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ABSTRACT 

 

The integration of deep learning in healthcare is rapidly transforming various facets of the industry, offering innovative 
solutions to complex medical challenges. This comprehensive review explores the fundamental deep learning techniques 
and their extensive applications within the healthcare domain. We discuss key architectures such as Convolutional Neural 
Networks (CNNs) for medical image analysis, Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) 
for sequential data, Autoencoders (AEs) for dimensionality reduction, Restricted Boltzmann Machines (RBMs) for feature 
extraction, Deep Belief Networks (DBNs), and Generative Adversarial Networks (GANs) for data generation. The article 
highlights established successes in medical imaging and diagnostics, including automated segmentation in cardiac MRI 
[9], early detection of neurological disorders like Alzheimer's and Parkinson's diseases [10, 18, 19, 25], cancer detection 
[21, 26], and improved diagnosis of infectious diseases such as COVID-19 [11, 24]. Furthermore, we delve into the role of 
deep learning in disease diagnosis and predictive analytics, exemplified by diabetes detection [20], cardiovascular risk 
assessment [27], and proactive predictive medicine models [22]. The application of deep learning to Electronic Health 
Records (EHR) and Natural Language Processing (NLP) for medical record analysis [23] and information processing [5] 
is also examined. While acknowledging the significant advancements, the discussion addresses persistent challenges such 
as data availability, model interpretability, and ethical considerations. Future directions for deep learning in healthcare 
are also explored, emphasizing the need for robust, interpretable, and generalizable AI solutions. This review underscores 
deep learning's indispensable role in advancing precise, proactive, and patient-centric healthcare. 

 

INTRODUCTION 

The healthcare landscape is currently undergoing a 

profound and accelerating transformation, primarily 

driven by the advancements and pervasive integration of 

artificial intelligence (AI), particularly deep learning [12, 

13]. This paradigm shift is redefining traditional 

approaches to disease diagnosis, treatment, and patient 

management. Deep learning, a sophisticated subset of 

machine learning, is characterized by its use of multi-

layered artificial neural networks. These networks are 

meticulously designed to emulate the complex, 

hierarchical processing capabilities of the human brain, 

enabling them to discern intricate patterns and abstract 

features from vast and complex datasets. This inherent 

ability positions deep learning as a powerful tool for a 

multitude of applications, from sophisticated image 

recognition to highly accurate predictive analytics. 

The utility of AI, including its smart vision capabilities, 

extends beyond healthcare, demonstrating significant 

impact in other intricate sectors such as building and 

construction, where machine and deep learning methods 

are revolutionizing processes and operational 

efficiencies [2]. This broad applicability underscores the 

versatility and transformative potential of deep learning 

across diverse industries. In healthcare, the sheer volume 

and inherent complexity of data present both formidable 

challenges and unprecedented opportunities. Medical data 

encompasses a wide array of formats, including but not 

limited to electronic health records (EHRs), high-

resolution medical images (e.g., MRI, CT scans, X-rays), 

genomic sequences, physiological signals from wearable 

sensors, and unstructured clinical notes. Traditional 

statistical and analytical methods often prove insufficient 

in extracting meaningful, actionable insights from such 

high-dimensional, heterogeneous, and often noisy data. 

Deep learning, however, is uniquely equipped to navigate 

these complexities. Its capacity to automatically learn 

hierarchical representations from raw data, without 

explicit feature engineering, offers robust solutions for 

enhancing diagnostic accuracy, refining prognostic 

predictions, optimizing treatment pathways, and 

improving overall patient management [7, 6]. The ability 

to process and interpret diverse data modalities, including 

temporal sequences and spatial information, makes deep 

learning indispensable for modern healthcare challenges. 
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This comprehensive article aims to provide an in-depth 

review of the foundational deep learning techniques that 

are currently being applied in healthcare. Furthermore, it 

will meticulously explore the diverse and burgeoning 

applications of these techniques, highlighting not only 

the established successes that have already reshaped 

medical practice but also the emerging frontiers and 

future directions that promise even greater 

advancements in patient care and medical research. 

2. Deep Learning Techniques: Architectures and 

Principles 

Deep learning models are fundamentally constructed 

upon the architecture of artificial neural networks, 

systems whose design and operational principles are 

inspired by the biological structure and cognitive 

functions of the human brain. These networks are 

characterized by their multi-layered composition, 

comprising numerous interconnected nodes, often 

referred to as "neurons." Data processing within these 

networks occurs hierarchically, with information flowing 

through successive layers, each responsible for 

extracting progressively more abstract and complex 

features from the input. The core learning mechanism 

involves the iterative adjustment of the connections 

(weights) between neurons through sophisticated 

algorithms, most notably backpropagation, with the 

primary objective of minimizing prediction errors and 

enhancing model accuracy. The optimization of these 

intricate neural network structures is frequently 

augmented by advanced metaheuristic optimization 

techniques, which play a crucial role in improving both 

the efficiency and overall performance of deep learning 

models [4]. 

The efficacy and reliability of these deep learning models 

are also profoundly influenced by the quality and 

integrity of the underlying data. Consequently, the 

methods employed for data gathering and preprocessing 

are under continuous evaluation within machine 

learning processes across various fields, including 

manufacturing and mechanical engineering. Insights 

gleaned from these evaluations are highly transferable 

and provide invaluable guidance for developing robust 

and reliable deep learning applications in healthcare [3]. 

Similarly, the rigorous evaluation frameworks utilized in 

machine learning processes for assessing damage 

classification in composite materials offer a pertinent 

blueprint for the stringent validation required for 

healthcare-specific deep learning models, ensuring their 

reliability and clinical utility [1]. Moreover, the successful 

operationalization of machine learning through 

advanced Natural Language Processing (NLP) 

techniques, particularly evident in the development and 

refinement of models for detecting fabricated news, 

underscores the remarkable versatility of these 

methodologies. Such adaptability suggests that these 

techniques can be effectively repurposed and optimized 

for intricate information processing and verification 

tasks within complex healthcare systems, thereby 

safeguarding the integrity and accuracy of patient data and 

medical knowledge [5]. 

Several specific deep learning architectures have 

demonstrated exceptional effectiveness and profound 

utility within the diverse and demanding landscape of 

healthcare applications: 

2.1. Supervised Learning Architectures 

Supervised learning constitutes a foundational paradigm 

within deep learning, where models are trained on a 

labeled dataset, meaning each input instance is paired 

with a corresponding correct output or "label." The 

primary objective is for the model to learn a mapping from 

inputs to outputs, enabling it to make accurate predictions 

on unseen data. The backpropagation algorithm is the 

cornerstone of training in most supervised deep learning 

architectures, allowing the network to adjust its internal 

parameters based on the calculated error between its 

predictions and the true labels [11]. 

2.1.1. Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) represent a class 

of deep learning models specifically engineered for the 

efficient and effective processing of structured grid-like 

data, such as images, videos, and even certain types of 

sequential data when transformed appropriately. They 

have fundamentally revolutionized the field of computer 

vision, achieving unprecedented performance across a 

myriad of tasks, including precise image classification, 

robust object detection, and accurate image segmentation 

[13]. The foundational principle underpinning CNNs is the 

innovative use of convolutional layers. These layers apply 

a set of learnable filters (kernels) to the input data, 

systematically scanning across it to detect and capture 

various localized features at different spatial resolutions. 

