section presents various heuristic

and meta-heuristic solutions adapted for the SPP,

categorized by their underlying principles. Table 4 in the

accompanying PDF provides a comprehensive list of these

approaches.

6.1 Fuzzy Logic Algorithms

Fuzzy logic is a computational approach that deals with

imprecision and uncertainty in decision-making,

mimicking human-like reasoning. It converts input

variables into fuzzy sets, applies a set of rules to combine

them, and assigns degrees of truth to statements rather

than binary true/false values [118]. This makes fuzzy logic

suitable for complex environments where exact

measurements or clear-cut rules are difficult to establish.

Some SPP optimization solutions leverage fuzzy logic

system rules to make informed decisions at each step.

● Combined Fuzzy Logic and ACO for VNF

Optimization: Shokouhifar et al. [99] proposed a hybrid

heuristic-metaheuristic algorithm combining a fuzzy logic

system with Ant Colony Optimization (ACO) for VNF

placement. This approach aims to leverage the speed of

fuzzy-logic-based heuristics and the high quality of

metaheuristics. Their multi-objective function includes

total power consumption, total path reliability, and total

end-to-end latency. The algorithm also adapts to changes

in application requirements by readjusting objective

function weights. Fuzzy logic is used for both server and

link selection: a fuzzy score is calculated for servers based

on distance, load, and available resources, and for links

based on bandwidth, delay, and congestion. Ants then use

these scores to select optimal servers and links, balancing

solution quality and convergence speed.

● Fuzzy Logic for QoE Maximization: Mahmud et al.

[62] introduced a fuzzy-logic-based algorithm combined

with an ILP approach to allocate requested services across

nodes. The primary objectives were to maximize user

Quality of Experience (QoE) and ensure service access,

resource consumption, and service delivery. Their method

calculates application rating and Capacity Class Score

(CCS) using various parameters mapped to fuzzy sets via

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 69

membership functions and fuzzy rules. This fuzzy logic

approach considers multiple status parameters to

determine the CCS, even for applications with relaxed

expectation parameters. Evaluated in the iFogSim Fog-

Cloud environment, the method demonstrated

effectiveness, though it was based solely on the Fog

architecture.

6.2 Greedy Algorithms

A greedy algorithm is a straightforward strategy that

makes the locally optimal choice at each step, with the

expectation that this will lead to a globally optimal or

near-optimal solution. Its main advantages are simplicity

of implementation and computational speed. However,

greedy algorithms can often get trapped in local optima,

failing to find the true global optimum.

● FOGPLAN Framework for QoS and Latency:

Yousefpour et al. [116] proposed the FOGPLAN

framework for dynamic Fog service provisioning,

formulating the optimization problem as an Integer Non-

linear Programming (INLP) to support low latency and

QoS requirements. They introduced two greedy

algorithms to solve the INLP. The first minimizes delay

violation for IoT devices by prioritizing Fog nodes with

higher incoming traffic and releasing services from low-

traffic nodes if it doesn't cause violations. It can also

deploy/release services on the Cloud if resources are

available. The second greedy algorithm minimizes

service deployment cost by sorting incoming traffic rates

to Fog nodes and checking if deployment or release

reduces costs and increases revenue.

● Resource Provisioning with Branch and Bound

and First Fit: Rakshith et al. [89] developed a resource

provisioning framework for IoT applications in Fog

environments, aiming to reduce latency and resource

usage. They combined a Branch and Bound (B&B)

algorithm with a first-fit greedy algorithm. The first-fit

approach processes items sequentially, assigning each to

the first available bin with sufficient space; if no such bin

exists, a new one is created. While B&B guarantees

overall optimality, the first-fit heuristic ensures timely

deployment. Their approach also analyzes provisioning

time and required resources, with future work

considering service scaling.

● DRACeo Simulator for Energy-Efficient

Microservices: Valera et al. [109] introduced DRACeo, a

simulator for microservices-based application

deployments, designed to optimize energy consumption

without degrading QoS. DRACeo schedules microservices

based on environmental changes and dependencies. It

employs classical heuristic algorithms for centralized

and non-centralized adaptive planning. One heuristic

determines QoS based on required and obtained

hardware resources, while another greedy heuristic

selects the microservice with the lowest QoS to limit

overall application QoS, without considering broader

system impact. The simulator allows users to specify QoS

and energy consumption expectations for tracking.

● Dynamic Service Placement for Mobile Micro-

clouds: Wang et al. [111] presented a solution based on

linear problem modeling to minimize average cost over

time. They proposed an offline algorithm to predict future

instance placement costs based on user preferences within

a time window, solvable by dynamic programming for

optimal solutions. For increased complexity with multiple

instances, they used an online approximate algorithm with

polynomial time complexity to dynamically handle

runtime instance placement. This algorithm calculates cost

differences for each instance in available slots, selects the

instance with the largest minimum difference, and places

it in the slot with the smallest difference.

● Priority, Network, and Energy-Aware Placement

(MinRE): Hassan et al. [43] proposed MInRE, an efficient

policy solution addressing response time, energy

consumption, and resource usage. It categorizes services

into critical (requiring fast response, optimized by MinRes

heuristic) and normal (energy reduction focus, optimized

by MinEng heuristic). MinRes sorts critical services and

Fog node delays, placing services on the main Fog cluster

node with minimum delay. If capacity is insufficient, it

seeks a neighbor node. MinEng sorts services by deadline,

selecting nodes with less network delay and minimum

energy consumption, following a similar neighbor strategy

if resources are insufficient. Simulations showed improved

delay and energy consumption, but the model did not

include applications with multiple dependent services or

cost resource nodes.

● QoS-aware Deployment with Fail-first: Brogi and

Forti [14] proposed a model to improve QoS, developing

placement algorithms for design, simulation, deployment,

and execution in Fog environments. They reduce the

search space by mapping software components only to

feasible fog nodes and cloud data centers that meet all

requirements, using a K-key-value map. A greedy fail-first

algorithm then selects a single placement node. FogTorch,

a Java tool simulator, was used for performance

evaluation.