This process allows CNNs to automatically learn 

hierarchical representations of features from the raw 

input data. 

A typical CNN architecture comprises multiple 

convolutional layers, often interleaved with activation 

functions (like ReLU) to introduce non-linearity. These are 

usually followed by pooling layers (e.g., max pooling or 

average pooling) that progressively reduce the spatial 

dimensions of the feature maps, thereby reducing 

computational complexity and providing a degree of 

translational invariance. Finally, one or more fully 

connected layers typically reside at the end of the network, 

performing the ultimate classification, regression, or other 

target tasks based on the high-level features extracted by 

the preceding layers. This hierarchical learning 

mechanism enables lower layers to capture rudimentary 

features such as edges, corners, and textures, while deeper 

layers progressively synthesize these into more complex 

and abstract structures and patterns relevant for the 

specific task. 

A significant advantage of CNNs lies in their inherent 
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ability to autonomously learn pertinent features directly 

from raw input data, thereby obviating the need for 

laborious and often domain-specific manual feature 

engineering. This autonomous feature learning renders 

CNNs highly adaptable and versatile across diverse tasks 

and application domains, as they can independently 

identify and prioritize the most relevant patterns within 

raw input data. Their prowess in processing visual data 

makes them exceptionally well-suited for medical image 

analysis, a domain where subtle visual cues are often 

critical for accurate diagnosis and prognosis. 

2.1.2. Recurrent Neural Networks (RNNs) and Long 

Short-Term Memory (LSTM) 

Recurrent Neural Networks (RNNs) are a specialized 

category of artificial neural networks meticulously 

designed for the processing of sequential data, where the 

order and dependencies between data points are 

paramount. This makes them inherently suitable for 

applications involving time series data, such as 

physiological signals, electronic health record (EHR) 

entries over time, or natural language sequences [13]. 

Unlike conventional feedforward neural networks, RNNs 

possess internal connections that enable information to 

flow in a cyclical manner, creating a form of "memory" 

that allows them to retain information from previous 

steps in the sequence and leverage it for current and 

future predictions. 

The fundamental building blocks of RNNs are memory 

cells, which are responsible for storing and updating 

information based on both the current input and the 

network's state from the preceding time step. At each 

sequential step, a memory cell accepts the current input 

along with the hidden state from the previous step, 

subsequently producing an output and an updated 

hidden state. This iterative process, applied across the 

entire sequence, empowers the network to capture 

complex patterns and intricate relationships embedded 

within the sequential data. 

A key advantage of RNNs is their inherent capacity to 

handle inputs and outputs of variable lengths, making 

them exceptionally well-suited for tasks such as speech 

recognition, machine translation, and sentiment analysis. 

However, traditional RNNs suffer from the "vanishing 

gradient problem," which severely limits their ability to 

learn and retain long-term dependencies within 

sequences. As the sequence length increases, the 

influence of earlier inputs on later predictions diminishes 

significantly, making it challenging to capture distant 

relationships. 

To address these limitations, Long Short-Term Memory 

(LSTM) networks were introduced as a specialized type 

of RNN architecture. LSTMs are engineered to effectively 

mitigate the vanishing gradient problem, enabling them 

to learn and preserve information over extended periods 

of time within sequential data. The core innovation of 

LSTMs lies in the incorporation of sophisticated 

"memory cells" and a system of "gates" (input, forget, and 

output gates). These gates act as intelligent regulators, 

controlling the flow of information into, out of, and within 

the memory cell, thereby determining what information is 

retained, forgotten, or passed on. This selective control 

allows LSTM networks to selectively remember or forget 

past information, effectively capturing long-term 

dependencies that are crucial for understanding complex 

temporal patterns. The LSTM architecture has achieved 

remarkable success in a wide array of applications, 

particularly those involving long sequences or intricate 

temporal dependencies, such as natural language 

processing, speech recognition, and time series prediction 

in healthcare. 

2.2. Unsupervised Learning Architectures 

Unsupervised learning is a distinct paradigm within deep 

learning, designed to discover hidden patterns and 

structures within unlabeled datasets. Unlike supervised 

learning, there are no explicit output labels provided 

during training. Instead, these models aim to learn 

inherent characteristics, representations, or distributions 

of the data. Unsupervised learning methods are 

particularly valuable when labeled data is scarce or 

expensive to obtain, serving as a powerful complement to 

traditional learning techniques for managing and making 

sense of large volumes of unlabeled information. Training 

in unsupervised deep learning often involves techniques 

like stacked constrained Boltzmann machines (RBMs) or 

stacked autoencoders, which are used for feature learning 

and pre-training to initialize deeper networks, followed by 

fine-tuning with global adjustments [13]. 

2.2.1. Autoencoders (AEs) 

Autoencoders (AEs) are a class of unsupervised neural 

networks primarily utilized for efficient data encoding, 

dimensionality reduction, and feature learning. 

Architecturally, an autoencoder is designed such that its 

output is intended to be a reconstruction of its input. The 

network achieves this by compressing the input data into 

a lower-dimensional representation, often referred to as a 

"code" or "hidden state representation," and then 

subsequently reconstructing the output from this 

compressed representation [14]. 

An autoencoder fundamentally consists of three 

interconnected components: 

1. Encoder: This part of the network is responsible for 

taking the input data and transforming it into a 

compressed, lower-dimensional representation. It learns 

to capture the most salient features of the input. 

2. Code: This is the bottleneck layer, representing the 

compressed, latent-space representation produced by the 

encoder. It serves as a compact summary or compressed 

version of the original data. 

3. Decoder: This component takes the code as input 

and endeavors to reconstruct the original input from this 

compressed representation. 
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To effectively train an autoencoder, three key elements 

are required: 

1. An encoding method: Defines how the input is 

mapped to the code. 

2. A decoding method: Defines how the code is 

mapped back to the output. 

3. A loss function: Quantifies the discrepancy 

between the reconstructed output and the original input, 

which the network aims to minimize during training. 

The primary function of an autoencoder revolves around 

dimensionality reduction or data compression, 

characterized by three essential properties: 

● Data-specific: An autoencoder trained on a 

particular dataset will perform well only on data similar 

to its training data. It is not designed for general data 

compression like JPEG or MP3. 

● Lossy: The reconstruction of the input from the 

compressed code is generally not perfect; some 

information is inevitably lost during the compression-

decompression cycle. 

● No supervision: They learn from unlabeled data 

by attempting to reconstruct their own input, 

distinguishing them from supervised learning algorithms 

[15]. 

Autoencoders are highly versatile and find applications 

in various domains, including dimensionality reduction, 

robust feature extraction, effective data denoising, and 

anomaly detection. By training an autoencoder on a 

specific dataset, it develops the capacity to capture the 

intrinsic underlying structure and statistical regularities 

of the data, thereby generating meaningful and compact 

representations. A particularly effective variant, the Deep 

Wavelet Autoencoder (DWA), has demonstrated 

significant promise in the complex task of brain MRI 

image classification for cancer detection, leveraging 

wavelet transforms for enhanced feature extraction [26]. 

2.2.2. Restricted Boltzmann Machines (RBMs) 

Restricted Boltzmann Machines (RBMs) are a class of 

generative stochastic neural networks that are 

instrumental in unsupervised learning, particularly for 

tasks such as data classification, dimensionality 

reduction, and feature extraction. RBMs are probabilistic 

graphical models that can be conceptualized as shallow, 

two-layer neural networks with unique connectivity 

constraints. They consist of two layers of neurons: a 

"visible" layer, which corresponds to the input data, and 

a "hidden" layer, which learns abstract features or 

representations of the input [16]. 

The defining characteristic of an RBM is its "restricted" 

architecture: there are no connections between neurons 

within the same layer (i.e., no visible-to-visible or hidden-

to-hidden connections). Connections only exist 

symmetrically between pairs of nodes in the visible layer 

and the hidden layer, forming a bipartite graph. 

Additionally, all visible and hidden neurons are connected 

to a bias unit, which influences their activation. This 

restricted connectivity simplifies the learning process 

compared to a full Boltzmann machine [13]. 

RBMs learn a probability distribution over their input data 

by adjusting the weights of the connections between the 

visible and hidden units. During training, the network 

iteratively attempts to reconstruct its input, and the 

difference between the original input and the 

reconstruction error guides the learning process. This 

allows RBMs to discover latent factors and correlations 

within the data. 

RBMs are highly versatile models employed across a broad 

spectrum of tasks, including collaborative filtering for 

recommendation systems, sophisticated image 

recognition, advanced text analysis, and efficient feature 

learning. They serve as fundamental building blocks for 

more complex deep learning architectures, such as Deep 

Belief Networks (DBNs), where multiple RBMs are stacked 

to form a deeper generative model. 

2.2.3. Deep Belief Networks (DBNs) 

Deep Belief Networks (DBNs) represent a powerful type of 

artificial neural network characterized by their multi-

layered, hierarchical structure. These networks are 

composed of several layers of interconnected nodes, or 

neurons, organized in a way that allows them to learn and 

represent complex patterns and relationships within data. 

DBNs are considered "deep" because they typically 

incorporate more than two hidden layers, enabling them 

to capture highly abstract and intricate features as 

information propagates through the network [17]. 

The unique training methodology of DBNs contributes 

significantly to their effectiveness. DBNs are trained layer 

by layer in an unsupervised manner. Each layer within a 

DBN can be conceptualized and trained as a Restricted 

Boltzmann Machine (RBM) that learns features from the 

output of the preceding layer. This greedy, layer-wise pre-

training approach addresses the challenge of training deep 

networks by initializing the weights in a way that places 

the network in a good region of the parameter space, thus 

facilitating more effective fine-tuning. 

The training process for a DBN typically involves two main 

phases: 

1. Unsupervised Pre-training: In this phase, each RBM 

layer is trained sequentially on the unlabeled data. The 

first RBM learns features directly from the input data, and 

subsequently, the learned features (activations of its 

hidden units) become the input for training the next RBM 

layer. This process continues for all hidden layers, 

effectively extracting increasingly abstract features at each 

successive level. This unsupervised pre-training is crucial 

for data processing and learning robust representations 

[17]. 

2. Supervised Fine-tuning: After the unsupervised 
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pre-training of all layers, a final supervised layer (e.g., a 

softmax classifier) is typically added to the top of the 

DBN. The entire network is then fine-tuned using labeled 

data through backpropagation. This global optimization 

aims to further converge the DBN towards an optimal 

solution for the specific supervised task, such as 

classification or regression. 

The layer-by-layer training approach makes DBNs fast 

and efficient compared to other deep learning methods, 

especially when dealing with large datasets. DBNs have 

found considerable success in various applications, 

including image recognition, speech recognition, 

sophisticated recommendation systems, and complex 

natural language processing tasks, demonstrating their 

capacity to model intricate data distributions. 

2.2.4. Generative Adversarial Networks (GANs) 

Generative Adversarial Networks (GANs) represent a 

groundbreaking class of unsupervised deep learning 

models that have revolutionized the field of generative 

modeling. In their most common form, GANs learn to 

generate new data instances that closely resemble the 

training data, without requiring explicit labels. This is 

typically achieved by observing patterns in a collection of 

images, videos, or other binary files, and subsequently 

learning the underlying structure and distribution of that 

data. 

The innovative architecture of a GAN consists of two 

distinct neural network components that engage in a 

dynamic, adversarial game: 

1. Generator (G): The generator's primary role is to 

create new data instances (e.g., synthetic images, text, or 

audio samples) that are indistinguishable from the real 

data on which the system was trained. It takes a random 

noise vector as input and transforms it into a data sample. 

2. Discriminator (D): The discriminator acts as a 

binary classifier. Its job is to distinguish between the real 

data samples (from the training dataset) and the fake 

data samples produced by the generator. It outputs a 

probability representing whether the input it received is 

real or fake. 

The training process for GANs is an iterative, zero-sum 

game known as adversarial training. The generator and 

discriminator are pitted against each other: 

● The generator attempts to produce increasingly 

realistic data to fool the discriminator. 

● The discriminator simultaneously improves its 

ability to differentiate between real and fake data. 

This adversarial process continues until the generator 

becomes proficient enough that the discriminator can no 

longer reliably distinguish between real and generated 

samples (i.e., the discriminator predicts a 50% chance of 

being real for both). At this equilibrium, the generator 

has effectively learned the underlying data distribution 

of the training set. 

GANs offer a unique and powerful approach to 

understanding, generating, and manipulating complex 

data distributions. Their ability to synthesize highly 

realistic data makes them invaluable tools across various 

domains, including image synthesis, data augmentation 

(generating synthetic medical images for training), style 

transfer, and even drug discovery (generating novel 

molecular structures). While primarily unsupervised, 

variations like Conditional GANs (CGANs) incorporate 

labels to generate specific types of data, expanding their 

utility. 

3. Applications of Deep Learning in Healthcare 

Deep learning has significantly advanced across a wide 

range of healthcare applications, fundamentally 

transforming how diseases are diagnosed, how treatments 

are planned, and how patient care is delivered. Its capacity 

to analyze and interpret complex data has opened new 

avenues for precision medicine and improved health 

outcomes. 

3.1. Medical Imaging and Diagnostics 

Deep learning, particularly through the use of 

Convolutional Neural Networks (CNNs), has become a 

cornerstone in medical imaging, facilitating automated 

and highly accurate analyses that assist clinicians in 

making critical decisions. 

● Cardiovascular Imaging: Automated and precise 

segmentation of cardiac structures from medical images is 

crucial for evaluating heart function. A combined deep-

learning and deformable-model approach has successfully 

achieved fully automatic segmentation of the left ventricle 

in cardiac MRI, significantly improving the efficiency and 

accuracy of cardiac assessments [9]. This advancement 

allows for more consistent and reliable quantification of 

ventricular volumes and ejection fractions. 