● Container Migration for Energy Reduction:

Chhikara et al. [21] suggested an approach for placing and

migrating service containers from overused to underused

nodes to reduce energy consumption and resource

utilization. Their algorithm classifies hosts as overloaded,

underloaded, or balanced using k-means and hierarchical

clustering to select migration targets. Containers causing

overload (based on CPU/RAM) are migrated using a best-

fit greedy approach to find the optimal destination host.

6.3 Population-based Heuristics

Population-based metaheuristics are inspired by natural

selection and the collective behavior of groups (e.g., flocks

of birds, swarms of bees, ant colonies, whale pods). These

algorithms maintain a population of candidate solutions

that evolve over iterations, exploring the search space to

find optimal or near-optimal solutions. While they do not

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 70

guarantee global optimality, they are effective for

complex problems with large search spaces.

● Genetic Algorithms (GAs): Inspired by natural

selection and evolution [67], GAs maintain a population

of chromosomes (candidate solutions) that evolve

through operations like crossover and mutation. Fitter

individuals are stochastically selected, ensuring the next

generation is more optimized while maintaining

diversity.

○ Service Placement in Fog: Skarlat et al. [101] used

a GA for service placement in Fog environments, aiming

to maximize services placed on Fog nodes and minimize

network communication delays and resource usage.

Chromosomes encode placement plans, with genes

indicating service placement on specific fog resources

and system state (CPU, RAM, storage). Crossovers and

mutations combine or modify plans, and a fitness

function evaluates constraint adherence (capacity,

delay). Compared to greedy and exact methods, the GA

showed improved response time.

○ Proactive Data Positioning: Canali and Lancellotti

[17] developed a GA-based heuristic for proactively

positioning data on Fog nodes, considering current load

and sensor communication latency. Genes represent

which Fog node receives data from a sensor. Evaluated

on smart city scenarios, their approach yielded results

equivalent to direct optimization.

○ Business-Driven IT Service Component

Placement: Tortonesi et al. [107] proposed a GA

optimization technique for business-driven IT service

component placement in dynamic, distributed Cloud

systems. The GA finds optimal IT service placement on

Cloud data centers based on operational costs, calculated

from provider fees. Experiments with a realistic two-tier

scenario and real-life prices showed improved quality.

○ Multi-objective IoT Service Placement: Natesha

and Guddeti [74] provided an elitism-based GA to solve a

multi-objective placement problem, minimizing energy

consumption, response time, and cost while ensuring

QoS. Chromosomes represent service numbers, and

genes represent Fog node numbers. Fitness values are

calculated based on weighted service time, cost, and

energy. Elitism selects best individuals, and

crossover/mutation operations produce diverse

offspring.

○ Comparison of Evolutionary Algorithms:

Guerrero et al. [37] compared three GA-based

evolutionary algorithms—Weighted Sum Genetic

Algorithm (WSGA), Non-dominated Sorting Genetic

Algorithm II (NSGA-II) [70], and Multi-objective

Evolutionary Algorithm based on Decomposition

(MOEA/D)—for optimizing network latency, service

spread, and resource requirements in Fog service

placement. WSGA is a single-objective GA using weighted

sum transformation. NSGA-II is a multi-objective

algorithm ordering solutions by dominance. MOEA/D

decomposes the problem into multiple scalar fitness

optimizations. Experiments on a random Barabasi-Albert

network [10] showed varying performance based on

objectives, with NSGA-II achieving highest goal

optimizations and diversity, while MOEA/D was faster.

● Particle Swarm Optimization (PSO): PSO [63] is a

computational method where a population of candidate

solutions (particles) move in the search space, guided by

their own best-found position and the global best-found

position.

○ Microservices Placement for Resource and Energy

Optimization: Yu et al. [117] designed a workload model

for microservices placement as a bi-criteria optimization

problem. They proposed a three-stage mathematical

algorithm to optimize trade-off decisions. First, a multi-

objective PSO meta-heuristic creates instances and

calculates the Pareto front for optimized MS instances and

thread allocation. Second, requests are routed to

established microservice instances in a balanced way

(similar to a bin packing problem). Finally, a load-

balancing algorithm (LEGO) selects the minimum number

of servers. Experiments showed better and faster

performance than baselines.

○ Energy-Aware Edge Server Placement: Li and

Wang [54] devised a PSO energy-aware placement method

for Edge server devices to ensure low energy

consumption. They adapted PSO for a discrete problem,

improving basic PSO equations. The algorithm takes base

station datasets, Edge server coverage radius, particle

swarm size, and iterations as input, assigning base stations

to Edge servers and updating particle positions/velocities

to find an optimal placement. Evaluated on a real Shanghai

base station dataset, it showed over 10% energy

consumption reduction, but lacked dynamic optimization

for changing demands.

○ QoS-aware Multi-objective Set-based PSO:

Pallewatta et al. [80] provided a QoS-aware Multi-

objective Set-based PSO for batch placement of

microservice applications in Fog environments, defining

QoS by budget, makespan, and throughput. This approach

is combined with the Learning Particle Swarm

Optimization (S-CLPSO) algorithm to improve

convergence. It initializes a particle population, computes

fitness, updates positions, and selects the best swarm

position over iterations, returning optimal microservice-

to-device mapping. Experiments demonstrated improved

makespan satisfaction and budget.

○ Discrete Particle Swarm Optimization for IoT

Services: Djemai et al. [26] approached service placement

as an optimization problem to reduce energy consumption

and minimize delays in IoT applications. Their method

uses a discrete particle swarm optimization (DPSO)

algorithm with real-valued speeds to identify efficient

service locations. Physical infrastructure is a graph, and

IoT applications are modeled as DAGs.

● Ant Colony Optimization (ACO): ACO algorithms

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 71

[27] are inspired by the foraging behavior of ant colonies,

where ants find optimal paths by leaving pheromone

trails. The optimization problem is transformed into

finding the shortest path in a graph.

○ Multi Replicas Pareto ACO (MRPACO): Huang et al.