● Neurological Disorders: Deep learning models have 

demonstrated significant efficacy in the early detection 

and classification of complex neurological conditions. For 

Alzheimer's Disease (AD) and Mild Cognitive Impairment 

(MCI), multimodal deep learning models integrate various 

data types—imaging (e.g., MRI), genetic (e.g., single 

nucleotide polymorphisms or SNPs), and clinical test 

data—to classify patients into distinct groups (AD, MCI, 

and controls). These models use stacked denoising 

autoencoders for clinical and genetic data, and 3D-CNNs 

for imaging data. Studies have shown that deep learning 

models consistently outperform shallower models for 

single-modality data, and fusion of multiple modalities 

(e.g., EHR + SNP, EHR + Imaging + SNP) yields superior 

prediction accuracies [10, 18]. Similarly, deep learning, 

including CNNs, has been effectively applied to the 

diagnosis of Parkinson's disease, leveraging diverse input 

data such as MRI or PET scans, voice recordings, and 

handwriting samples to identify subtle disease markers 

and improve diagnostic accuracy, achieving accuracies as 

high as 88.9% in some systems [19]. Furthermore, deep 

transfer learning techniques have refined Parkinson's 
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neurological disorder identification, particularly using 

handwriting images as an early indicator, achieving up to 

98.28% accuracy through fine-tuning based approaches 

[25]. 

● Cancer Detection: Deep learning models are 

revolutionizing cancer diagnosis by providing highly 

accurate and automated analysis of medical images. 

Beyond the application of Deep Wavelet Autoencoders 

(DWAs) combined with Deep Neural Networks (DNNs) 

for brain MRI image classification, which achieved 96% 

accuracy on datasets like RIDER [26], deep neural 

networks have reached dermatologist-level proficiency 

in classifying skin cancer from clinical images. By training 

on vast datasets (e.g., 129,450 clinical images), these 

CNNs can accurately identify common cancers and even 

the deadliest forms of skin cancer, demonstrating their 

potential to augment and support clinical expertise in 

critical diagnostic scenarios [21]. 

● Infectious Diseases: The rapid adaptability of 

deep learning technologies to emerging health crises is 

evident in the development of systems like COVID-

DeepNet. These hybrid multimodal deep learning 

systems have been specifically designed to improve the 

detection of COVID-19 pneumonia in chest X-ray images, 

showcasing the technology's ability to quickly provide 

crucial diagnostic support during pandemics [11, 24]. 

These systems often integrate multiple data modalities 

and leverage advanced CNN architectures to enhance 

detection accuracy and reduce false positives. 

3.2. Disease Diagnosis and Predictive Analytics 

Deep learning's inherent ability to process complex 

sequential and heterogeneous data makes it an ideal 

candidate for advanced disease diagnosis and robust risk 

prediction, shifting healthcare towards more proactive 

and preventive models. 

● Diabetes Detection: Convolutional Long Short-

Term Memory (Conv-LSTM) models, a sophisticated 

form of deep learning, have been effectively utilized for 

detecting diabetes. These models combine the spatial 

feature extraction capabilities of CNNs with the temporal 

pattern recognition strengths of LSTMs. By analyzing 

medical data, such as images or time series records from 

datasets like the Pima Indians Diabetes Database (PIDD), 

Conv-LSTM models can identify subtle patterns and 

changes over time indicative of diabetes-related 

abnormalities. This hybrid approach has demonstrated 

remarkable accuracy, achieving up to 97.26% in some 

studies, by capturing crucial temporal dependencies in 

the input data [20]. 

● Cardiovascular Risk Assessment: Proactive 

healthcare heavily relies on identifying individuals at 

high risk for major cardiovascular events. Hybrid ECG-

based deep networks are being developed to address this 

need, particularly for hypertension patients. These 

networks integrate electrocardiogram (ECG) data with 

advanced deep learning techniques (combining CNNs for 

spatial features and LSTMs for temporal dependencies) to 

improve the accuracy of risk prediction. By learning 

patterns from ECG signals, these models can identify high-

risk patients earlier, enabling timely interventions and 

personalized preventative strategies [27]. 

● Predictive Medicine: Models such as "DeepCare" 

employ sophisticated deep dynamic memory networks for 

predictive medicine. These models analyze extensive 

longitudinal electronic health records (EHRs) to 

accurately forecast future patient outcomes and inform 

personalized care plans. DeepCare integrates both static 

(e.g., demographics) and dynamic (e.g., lab results, 

medications, diagnoses, medical event sequences) 

features, adapting and updating its knowledge base with 

new patient information. Experiments on large datasets of 

real-world EHRs have shown that DeepCare significantly 

outperforms baseline models in predicting critical clinical 

outcomes, including mortality and readmission rates [22]. 

3.3. Electronic Health Records (EHR) and Natural 

Language Processing (NLP) 

Deep learning's capabilities extend significantly to 

processing, analyzing, and extracting valuable insights 

from the vast amounts of unstructured clinical notes and 

large-scale EHR datasets, which often contain critical 

information in free-text format. 

● Medical Record Analysis: The development of 

models like "Deepr," a convolutional network specifically 

designed for medical records, demonstrates the immense 

potential to derive meaningful patterns and insights from 

diverse medical data. By effectively analyzing complex 

relationships and dependencies within medical records, 

Deepr improves diagnostic accuracy, enhances disease 

classification, and provides robust decision support for 

treatment recommendations. It has been validated on 

hospital data for tasks such as predicting unplanned 

readmissions after discharge, showcasing its practical 

utility in real-world clinical settings [23]. 

● Information Processing and Verification: The 

application of machine learning, particularly through 

advanced natural language processing (NLP) techniques, 

has been instrumental in improving the detection and 

mitigation of fabricated news models [5]. This parallels its 

potential in healthcare systems for processing, verifying, 

and ensuring the integrity of medical information. NLP-

driven deep learning models can analyze clinical notes, 

research papers, and patient-reported outcomes to extract 

key entities, identify relationships, and synthesize 

information, thereby enhancing data quality, supporting 

clinical decision-making, and streamlining research 

processes while ensuring information accuracy. 

3.4. General Healthcare AI and Emerging Applications 

The broader integration and acceleration of deep learning 

across various healthcare functions are gaining significant 

momentum, spurred by initiatives and growing 

recognition of its potential. 
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● DL4HC (Deep Learning for Healthcare): This 

initiative highlights the increasing adoption of deep 

learning solutions across the healthcare spectrum, 

emphasizing their role in addressing diverse medical 

challenges [6]. This trend reflects a broader recognition 

of AI's transformative potential beyond specific 

diagnostic tasks. 

● Persuasive Technology for Healthy Ageing: 

Leveraging AI and deep learning, persuasive 

technologies are being actively explored to support 

active and healthy aging. These technologies aim to 

influence behaviors, promote wellness, and provide 

personalized interventions to improve the quality of life 

for an aging population, demonstrating the 

multidisciplinary impact of AI advancements in 

healthcare [8]. 

● Emerging Frontiers: While significant progress 

has been achieved, the landscape of deep learning 

applications in healthcare is continuously expanding. 

Numerous emerging applications still require extensive 

exploration, promising even greater transformations in 

patient care and medical research. These include, but are 

not limited to, drug discovery (e.g., generative models for 

new molecule design), genomics (e.g., identifying 

disease-causing genetic mutations, personalized drug 

response prediction), and advanced telemedicine 

solutions that leverage AI for remote diagnostics and 

patient monitoring [9]. The fusion of deep learning with 

other cutting-edge technologies, such as advanced 

robotics for surgical assistance or nanotechnology for 

targeted drug delivery, represents future directions that 

could revolutionize medical practice. 

4. Discussion: Challenges and Future Directions 

The advent of deep learning in healthcare has ushered in 

an era of unprecedented capabilities, offering 

sophisticated tools that promise to significantly enhance 

automated diagnosis, facilitate highly personalized 

treatment planning, and provide robust predictive 

analytics. The inherent ability of deep learning models to 

identify and learn subtle, often imperceptible, patterns 

within vast and intricate datasets frequently surpasses 

human capabilities, leading to tangible improvements in 

diagnostic accuracy, operational efficiency, and, most 

importantly, patient outcomes. Evident successes, such 

as the high precision achieved in medical image analysis 

for cardiac segmentation, COVID-19 detection, and 

cancer diagnosis [9, 11, 21], alongside the demonstrable 

predictive power in managing chronic conditions like 

diabetes and cardiovascular diseases [20, 27], 

collectively underscore the profound value proposition 

of deep learning in clinical practice. 

Despite these transformative advancements, the 

widespread adoption and optimal deployment of deep 

learning in healthcare are still confronted by several 

complex and interconnected challenges: 

4.1. Data Availability, Quality, and Privacy 

A critical bottleneck in the development and deployment 

of robust deep learning models is their voracious appetite 

for large, high-quality, and diverse datasets. In healthcare, 

this presents significant hurdles: 

● Data Scarcity: While immense amounts of raw 

health data exist, properly annotated and curated datasets 

suitable for supervised learning are often scarce and 

expensive to produce. 

● Data Heterogeneity: Healthcare data comes in 

various formats (images, text, time-series, genomics), 

making integration and standardization challenging. 

● Privacy Concerns: Patient data is highly sensitive. 

Strict regulatory frameworks (e.g., HIPAA, GDPR) and 

ethical considerations surrounding data privacy and 

security often restrict access to large, centralized datasets, 

hindering collaborative research and model development. 

This necessitates innovative approaches to data sharing 

and learning without direct data transfer. 

● Class Imbalance: Medical datasets often suffer from 

severe class imbalance, where diseases of interest are rare. 

This can lead to models that perform poorly on minority 

classes, providing skewed or unreliable predictions. 

Generating synthetic medical datasets with proper 

quantity and quality, while addressing patient consent and 

security, is a crucial future direction to mitigate these 

issues. 

4.2. Interpretability and Explainability (XAI) 

The "black box" nature of many complex deep learning 

models remains a significant concern, particularly in 

clinical settings. Clinicians require not only accurate 

predictions but also a clear understanding of the reasoning 

behind a diagnosis or a recommended treatment. 

● Trust and Accountability: A lack of interpretability 

can erode trust among healthcare professionals and 

patients, making it difficult to accept and act upon AI-

generated insights. Clinicians need to understand why a 

particular decision was made to ensure accountability and 

to intervene effectively if the model errs. 

● Clinical Validation: Explaining model decisions is 

crucial for clinical validation and for integrating AI into 

existing workflows. It allows experts to identify potential 

biases, errors, or unexpected behaviors in the model. 

● Legal and Ethical Implications: The inability to 

explain model decisions raises ethical and legal questions, 

especially in critical applications like diagnosis or 

treatment planning. 

● Future research must prioritize the development of 

Explainable AI (XAI) methods to provide insights into 

model predictions. Techniques like attention mechanisms, 

saliency maps, LIME (Local Interpretable Model-agnostic 

Explanations), and SHAP (SHapley Additive exPlanations) 

can help elucidate which features or inputs contribute 

most to a model's decision, making the models more 

transparent and trustworthy [7]. 
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4.3. Generalizability and Robustness 

Deep learning models, while powerful, can be prone to 

overfitting to their training data and may not generalize 

well to unseen data from different populations, 

institutions, or data collection protocols. 

● Dataset Shift: Differences in patient 

demographics, disease prevalence, imaging protocols, or 

clinical practices across institutions can lead to 

performance degradation when a model trained in one 

setting is applied in another. 

● Adversarial Attacks: Deep learning models can be 

vulnerable to subtle, carefully crafted adversarial 

perturbations in input data that are imperceptible to 

humans but can cause the model to make incorrect 

predictions. Ensuring model robustness against such 

attacks is critical in healthcare. 

● The need for robust models, as demonstrated by 

efforts to improve patient classification from medical 

images [10], is paramount for reliable deployment across 

diverse real-world healthcare environments. 

4.4. Ethical Considerations and Regulatory Landscape 

The deployment of AI in healthcare raises complex 

ethical questions that extend beyond technical 

challenges: 

● Bias and Fairness: AI models can inherit and even 

amplify biases present in the training data, leading to 

unequal or unfair outcomes for certain demographic 

groups. Ensuring fairness and equity in AI applications is 

a fundamental ethical imperative. 

● Accountability: Determining who is responsible 

when an AI system makes an error that harms a patient 

(the developer, the clinician, the hospital?) remains a 

complex legal and ethical challenge. 

● Patient Autonomy: The role of AI in decision-

making must respect patient autonomy and ensure that 

human oversight and ultimate decision-making authority 

are maintained. 

● Regulatory Frameworks: Developing appropriate 

regulatory frameworks that encourage innovation while 

ensuring safety, efficacy, and accountability for AI in 

healthcare is an ongoing global effort. 

4.5. Integration into Clinical Workflow and Scalability 

Successfully integrating deep learning models into 

existing, often complex and rigid, clinical workflows is 

another significant challenge. 

● Workflow Disruption: AI tools must seamlessly 

integrate with existing systems (EHRs, PACS) and not 

impose additional burdens on clinicians. 

● Scalability: Deploying and maintaining AI models 

across large hospital systems or national healthcare 

infrastructures requires robust, scalable, and secure IT 

infrastructure. 

● Cost-Effectiveness: The cost of developing, 

validating, deploying, and maintaining AI solutions must 

be justified by demonstrable improvements in patient 

outcomes or efficiency. 

4.6. Research Gaps and Future Directions 

While the progress is substantial, several research gaps 

and promising future directions exist: 

● Temporal and Interpretable Modeling: As 

highlighted in the research gaps, temporal modeling, 

which incorporates the "time factor" to understand 

disease progression over time, and interpretable 

modeling, which provides "explanation & understanding" 

for predicted diseases, are crucial for healthcare. Current 

approaches often detect diseases on an early basis without 

sufficient focus on long-term progression or actionable 

explanations for clinicians. Future work needs to move 

beyond short-term disease detection to long-term 

monitoring and prediction of chronic diseases like cancer 

and Parkinson's, which require timely and continuous 

treatment [PDF, Research Gap]. 