[47] presented MRPACO to manage the geographic

distribution of Fog nodes and multi-objective service

replicas, including latency time and deployment cost. The

algorithm creates multiple pheromone trails and uses

single heuristic information. Ants decide the next data

flow direction for scheduled source-service pairs.

Experiments showed increased convergence speed and

enhanced Pareto front accuracy, maximizing objective

placement.

○ Modified ACO for VNF Placement and Routing:

Farshin et al. [31] modified ACO to propose a chaotic

grey-wolf-optimized (GWO) knowledge-based system

for VNF placement and path allocation. The GWO

algorithm mimics grey wolf hunting behavior [69]. The

proposed framework performed well in placement and

routing.

● Whale Optimization Algorithm (WOA): WOA [68]

mimics the hunting strategy of humpback whales, who

communicate and coordinate movements to encircle

prey using bubble nets.

○ Cost-Efficient IoT Service Placement: Ghobaei-

Arani and Shahidinejad [35] proposed a cost-efficient IoT

service placement approach using WOA in a fog

computing environment.

○ CREW Heuristic for Reliability and Cost: Martin et

al. [83] introduced CREW, a heuristic method addressing

conflicting criteria of maximizing service reliability while

minimizing monetary cost. Due to the exponential

solution space, CREW uses an Eagle strategy based on

multi-Whale optimization for placement decisions. The

Eagle strategy is a two-stage hybrid method combining

random global and local search for stochastic

optimization [115]. Simulations showed CREW

outperforming existing multi-objective meta-heuristics

like NSGA-II and MOWOA. However, the model only

considered CPU and memory, not storage or network

bandwidth.

○ Self-managing WOA for IoT Services: Ghobaei-

Arani and Shahidinejad [35] outlined a self-managing

approach using WOA for IoT services deployment across

a three-tiered fog architecture, focusing on QoS for

enhanced throughput.

● Cuckoo Search (CS): Mortazavi et al. [71]

introduced a custom cuckoo search algorithm for service

placement (CSA-SP) to optimize service positioning in fog

nodes, minimizing energy consumption while

considering data transfer constraints and resource

availability.

6.4 SPP Specific Heuristics

Beyond the established meta-heuristic families, several

heuristics have been specifically designed or tailored for

the SPP, addressing unique aspects of the problem in iCFE

environments.

● Markov Chain-based Service Placement: Carlini et

al. [18] pioneered a Markov chain-based service

placement method with point-to-point interactions and

discrete cross-step algorithms to reduce energy, time, and

cost. Simulations demonstrated convergence in a

distributed setting, but the approach did not account for

dynamic service arrival/completion.

● Distributed Placement with Markov

Approximation: Kayal and Liebeherr [49] proposed a fully

distributed placement strategy in Fog/Edge environments

based on Markov approximation. This method optimizes

communication costs between microservices and energy

consumption. Microservices are initially placed randomly

on Fog nodes and then moved to neighboring nodes

according to Markov Chain transitions that approximate

the optimization problem. Experimental results showed

comparable solutions to existing centralized methods.

● Decentralized Microservices-based IoT Application

Placement: Pallewatta et al. [79] developed a

decentralized approach for microservices-based IoT

application placement. Their main objective was to place

latency- and bandwidth-critical microservices as close as

possible to the data source using a heuristic placement

algorithm that scales microservices in heterogeneous

nodes. Each Fog layer is considered a cluster with a

controller node managing microservices placement and

load balancing. The controller uses three algorithms:

selecting the closest Fog node (for latency/communication

cost), selecting the Fog node with the lowest load (for

resource balancing), and combining these results for a

final placement decision.

Machine Learning Algorithms

The dynamic, complex, and data-intensive nature of Cloud-

Fog-Edge environments makes Machine Learning (ML)

algorithms particularly well-suited for optimizing service

placement. These models can learn patterns from

historical execution data to make proactive and adaptive

placement decisions. This section categorizes ML

approaches used for SPP into supervised learning,

reinforcement learning, and neural/deep neural networks.

Table 5 in the accompanying PDF summarizes these

machine learning solutions.

7.1 Supervised Learning

Supervised learning involves training models on labeled

datasets, where both inputs and corresponding desired

outputs are provided. The trained model can then predict

unknown outputs for new input data.

● Classification and Regression Tree for Task

Offloading: Rahbari and Nickray [87] proposed a

placement method based on the Classification and

Regression Tree (CART) algorithm, named MPCA, for task

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 72

offloading in mobile fog computing. They utilized the

power consumption of mobile devices for the training

phase, incorporating decision parameters such as cost,

integrity, availability, speed, and capacity for Fog node

selection. They also introduced the MPMCP method to

optimize MPCA by analyzing the probability of network

resource utilization. The proposed algorithm

demonstrated superior performance compared to the

First Fit algorithm in terms of consumption, response

time, and overall efficiency.

● Gradient Boosting Regression for Serverless

Edge/Cloud Optimization: Das et al. [25] presented a

framework for performance optimization in serverless

Edge/Cloud environments using dynamic task

placement, based on Gradient Boosting Regression. Their

machine learning model was trained on three real-world

application use cases (image resizing, face detection, and

speech-to-text) to predict latency and cost. Evaluated

using AWS, the framework achieved end-to-end latency

prediction with less than 6% error. However, the model

was trained on a relatively small sample of use cases,

which might limit its generalization.

7.2 Reinforcement Learning

Reinforcement Learning (RL) is a classical machine

learning paradigm where an agent learns to make

sequential decisions by interacting with an environment

through trial and error. The agent receives rewards or

punishments as feedback for its actions, aiming to

maximize cumulative reward over time [104]. For SPP

optimization, various RL techniques, such as Q-Learning

(QL) and State-Action-Reward-State-Action (SARSA),

have been employed.

● Q-Learning for Dynamic Service Migration: Chen

et al. [20] introduced a service migration mechanism in

Edge Cognitive Computing to achieve higher energy

efficiency and Quality of Experience (QoE). Their

migration and placement strategies are based on RL,

using a Q-learning algorithm to select optimal nodes for

each service. Experimental results showed that this

architecture improves QoE, particularly when user needs

are not precisely predicted.