● Multimodal Data Fusion: Developing more 

sophisticated methods for integrating and learning from 

heterogeneous multimodal data (e.g., combining medical 

images, genomic sequences, textual clinical notes, and 

wearable sensor data) will unlock richer insights and more 

comprehensive patient profiles. 

● Federated Learning and Privacy-Preserving AI: To 

address data privacy and access issues, federated learning 

allows models to be trained on decentralized datasets at 

their local sources without the raw data ever leaving the 

institution. This approach facilitates collaborative model 

development while preserving data privacy. Other 

privacy-preserving techniques like differential privacy 

and homomorphic encryption will also be crucial. 

● Reinforcement Learning in Healthcare: Exploring 

the application of reinforcement learning for dynamic 

treatment planning, clinical trial optimization, and 

personalized intervention strategies. 

● Drug Discovery and Development: Deep learning 

holds immense potential in accelerating drug discovery, 

including target identification, lead compound generation, 

and predicting drug-target interactions, as well as 

analyzing chemical structures in clinical processes. 

● Automated Interpretation of Medical Reports: 

Developing deep learning systems to automate the 

interpretation of complex medical reports (MRI, CT scans, 

X-rays) in real-time. This would significantly reduce the 

manual interpretation time and dependence on highly 

specialized medical experts, especially in rural areas [PDF, 

Future Directions]. 

● Primary Treatment Recommendation and Remote 

Monitoring: AI systems could suggest primary medicines 

for initial disease stages and recommend specialist 

consultations when needed, particularly benefiting rural 
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and underserved populations. Enhancing telemedicine 

with deep learning for remote analysis and diagnosis, 

allowing healthcare professionals to make informed 

decisions from a distance, is also a vital area of 

development [PDF, Future Directions]. 

● Chronic Disease Diagnosis and Management: 

Focus on automatically extracting useful information 

from electronic medical records and text records for 

chronic disease diagnosis, which is a major global health 

problem. Deep learning can play a pivotal role in 

understanding and managing these long-term conditions. 

● Integration with Other Technologies: Synergistic 

integration of deep learning with other AI technologies, 

such as smart vision systems and robotics, drawing 

lessons from broader applications like building and 

construction 4.0 [2], will further enhance the capabilities 

and efficiency of healthcare systems. 

● Standardization and Benchmarking: Establishing 

standardized evaluation and benchmarking frameworks 

for AI models in healthcare is crucial to ensure reliability, 

accuracy, and comparability across different models and 

datasets. 

The continued exploration of these emerging 

applications [9] and the fostering of robust 

collaborations between AI researchers, clinicians, 

policymakers, and industry stakeholders will be 

absolutely essential to fully realize the transformative 

potential of deep learning. This collaborative effort will 

pave the way for unlocking new frontiers in patient care, 

public health initiatives, and medical research. 

5. CONCLUSION 

Deep learning has undeniably emerged as a revolutionary 

and indispensable force in modern healthcare, offering an 

array of sophisticated tools capable of addressing some of 

the most intricate and pressing challenges confronting 

contemporary medicine. From significantly enhancing 

diagnostic accuracy through advanced medical image 

analysis to enabling the development of highly 

personalized treatment strategies and fostering proactive 

health management through predictive analytics, its 

profound and far-reaching impact is undeniable. The 

inherent ability of deep learning models to discern and 

model complex patterns within vast and diverse datasets 

has opened up unprecedented opportunities, 

fundamentally improving disease diagnosis, refining 

treatment planning paradigms, and ultimately elevating 

patient outcomes. 

While the trajectory of progress is remarkable, persistent 

challenges related to data availability and accessibility, the 

interpretability and explainability of complex AI models, 

stringent data privacy and security requirements, and 

evolving regulatory frameworks continue to warrant 

diligent attention. Nevertheless, ongoing, cutting-edge 

research and the fostering of robust interdisciplinary 

collaborations among AI scientists, medical professionals, 

and policy developers are actively paving the way for the 

development of more robust, ethically sound, and 

universally accessible deep learning solutions. The 

continuous and deepening integration of these advanced 

methodologies promises to fundamentally reshape the 

future of healthcare, driving it towards a paradigm where 

more precise, proactive, and truly patient-centric care not 

only becomes the standard but is accessible on a global 

scale. 

 

Tables 

To further enhance the comprehensiveness and readability of this review, the following tables provide a structured 

summary of key deep learning architectures and their diverse applications in healthcare. 

Table 1: Overview of Key Deep Learning Architectures in Healthcare 

Architecture Type of 

Learning 

Primary Use 

in 

Healthcare 

Key 

Advantages 

Limitations/

Consideratio

ns 

Relevant 

References 

Convolution

al Neural 

Networks 

(CNNs) 

Supervised Medical 

Image 

Analysis 

(classificatio

n, 

segmentatio

n, detection 

in X-rays, CT, 

MRI) 

Automatic 

feature 

extraction; 

highly 

effective for 

spatial data; 

strong 

performance 

in image 

Requires 

large, 

labeled 

image 

datasets; 

interpretabili

ty can be 

challenging; 

computation

[12], [13], 

[21], [24], 

[26] 
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recognition. ally 

intensive. 

Recurrent 

Neural 

Networks 

(RNNs) 

Supervised Sequential 

Data Analysis 

(EHRs, 

physiological 

signals) 

Handles 

variable-

length 

sequences; 

captures 

temporal 

dependencie

s. 

Suffers from 

vanishing/ex

ploding 

gradients; 

difficulty 

capturing 

long-term 

dependencie

s. 

[13] 

Long Short-

Term 

Memory 

(LSTM) 

Supervised Sequential 

Data Analysis 

(EHRs, time-

series, 

speech) 

Mitigates 

vanishing 

gradient 

problem; 

excels at 

capturing 

long-term 

dependencie

s in 

sequential 

data. 

More 

complex 

than 

standard 

RNNs; 

computation

ally 

demanding; 

still sensitive 

to 

hyperparam

eter tuning. 

[13], [20] 

Autoencoder

s (AEs) 

Unsupervise

d 

Dimensionali

ty Reduction, 

Feature 

Learning, 

Denoising, 

Anomaly 

Detection 

Learns 

efficient data 

representati

ons without 

labels; useful 

for data 

compression 

and pre-

training. 

Lossy 

reconstructio

n; 

performance 

is data-

specific; can 

struggle with 

complex, 

high-

dimensional 

data. 

[14], [15], 

[17], [26] 

Restricted 

Boltzmann 

Machines 

(RBMs) 

Unsupervise

d 

Feature 

Extraction, 

Dimensionali

ty Reduction, 

Collaborative 

Filtering 

Learns 

probability 

distributions; 

effective as 

building 

blocks for 

DBNs. 

Restricted 

connectivity; 

complex 

training for 

deep stacks; 

less common 

for direct 

application 

now. 

[13], [16], 

[17] 
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Deep Belief 

Networks 

(DBNs) 

Unsupervise

d/Supervised 

Feature 

Learning, 

Classification 

(after fine-

tuning) 

Greedy 

layer-wise 

pre-training 

makes them 

efficient for 

deep 

structures; 

learns 

hierarchical 

features. 

Can be 

complex to 

implement; 

fine-tuning 

phase is 

crucial for 

performance

. 

[17] 

Generative 

Adversarial 

Networks 

(GANs) 

Unsupervise

d 

Synthetic 

Data 

Generation 

(e.g., medical 

images), 

Data 

Augmentatio

n 

Generates 

highly 

realistic 

data; useful 

for 

addressing 

data scarcity 

and privacy 

in 

healthcare. 

Challenging 

to train 

(mode 

collapse, 

instability); 

evaluation of 

generated 

data quality 

can be 

difficult. 

 

Table 2: Key Applications of Deep Learning in Healthcare 

Application 

Area 

Specific 

Task/Proble

m 

Deep 

Learning 

Model/Appr

oach 

Benefits/Ach

ievements 

Challenges/L

imitations 

Relevant 

References 

Medical 

Imaging & 

Diagnostics 

     

Cardiovascul

ar Imaging 

Left Ventricle 

Segmentatio

n in Cardiac 

MRI 

Deep-

learning & 

Deformable 

Model 

Fully 

automatic, 

significantly 

improved 

efficiency 

and accuracy 

in cardiac 

function 

assessment. 

Requires 

specific 

image 

modalities; 

generalizatio

n across 

diverse MRI 

scanner 

types. 

[9] 

Neurological 

Disorders 

Early 

Detection & 

Classification 

of AD/MCI 

Multimodal 

DL (Stacked 

Autoencoder

s + 3D-CNNs) 

Integrates 

imaging, 

genetic, and 

clinical data 

for higher 

Data 

heterogeneit

y; need for 

larger, 

diverse 

[10], [18] 
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prediction 

accuracies; 

outperforms 

single-

modality 

models. 

datasets for 

generalizabili

ty; 

interpretabili

ty of 

multimodal 

fusion. 

Parkinson's 

Disease 

Diagnosis 

Diagnosis 

using 

MRI/PET 

scans, voice, 

handwriting 

CNNs, Deep 

Transfer 

Learning 

Automated 

identification 

of subtle 

disease 

markers; 

high 

accuracy (up 

to 98.28% 

for 

handwriting 

analysis). 

Dependency 

on specific 

input 

modalities; 

generalizabili

ty to diverse 

patient 

populations. 

[19], [25] 

Cancer 

Detection 

Skin Cancer 

Classification 

CNNs Achieved 

dermatologis

t-level 

proficiency; 

automated, 

high 

accuracy in 

identifying 

common/de

adliest skin 

cancers. 

Requires vast 

image 

datasets; 

interpretabili

ty of "black 

box" 

decisions; 

ethical 

consideratio

ns for 

diagnosis. 

[21] 

Cancer 

Detection 

Brain MRI 

Image 

Classification 

Deep 

Wavelet 

Autoencoder 

(DWA) + 

DNN 

Accurate and 

efficient 

classification

; effectively 

enhances 

image 

representati

on through 

wavelet 

transforms 

(96% 

accuracy). 

Complexity 

of the hybrid 

model; 

potential for 

high 

computation

al 

requirement

s. 

[26] 

Infectious 

Diseases 

COVID-19 

Pneumonia 

Detection in 

Hybrid 

Multimodal 

Deep 

Rapid and 

accurate 

diagnosis 

Data 

availability 

for new 

[11], [24] 
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Chest X-rays Learning 

(e.g., COVID-

DeepNet) 

during 

pandemics; 

integrates 

multiple data 

modalities 

for enhanced 

detection. 

pathogens; 

robustness 

to variations 

in image 

quality 

across 

hospitals. 

Disease 

Diagnosis & 

Predictive 

Analytics 

     

Diabetes 

Detection 

Diagnosis 

using 

medical data 

(images, 

time series) 

Convolutiona

l LSTM 

(Conv-LSTM) 

Combines 

spatial and 

temporal 

feature 

extraction; 

high 

accuracy in 

identifying 

diabetes-

related 

abnormalitie

s (97.26%). 

Interpretabili

ty of 

complex 

spatio-

temporal 

features; 

sensitivity to 

data quality 

and balance. 

[20] 

Cardiovascul

ar Risk 

Early 

Identification 

of High-Risk 

Hypertensio

n Patients 

Hybrid ECG-

based Deep 

Networks 

(CNNs + 

LSTMs) 

Proactive 

risk 

prediction 

from ECG 

signals; 

improved 

accuracy by 

capturing 

spatial and 

temporal 

features. 

Data privacy 

of sensitive 

physiological 

signals; need 

for 

continuous 

monitoring 

infrastructur

e. 

[27] 

Predictive 

Medicine 

Forecasting 

Patient 

Outcomes 

(mortality, 

readmission) 

Deep 

Dynamic 

Memory 

Model 

(DeepCare) 

Analyzes 

longitudinal 

EHRs; adapts 

knowledge 

with new 

info; 

outperforms 

baselines in 

predicting 

clinical 

Complexity 

of EHR data; 

handling 

missing data; 

ethical 

implications 

of predicting 

patient 

outcomes. 

[22] 
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outcomes. 

EHR & NLP      

Medical 

Record 

Analysis 

Extracting 

Patterns & 

Predicting 

Readmission 

after 

discharge 

Deepr 

(Convolution

al Net for 

Medical 

Records) 

Improves 

diagnostic 

accuracy and 

decision 

support; 

effective in 

predicting 

critical 

clinical 

events. 

Handling 

unstructured 

text data; 

standardizati

on across 

different EHR 

systems; 

privacy 

concerns. 

[23] 

Information 

Processing 

Verification 

& Integrity in 

Healthcare 

Information 

Machine 

Learning 

with NLP 

Techniques 

Ensures 

integrity and 

accuracy of 

patient data; 

supports 

clinical 

decision-

making from 

textual 

sources. 

Ambiguity in 

natural 

language; 

computation

al cost for 

large text 

corpuses; 

domain-

specific 

language 

nuances. 

[5] 

General 

Healthcare 

AI & 

Emerging 

     

Healthcare 

Adoption 

General 

Deep 

Learning 

Applications 

Various DL 

models 

Addresses 

diverse 

medical 

challenges; 

reflects 

increasing 

integration 

and 

transformati

ve potential. 

Overcoming 

implementat

ion barriers; 

ensuring 

ethical 

deployment; 

addressing 

"black box" 

concerns. 

[6] 

Healthy 

Ageing 

Persuasive 

Technology 

to Support 

Active 

Ageing 

AI/Deep 

Learning-

driven 

solutions 

Influences 

behaviors 

and 

promotes 

wellness; 

provides 

Ethical 

consideratio

ns of 

persuasive 

tech; 

individual 

[8] 



EUROPEAN JOURNAL OF EMERGING DATA SCIENCE AND MACHINE LEARNING 

pg. 95  

personalized 

interventions 

for quality of 

life. 

variability in 

response; 

long-term 

effectiveness

. 

 

 

REFERENCES 

1. Amini, Mahyar, and Ali Rahmani. "Machine learning 

process evaluating damage classification of 

composites." International Journal of Science and 

Advanced Technology 9.12 (2023): 240-250. 