● Q-placement for SDN Service Placement: Zhang et

al. [120] developed a RL-based algorithm called Q-

placement for Software-Defined Networking (SDN)

switches service placement. The primary objective was

to minimize the average accumulated service costs for

end-users while guaranteeing performance. This work

demonstrated that the proposed method improves cost

savings and outperforms classical service placement

algorithms. A key advantage is its on-demand decision-

making process, unlike traditional optimization

algorithms with fixed optimization levels.

● Dyna-Q RL for Proactive Microservice Placement:

Ray et al. [90] developed a RL-based proactive

microservice placement and migration mechanism for

Edge servers to adapt to user movement and requests.

They modeled a linear workflow of microservices as a

graph and applied a combination of QL and RL models

called Dyna-Q RL [104]. Experiments conducted on a real-

world San Francisco taxi dataset [85] showed that their

method improved response time and reduced latency

compared to existing literature.

● RL for Energy-Efficient Smart City Management:

Reddy et al. [91] investigated an approach to optimize

energy consumption and service delay in Fog computing

for smart city infrastructure management while

maintaining QoS. They introduced a reinforcement

learning-based duty cycling approach to balance energy

usage and QoS, where Fog nodes send state information to

a prediction agent that updates its knowledge through

rewards or penalties. Additionally, they developed the

SCS-GA algorithm for virtual machine allocation, reducing

service request failures and minimizing latency.

Simulations using iFogSim demonstrated that combining

SCS-GA with RL reduced migrations and energy

consumption compared to using SCS-GA alone.

● RL for Elastic Container Deployment: Rossi et al.

[92] presented a network-aware heuristic for container

placement deployed on geo-distributed Clouds. They

introduced an RL solution to control the elasticity of

containers and then used a network adaptive heuristic to

solve the linear programming problem. The approach

improved QoS and resource utilization, though the sample

used did not include highly diverse Cloud nodes.

7.3 Neural and Deep Neural Networks

Neural networks, and more specifically deep learning, are

a subfield of machine learning inspired by the human

brain's structure and function. These networks consist of

multiple layers (dozens to thousands), where each layer is

responsible for interpreting, extracting features, and

training based on the output of the previous layer from

input data. Through iterative adjustments based on

"wrong" answers, the model is trained in a high-

dimensional space to describe the input data as precisely

as possible.

● Neural Network for Auto-scaling Prediction in 5G

Networks: Subramanya et al. [103] proposed a machine

learning model based on the Multi-Layer Perceptron

(MLP) neural network (classifier and regressor) to

enhance auto-scaling prediction for Network Function

Virtualization (NFV) demands in 5G networks, based on

traffic from a commercial real operator. The authors

evaluated the models by examining the number of User

Plane Function (UPF) instances to be processed. Both

models proved efficient for auto-scaling prediction.

● Random Neural Networks and Cognitive Network

Map for Fog Services: Fröhlich and Gelenbe [34] developed

a combination of Random Neural Networks (RNN) and

Cognitive Network Map (CNM) for optimal fog services

placement in SDN IoT networks, aiming to optimize QoS

and resource usage. Experimental results showed that

RNN provided an effective solution for optimizing

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 73

parameters and ensuring good client service. Their

combined solution adapted well to changes in both large

and small networks, leading to efficient service

placement.

● Deep Reinforcement Learning for Proactive

Service Placement: Sami et al. [97] provided a deep

reinforcement learning (DRL) approach based on

scalable Markov Decision Process (MDP) for proactive

service placement. The objective was to make placement

decisions before user demands, thereby improving the

Quality of Experience (QoE). They also presented an end-

to-end architecture incorporating a service scheduler

and a bootstrapper. Data from connected users, services,

and source IPs were collected from applications to train

the algorithm. Authors used real-life datasets extracted

from the Google Cluster Trace 2011-2 dataset and NASA

Server Logs.

● Deep Q-learning for Container Migration: Tang et

al. [106] proposed a deep Q-learning algorithm to reduce

power consumption cost and delay for container

migration. They modeled the container strategy as a

multi-dimensional MDP and used deep reinforcement

learning to reduce the dimensionality of large MDP

spaces, enabling faster decision-making. This study,

conducted on a real-world data driver (San Francisco taxi

traces [85]) application, demonstrated that the proposed

approach enhanced delay, power consumption, and

migration cost compared to baseline approaches.

● Reward Sharing Deep Q-Learning for

Microservice Deployment: Lv et al. [57] addressed a

multi-objective microservice deployment problem in

Edge computing, aiming to minimize communications.

They represented inter-microservice communication as

an undirected, weighted interaction graph and applied a

learning-based algorithm called Reward Sharing Deep Q-

Learning (RSDQL). They also proposed a dynamic Elastic

Scaling algorithm based on heuristics to improve

scalability. Experiments conducted using Kubernetes

showed shorter response times and better load balancing

and scalability.

● Deep Learning for Joint Routing and Placement:

Pham et al. [84] introduced a joint routing and placement

problem that dynamically allocates resources based on

workload demand to reduce long-term operational costs.

This framework employs a deep learning module to

mimic the Branch and Bound (B&B) algorithm while

limiting the search space. The algorithm uses a decision

neural network to classify nodes and a dataset of visited

nodes for training. It iteratively selects a node, solves its

relaxed problem, aggregates the dataset, and uses

branching to explore the search space for an optimal

solution. Simulation results showed that the method

surpassed baselines in convergence and operational cost.

DISCUSSIONS

This section provides a comprehensive analysis of the

surveyed works, focusing on the prevalence and

effectiveness of different algorithmic approaches, the

types of datasets utilized, the prioritization of various

optimization criteria, and the evaluation tools employed.

This discussion aims to identify current trends, highlight

limitations, and pinpoint areas requiring further research

in the context of Service Placement Problems (SPP) within

the Cloud-Fog-Edge continuum.