2. Baduge, Shanaka Kristombu, et al. "Artificial 

intelligence and smart vision for building and 

construction 4.0: Machine and deep learning 

methods and applications." Automation in 

Construction 141 (2022): 104440. 

3. Amini, Mahyar, Koosha Sharifani, and Ali Rahmani. 

"Machine Learning Model Towards Evaluating Data 

gathering methods in Manufacturing and 

Mechanical Engineering." International Journal of 

Applied Science and Engineering Research 15.4 

(2023): 349-362. 

4. Abd Elaziz, Mohamed, et al. "Advanced 

metaheuristic optimization techniques in 

applications of deep neural networks: a review." 

Neural Computing and Applications (2021): 1-21. 

5. Sharifani, Koosha and Amini, Mahyar and Akbari, 

Yaser and Aghajanzadeh Godarzi, Javad. "Operating 

Machine Learning across Natural Language 

Processing Techniques for Improvement of 

Fabricated News Model." International Journal of 

Science and Information System Research 12.9 

(2022): 20-44. 

6. Raghvendra Bhat, Sandya Mannarswamy, Shreyas N 

C, DL4HC: Deep Learning for Healthcare, CODS-

COMAD 2023, January 04–07, 2023, Pages 327–329. 

7. Shahab Shamshirband, Mahdis Fathi, Abdollah 

Dehzangi, Anthony Theodore Chronopoulos, Hamid 

Alinejad-Rokny, A review on deep learning 

approaches in healthcare systems: Taxonomies, 

challenges, and open issues, Journal of Biomedical 

Informatics, Volume 113, January 2021. 

8. M. Cabrita, H. op den Akker, M. Tabak, H.J. Hermens, 

M.M. Vollenbroek-Hutten, Persuasive technology to 

support active and healthy ageing: An exploration of 

past, present, and future, J. Biomed. Inform. 84 

(2018) 17-30. 

9. M. Avendi, A. Kheradvar, H. Jafarkhani, A combined 

deep-learning and deformable-model approach to 

fully automatic segmentation of the left ventricle in 

cardiac MRI Medical. Image Analysis., 30 (2016), pp. 

108-119. 

10. F. Li, L. Tran, K.-H. Thung, S. Ji, D. Shen, J. Li, A robust 

deep model for improved classification of AD/MCI 

patients IEEE J. Biomed. Health. Inf., 19 (2015), pp. 

1610-1616. 

11. Al-Waisy, A.S.; Mohammed, M.A.; Al-Fahdawi, S.; 

Maashi, M.S.; Garcia-Zapirain, B.; Abdulkareem, K.H.; 

Mostafa, S.A.; Le, D.N. COVID-DeepNet: Hybrid 

Multimodal Deep Learning System for Improving 

COVID-19 Pneumonia Detection in Chest X-ray 

Images. Comput. Mater. Contin. 2021, 67, 2409–2429. 

12. https://www.simplilearn.com/tutorials/deep-

learning-tutorial/deep-learning-algorithm 

13. Lakshmanna, K.; Kaluri, R.; Gundluru, N.; Alzamil, Z.S.; 

Rajput, D.S.; Khan, A.A.; Haq, M.A.; Alhussen, A. A 

Review on Deep Learning Techniques for IoT Data. 

Electronics 2022, 11, 1604. 

14. Abdel-Jaber, Hussein, Disha Devassy, Azhar Al Salam, 

Lamya Hidaytallah, and Malak EL-Amir. 2022. "A 

Review of Deep Learning Algorithms and Their 

Applications in Healthcare" Algorithms 15, no. 2: 71. 

15. Autoencoders Tutorial|What Are Autoencoders? 

Edureka. 12 October 2018. Available online: 

https://www.edureka.co/blog/autoencoders-

tutorial/ 

16. Fischer, A.; Igel, C. An introduction to restricted 

Boltzmann machines. In Iberoamerican Congress on 

Pattern Recognition; Springer: Berlin/Heidelberg, 

Germany, 2012; pp. 14–36. 

17. Hinton, G.E.; Salakhutdinov, R.R. Reducing the 

dimensionality of data with neural networks. Science 

2006, 313, 504–507. 

18. Janani Venugopalan, Li Tong, Hamid Reza 

Hassanzadeh & May D. Wang, “Multimodal deep 

learning models for early detection of Alzheimer’s 

disease stage”, 2021, Nature, Scientific reports, 

Article. 

19. S. Sivaranjini & C. M. Sujatha, “Deep learning-based 

diagnosis of Parkinson’s disease using convolutional 

neural network”, 2019, Multimedia Tools and 

Applications, Springer. 

20. Motiur Rahman, Dilshad Islam, Rokeya Jahan, Mukti, 



EUROPEAN JOURNAL OF EMERGING DATA SCIENCE AND MACHINE LEARNING 

pg. 96  

Indrajit Saha, “A deep learning approach based on 

convolutional LSTM for detecting diabetes”, 2020, 

Computational Biology and Chemistry, Volume 88, 

ELSEVIER. 

21. Andre Esteva1, Brett Kuprel, Roberto A. Novoa, 

Justin Ko, Susan M. Swetter, Helen M. Blau & 

Sebastian Thrun, “Dermatologist-level classification 

of skin cancer with deep neural networks”, 2017, 

Macmillan Publishers Limited, part of Springer 

Nature. 

22. Trang Pham, Truyen Tran, Dinh Phung and Svetha 

Venkatesh, “DeepCare: A Deep Dynamic Memory 

Model for Predictive Medicine”, 2016, Springer 

International Publishing Switzerland. 

23. Phuoc Nguyen, Truyen Tran, Nilmini 

Wickramasinghe, Svetha Venkatesh, “Deepr: A 

Convolutional Net for Medical Records”, 2017, IEEE 

Journal of Biomedical and Health Informatics, 

Volume: 21, Issue: 1. 

24. O.S.Albahri, A.A.Zaidan, A.S. Albahri, B.B.Zaidan, 

Karrar Hameed Abdulkareem, “Systematic review of 

artificial intelligence techniques in the detection and 

classification of COVID-19 medical images in term of 

evaluation and benchmarking: Taxonomy analysis, 

challenges, future solutions and methodological 

aspects”, 2020, Journal of Infection and Public 

Health, ELSEVIER. 

25. Amina Naseer, Monail Rani, Saeeda Naz, Muhammad 

Imran Razzak, Muhammad Imran, Guandong Xu, 

“Refining Parkinson’s neurological disorder 

identification through deep transfer learning”, 2019, 

Neural Computing and Applications, Springer. 

26. Pradeep Kumar Mallick, Seuc Ho Ryu, Sandeep 

Kumar Satapathy, Shruti Mishra, Gia Nhu Nguyen, 

Prayag Tiwari, “Brain MRI ImageClassification for 

Cancer Detection using Deep Wavelet Autoencoder 

based Deep Neural Network”, 2019, IEEE Access, 

Volume 7. 

27. Giovanni Paragliola, Antonio Coronato, “An hybrid 

ECG-based deep network for the early identification 

of high-risk to major cardiovascular events for 

hypertension patients”, 2021, Journal of Biomedical 

Informatics, ELSEVIER. 