8.1 Approaches and Algorithms

The classification and analysis of research works on SPP

formulations and resolution approaches reveal distinct

trends in algorithmic preferences. As illustrated in Figure

4 of the accompanying PDF, population-based and greedy

heuristics are the two most widely used approaches for

SPP, followed by graph partitioning, reinforcement

learning, and neural network methods.

● Heuristics (Greedy and Population-based): These

approaches dominate the literature, which is unsurprising

given the NP-hard nature of SPP. Heuristics are favored for

their ability to compute suboptimal solutions rapidly,

providing good quality results by iteratively improving

candidate solutions. Their main advantage lies in their

speed and relative simplicity of implementation. However,

a significant limitation is their tendency to get stuck in

local optima, meaning they do not guarantee a globally

optimal solution. Furthermore, explicit approximation

ratios—guarantees on how close the solution is to the

optimum—are rarely provided, with only one identified

approach [89] offering such a guarantee. This highlights a

gap in the theoretical understanding and performance

bounds of many heuristic solutions.

● Graph-based Approaches: Graph representations

are highly effective for modeling network connections and

inter-service communications in SPP. This explains the

frequent use of graph-based algorithms, particularly those

based on community detection, to determine optimized

placements. These approaches are often unsupervised,

relying on data analysis to discover patterns, create

clusters, and identify communities. They are well-suited

for problems where network topology and communication

patterns are critical factors.

● Machine Learning (ML) Approaches: ML-based

approaches, especially reinforcement learning and deep

learning, are increasingly recognized for their

effectiveness in proactive and dynamic placement

strategies. Their ability to learn from historical data allows

them to adapt to dynamic environments and optimize

resource utilization, leading to more efficient and

adaptable placement decisions. When combined with

heuristic algorithms, ML solutions can yield quick and

accurate results. The emergence of deep and neural

networks in SPP is relatively recent, with the first

reference to deep learning for SPP dating back to 2019 [9].

As more data becomes available for training and

validation, the adoption of these sophisticated models is

expected to grow. However, ML-based approaches come

with their own set of challenges: they often require

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 74

significant computing power for training and inference,

which can be a constraint in resource-limited fog

environments. Their effectiveness is also highly

dependent on the availability and quality of training data;

insufficient or biased data can lead to suboptimal or

unfair placement decisions. Therefore, balancing the

benefits of adaptability and optimization with resource

constraints and data quality is essential for successful ML

implementation in SPP. A recent survey [81] specifically

explores AI in this domain, offering more specific

insights.

● Exact Approaches: While exact approaches are

the only family guaranteed to provide optimal solutions,

their high computational cost and long processing times

make them impractical for large-scale SPP instances. The

vast search space, even with techniques like Branch and

Bound, limits their applicability to very small problem

sizes, often guided by the linearity of the objective

function and constraints. This explains their limited

presence in the literature compared to approximate

methods.

8.2 Datasets

A significant challenge in SPP research, particularly

concerning microservices, is the scarcity of publicly

available open-source projects and datasets that capture

microservices patterns, connections, dependencies, and

placement details. This lack of standardized datasets

often forces researchers to compare microservices

placement and chaining results with those of monolithic

service functions, which is not entirely relevant.

Microservices architectures are inherently more

granular and distributed, with distinct communication

patterns and dependencies, meaning placement

strategies effective for monolithic services (treated as

single, cohesive units) do not adequately address the

complexities of microservices environments. This also

hinders the full exploitation of parallelism and

mutualization characteristics offered by microservices.

● Limited Public Datasets: Rahman et al. [88] made

a notable contribution by proposing a small dataset of 20

microservices graphs to address this gap. Additionally,

Sami et al. [97] utilized real-life datasets extracted from

the Google Cluster Trace 2011-2 dataset and NASA

Server Logs, providing more realistic scenarios for

evaluating placement strategies.

● Synthetic Data Generation: To overcome the

scarcity of real-world datasets, many researchers [26, 71,

95] resort to generating random graphs for both network

topology and service/microservice dependency graphs.

Commonly used generators include Barabasi-Albert

networks [10] and growing random networks [50]. While

useful for theoretical exploration, these synthetic

datasets may not fully capture the complexities and

nuances of real-world deployments.

● Mobility Trajectories: To address the dynamic

nature of nodes and resources, particularly in mobile

edge environments, some researchers incorporate

mobility trajectories. For example, the San Francisco Taxi

dataset [85] has been used in studies by Ray et al. [90] and

Tang et al. [106] to simulate dynamic user movement and

its impact on SPP.

The need for more comprehensive, dynamic, and publicly

accessible datasets that accurately reflect the Cloud-Fog-

Edge continuum remains a critical open challenge for

advancing SPP research.

8.3 Prioritized Criteria

Based on the extensive literature review, the top three

criteria most frequently optimized by researchers for the

SPP are latency, cost, and Quality of Service (QoS). Table 6

in the accompanying PDF provides a detailed list of articles

for each criterion. The prioritization of these criteria is

partially related to their practical importance in real

applications, but also significantly influenced by the ease

with which they can be measured, modeled, and

optimized.

● Latency: This is the most frequently optimized

placement criterion. Its prominence can be attributed to

several factors: it directly impacts user experience,

especially for real-time applications [5, 43, 96, 110, 114].

Latency is influenced by measurable factors such as

distance between user and service, available bandwidth,

propagation delay, and processing power. These factors

are relatively straightforward to quantify, predict, and

optimize, often independently of other criteria. The

additive nature of latencies across a path simplifies its

calculation and optimization compared to more complex,

intertwined parameters.

● Cost: Cost minimization is a primary objective for

users and service providers in SPP. The aim is to find

solutions that reduce service delivery expenses and

minimize overall financial and operational costs [18, 20,

25, 30, 38, 49, 56, 64, 74, 83, 84, 87, 101, 106, 107, 111,

119, 120, 122]. Generally, cost is associated with limits on

execution nodes, which are relatively easy to incorporate

into SPP models.

● Quality of Service (QoS): User satisfaction is a

significant concern for researchers, leading to the frequent

inclusion of QoS as an optimization criterion [14, 20, 23,

32, 34, 37, 38, 43, 62, 64, 77, 80, 87, 92, 95, 97, 100, 109,

116]. QoS can encompass various metrics such as

availability, reliability, throughput, and response time. It is

a critical concern for applications requiring high

availability and reliability.

● Energy/CO2 Gas Emissions: Despite growing

environmental concerns, energy consumption and CO2

emissions are less frequently optimized compared to

latency, cost, and QoS [2, 18, 20, 43, 54, 56, 74, 82, 91, 93,

99, 105, 106, 109, 117]. The existing works that do

consider energy typically focus only on hardware

consumption (CPU, GPU, RAM) and electrical power of

inter/intra-execution nodes, often neglecting the energy

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 75

generated by communication links to avoid introducing

excessive parameters. Energy optimization in SPP is

often modeled as a complex combination of constraints,

making it harder to understand and justify. Furthermore,

minimizing energy consumption can sometimes conflict

with other objectives, such as latency (e.g., selecting a

node further away to save energy might increase

latency), necessitating a careful trade-off. There is a clear

need for more holistic models that account for all energy-

related factors across the continuum.

● Resources: Resource utilization is also a key

criterion, ensuring efficient use of CPU, memory, storage,

and bandwidth [21, 26, 34, 38, 39, 53, 62, 71, 89, 91, 117,

122].

8.4 Evaluation Tools

To evaluate their proposed methodologies, researchers

in SPP utilize a diverse set of simulation frameworks,

experimental platforms, and analytical tools.

● Simulation Frameworks:

○ YAFS (Yet Another Fog Simulator): This Python-

based tool is specifically designed for analyzing Fog

Computing architectures, including resource placement,

deployment costs, and network design, making it highly

suitable for IoT environments.

○ CloudSim: A Java-based simulation framework

widely used for modeling and evaluating cloud

infrastructures. It supports the simulation of data

centers, Virtual Machine (VM) management, resource

allocation, and energy consumption analysis.

○ iFogSim: An extension of CloudSim, iFogSim is

designed to assess resource management strategies and

application architectures in Fog Computing

environments, providing specialized support for Fog

scenarios.

● Experimental Platforms/Testbeds: Some studies

use small-scale physical testbeds (e.g., Raspberry Pi

devices [89]) to validate their approaches in more

realistic settings, albeit with limited scalability.

● Analytical Tools and Solvers: General-purpose

programming languages like Java, C++, and Matlab are

frequently used for implementing algorithms and

conducting simulations. These are often combined with

commercial or open-source optimization solvers such as

IBM CPLEX or Gurobi for solving complex mathematical

programming models.

● Custom-built Simulators: In some cases,

researchers develop custom-built simulators (e.g.,

DRACeo [109], custom Java EE 8 Platform simulations

[93]) to precisely model their specific problem settings

and evaluate their algorithms.

The choice of evaluation tool often depends on the

complexity of the proposed model, the scale of the

desired simulation, and the specific metrics being

optimized. While simulations offer flexibility and control,

real-world deployments and large-scale testbeds are

crucial for validating the practical applicability and

scalability of proposed solutions.

Open Challenges and Future Directions

Based on the comprehensive analysis of the existing

literature on service placement in the Cloud-Fog-Edge

continuum, several significant open challenges and

promising future research directions emerge. Addressing

these areas will be crucial for unlocking the full potential

of distributed computing architectures and for developing

truly intelligent, adaptive, and sustainable service

placement solutions.

9.1 Application Architecture: Evolving Microservices

and Beyond

Microservices-based applications are increasingly favored

for IoT deployments due to their inherent modularity,

loose coupling, and reusability across various applications.

This architectural style enables greater agility, scalability,

and resilience. However, they introduce complexities

related to data consistency, inter-service communication

overhead, and privacy concerns in a highly distributed

environment.

● Context-Aware Placement: Future placement

strategies should consider the specific operational

contexts of applications and the characteristics of data

(e.g., sensitivity, volume, velocity) before deploying

microservices. This involves understanding not just

resource requirements but also data flow patterns,

security policies, and compliance regulations.

● Enhanced Security and Privacy: With

microservices distributed across a vast continuum,

ensuring end-to-end security and data privacy becomes

paramount. Research is needed on developing placement

algorithms that incorporate security and privacy as first-

class optimization objectives, potentially leveraging

homomorphic encryption, federated learning, or secure

multi-party computation techniques to protect sensitive

data and computations.

● Standardized Protocols and Interoperability: While

microservices communicate via APIs, the lack of

standardized protocols for service discovery,

orchestration, and inter-service communication across

heterogeneous Cloud-Fog-Edge environments can hinder

interoperability. Future advancements may focus on

developing unified frameworks and protocols that

simplify deployment and management across diverse

platforms.

● Serverless Functions and Function-as-a-Service

(FaaS): The rise of serverless computing, where

developers write and deploy individual functions without

managing underlying infrastructure, presents new

opportunities and challenges for service placement.

Optimizing the placement of these ephemeral, event-

driven functions across the continuum requires novel

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 76

approaches that consider cold start latencies, resource

pooling, and dynamic scaling in highly bursty workloads.

9.2 Collection and Sharing of Comprehensive

Datasets

As highlighted in Section 8.2, a significant impediment to

progress in SPP research is the notable lack of publicly

available, open-source projects and datasets that

accurately represent real-world microservices patterns,

connections, dependencies, and dynamic placement

scenarios.

● Bridging the Gap between Synthetic and Real-

world Data: While random graphs [10, 50] and mobility

datasets [85] are useful for theoretical exploration, they

often fail to capture the intricate complexities and

nuances of real-world deployments. This limits the

ability to rigorously compare and validate different SPP

methods and tools.

● Need for Large-Scale, Dynamic Datasets: The

research community urgently needs to address this issue

by releasing comprehensive datasets on large-scale

microservices applications. These datasets should

include:

○ The number and types of services.

○ Detailed inter-service dependencies and

communication patterns (e.g., call graphs, data volumes).

○ Resource requirements and utilization profiles for

individual microservices.

○ Network topology and characteristics of iCFE

nodes (CPU, memory, storage, bandwidth, latency).

○ Sufficiently long runtime traces to replay real-life

scenarios, including fluctuating workloads, node failures,

and user mobility.

○ Metrics related to energy consumption and

carbon footprint, if possible.

● Collaborative Data Collection Initiatives:

Fostering collaborative initiatives among industry and

academia to collect and anonymize real-world

operational data could significantly accelerate research

and enable more realistic evaluations of SPP solutions.

9.3 Dynamic Placement Approaches: Beyond

Reactive Strategies

Most existing literature proposals often focus on static or

reactive placement, which are neither very realistic nor

efficient in the highly dynamic Cloud-Fog-Edge

continuum. To accommodate object mobility, fluctuating

workloads, and rapid system changes, proactive and

adaptive placement strategies are essential.

● Predictive Models for Proactive Placement:

Future research should focus on developing

sophisticated predictive models (e.g., using advanced

machine learning, time series analysis) that can forecast

resource demands, network conditions, user mobility

patterns, and potential node failures. These predictions

can then inform proactive placement and migration

decisions, preventing performance degradation before it

occurs [90, 111].

● Online Learning and Adaptive Control: Developing

Reinforcement Learning (RL) agents that can learn and

adapt their placement policies in real-time, based on

continuous feedback from the environment, is a promising

direction. These agents need to handle non-stationary

environments and explore optimal strategies without

explicit programming.

● Self-Organizing and Autonomous Systems: The

ultimate goal is to move towards fully self-organizing and

autonomous SPP systems that can dynamically adjust

service placements without human intervention, reacting

intelligently to unforeseen events and optimizing for

multiple objectives simultaneously. This requires robust

control loops, intelligent agents, and distributed decision-

making mechanisms.

● Mobility-Aware Service Provisioning: With

increasing user and device mobility, service placement

must explicitly account for movement patterns. This

involves strategies for efficient service migration, state

transfer, and context awareness to ensure seamless

service continuity and minimal disruption as users move

between edge nodes [59, 77, 112].

9.4 Microservices Task Scheduling and Offloading: An

Integrated View

Efficient task scheduling in microservice architectures is

challenging due to variable traffic and dynamic resource

availability. Poor scheduling can lead to increased energy

consumption, SLA breaches, and reduced user satisfaction.

Task offloading, the transfer of computational tasks to

remote resources, complements service placement by

optimizing processing efficiency and reducing latency for

local devices [3].

● Integrated Network Management Pipelines:

Currently, many studies tend to focus on isolated aspects

of network management (e.g., only placement, only

scheduling, or only offloading). A more holistic and

integrated view is necessary. Future research should

develop comprehensive frameworks that seamlessly

integrate service placement, task scheduling, and

computation offloading decisions. This involves designing

complete pipelines that consider the interdependencies

between these processes to ensure cohesive and efficient

system operation.

● Joint Optimization of Placement, Scheduling, and

Offloading: The goal should be to develop algorithms that

jointly optimize these three aspects, considering their

combined impact on system performance, energy

consumption, and user experience. This would likely

involve complex multi-objective optimization problems

solved using advanced meta-heuristics or AI techniques.

● Resource Contention and Load Balancing: Effective

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 77

scheduling and offloading are critical for managing

resource contention in heterogeneous environments.

Algorithms need to dynamically balance workloads

across the continuum, preventing hotspots and ensuring

fair resource allocation among competing services and

tasks.

9.5 Better Consideration of the Energy Criterion:

Towards Green Computing

Despite the growing awareness of environmental impact,

research on energy consumption and resource

management in SPP remains somewhat limited, often

focusing only on hardware energy. The massive increase

in energy and CO2 emissions from digital infrastructure

necessitates a more comprehensive approach to green

computing in SPP.

● Holistic Energy Modeling: The majority of existing

research articles consider only the energy consumption

of hardware components (CPU, GPU, RAM). However,

distributed services significantly increase the energy

consumption of communication links. Future models

must account for the energy cost of data transfer across

the network, including wired and wireless

communication.

● Expanded Placement Criteria for Sustainability:

Beyond basic energy consumption, SPP criteria should

explicitly include:

○ Gray Energy and Primary Energy Emissions:

Measured in kWh, accounting for the energy embedded

in the manufacturing and disposal of devices.

○ Relative Carbon Footprint Emissions: Considering

the carbon intensity of different energy sources used by

computing nodes (e.g., renewable vs. fossil fuels).

○ Life Cycle Analysis (LCA): A comprehensive

assessment of the environmental impacts of all terminal

devices throughout their entire life cycle (manufacturing,

use, and end-of-life).

○ Utilization of Renewable Energy Sources:

Placement decisions could prioritize nodes powered by

renewable energy sources like wind turbines or solar

panels.

● Interdisciplinary Collaboration: Incorporating

such a wide array of criteria makes the SPP significantly

more complex. This necessitates interdisciplinary

collaboration between computer scientists, operational

researchers, environmental scientists, and economists to

develop robust models that accurately capture the

interplay of these factors. The scientific community

needs to work on establishing standardized models and

metrics for evaluating the environmental footprint of

service deployments.

● Trade-offs with Performance Metrics: Minimizing

energy consumption can sometimes conflict with other

critical objectives like QoS or latency (e.g., placing a

service further away to leverage a greener data center

might increase latency). Future research must explore

sophisticated multi-objective optimization techniques that

effectively manage these complex trade-offs, finding

solutions that are both environmentally sustainable and

performant.

CONCLUSION

In this comprehensive survey, we have presented a

detailed classification and analysis of the algorithmic

solutions employed to address the Service Placement

Problem (SPP) within the integrated Cloud-Fog-Edge

(iCFE) computing environments. Our study has focused on

the algorithmic approaches, considering various

influencing parameters such as the infrastructure

environment, the type of application components (e.g.,

monolithic, inter-dependent, microservices), and the

chosen placement mode (e.g., centralized, decentralized,

static, dynamic, reactive, proactive). We have thoroughly

examined key optimization objectives, including latency,

quality of service, cost, energy efficiency, and resource

utilization, recognizing that the quest for optimal

placement in such complex, multi-criteria scenarios

constitutes a challenging combinatorial problem.

The survey categorized existing solutions into four main

families: exact optimization-based approaches, graph-

based approaches, heuristic and meta-heuristic solutions,

and machine learning-driven algorithms. For each

category, we have provided an in-depth review of specific

algorithms, their working principles, and their application

to SPP, supported by extensive citations to the relevant

literature.

Our analysis and discussion have highlighted several

critical aspects of the current state-of-the-art. We

observed the prevalence of heuristic and meta-heuristic

methods due to the NP-hard nature of the problem,

alongside the growing adoption of graph-based and

machine learning techniques for their ability to handle

dynamic environments and complex dependencies. A

significant limitation identified is the scarcity of

comprehensive, real-world datasets for microservices,

which hinders robust comparative evaluations.

Furthermore, while latency, cost, and QoS are frequently

prioritized, a more holistic consideration of energy

consumption and environmental impact remains an

underexplored area.

Building upon these insights, we have proposed several

crucial avenues for future research. These include

developing more sophisticated context-aware and

dynamic placement strategies for evolving application

architectures (especially serverless and advanced

microservices), fostering collaborative initiatives for

collecting and sharing large-scale, dynamic datasets, and

creating integrated network management pipelines that

jointly optimize placement, scheduling, and offloading.

Most importantly, there is a pressing need for a more

comprehensive and holistic approach to green computing

in SPP, incorporating detailed energy modeling and a

EUROPEAN JOURNALS OF EMERGING COMPUTER VISION AND NATURAL LANGUAGE PROCESSING

pg. 78

broader range of environmental criteria throughout the

entire life cycle of digital infrastructure. By addressing

these challenges, the research community can pave the

way for truly ubiquitous, responsive, and

environmentally sustainable computing in the Cloud-

Fog-Edge continuum.

REFERENCES

Bernardetta Addis, Giuliana Carello, and Meihui Gao.

2020. On a virtual network functions placement and

routing problem: Some properties and a comparison of

two formulations. Networks 75, 2 (2020), 158–182.

Ehsan Ahvar, Shohreh Ahvar, Zoltán Ádám Mann, Noel

Crespi, Roch Glitho, and Joaquin Garcia-Alfaro. 2021.

DECA: A dynamic energy cost and carbon emission-

efficient application placement method for edge clouds.

IEEE Access 9 (2021), 70192–70213.

Mohammad Yahya Akhlaqi and Zurina Binti Mohd

Hanapi. 2023. Task offloading paradigm in mobile edge

computing-current issues, adopted approaches, and

future directions. J. Netw. Comput. Appl. 212 (2023),

103568.

Mahmoud A. M. Albreem, Ayman A. El-Saleh, Muzamir

Isa, Wael Salah, M. Jusoh, M. M. Azizan, and A. Ali. 2017.

Green internet of things (IoT): An overview. In

Proceedings of the IEEE 4th International Conference on

Smart Instrumentation, Measurement and Application

(ICSIMA’17). IEEE, Putrajaya, Malaysia, 1–6.

https://doi.org/10.1109/ICSIMA. 2017.8312021

Yasser Aldwyan and Richard O. Sinnott. 2019. Latency-

aware failover strategies for containerized web

applications in distributed clouds. Future Gen. Comput.

Syst. 101 (2019), 1081–1095.

Mohammad Reza Alizadeh, Vahid Khajehvand, Amir

Masoud Rahmani, and Ebrahim Akbari. 2020. Task

scheduling approaches in fog computing: A systematic

review. Int. J. Commun. Syst. 33, 16 (2020), e4583.

Gabriel Araújo, Vandirleya Barbosa, Luiz Nelson Lima,

Arthur Sabino, Carlos Brito, Iure Fé, Paulo Rego, Eunmi

Choi, Dugki Min, Tuan Anh Nguyen et al. 2024. Energy

consumption in microservices architectures: A

systematic literature review. IEEE Access 12 (2024),

186710–186729.

Onur Ascigil, Truong Khoa Phan, Argyrios G Tasiopoulos,

Vasilis Sourlas, Ioannis Psaras, and George Pavlou. 2017.

On uncoordinated service placement in edge-clouds. In

Proceedings of the IEEE International Conference on

Cloud Computing Technology and Science

(CloudCom’17). IEEE, Hong Kong, Hong Kong, 41–48.

Yixin Bao, Yanghua Peng, and Chuan Wu. 2019. Deep

learning-based job placement in distributed machine

learning clusters. In Proceedings of the Conference on

Computer Communications (INFOCOM’19). IEEE, Paris,

France, 505–513.

Albert-László Barabási and Réka Albert. 1999. Emergence

of scaling in random networks. Science 286, 5439 (1999),

509–512.

Kay Bierzynski, Antonio Escobar, and Matthias Eberl.

2017. Cloud, fog and edge: Cooperation for the future?. In

Proceedings of the 2nd International Conference on Fog

and Mobile Edge Computing (FMEC’17). IEEE, Valencia,

Spain, 62–67.

Vincent D. Blondel, Jean-Loup Guillaume, Renaud

Lambiotte, and Etienne Lefebvre. 2008. Fast unfolding of

communities in large networks. J. Stat. Mech.: Theory

Exper. 2008, 10 (2008), P10008.

Christian Blum and Andrea Roli. 2001. Metaheuristics in

combinatorial optimization: Overview and conceptual

comparison. ACM Comput. Surv. 35 (01 2001), 268–308.

https://doi.org/10.1145/937503.937505

Antonio Brogi and Stefano Forti. 2017. QoS-aware

deployment of IoT applications through the Fog. IEEE

Internet Things J. 4 (2017), 1185–1192.

