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ABSTRACT 

 
Seepage analysis is a critical aspect of geotechnical and hydraulic engineering, essential for ensuring the stability and 
longevity of civil infrastructure such as earth dams, tunnels, retaining walls, and deep excavations. Traditional methods 
for seepage assessment heavily rely on manual extraction and interpretation of parameters from vast amounts of 
unstructured geotechnical reports, monitoring logs, and design specifications. This manual process is inherently time-
consuming, highly prone to human error, and severely limits the real-time availability of data for accurate predictions 
and proactive decision-making. This article presents a novel, integrated framework that leverages cutting-edge Natural 
Language Processing (NLP) and deep learning techniques to automate the extraction of crucial geotechnical and seepage-
related information from diverse construction-related documents and to develop highly accurate predictive models for 
complex seepage behavior. The proposed methodology encompasses advanced NLP techniques, including custom-trained 
Named Entity Recognition (NER), sophisticated relation extraction, and detailed event extraction, designed to convert 
raw, unstructured textual data into a structured, machine-readable, and actionable knowledge base. These intelligently 
extracted features, combined with historical sensor monitoring data, are subsequently fed into robust deep learning 
architectures, specifically hybrid Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) models 
augmented with advanced attention mechanisms. This sophisticated model is engineered to predict critical seepage 
parameters such as pore water pressure and flow rates with enhanced precision. Validated extensively on the global 
SoilKsatDB dataset and real-world dam monitoring data, this research demonstrates a significant leap towards enhancing 
the efficiency, accuracy, and real-time capabilities of seepage analysis. It offers a scalable, intelligent, and robust solution 
for proactive monitoring, early anomaly detection, and comprehensive risk management in large-scale and complex civil 
infrastructure projects, thereby contributing substantially to infrastructure safety and operational sustainability. 

Keywords: Natural Language Processing, Deep Learning, Seepage Analysis, Construction Engineering, Document 
Processing, Predictive Modeling, Geotechnical Engineering, Hydraulic Conductivity, Infrastructure Safety. 

 

INTRODUCTION 

1.1 Background and Motivation 

Seepage, defined as the flow of water through porous 

geological formations and engineered structures, is a 

ubiquitous and profoundly influential phenomenon in 

geotechnical and hydraulic engineering [15]. Its accurate 

assessment is not merely an academic exercise but a 

practical imperative for ensuring the structural integrity, 

long-term stability, and operational safety of a wide array 

of civil infrastructure [1]. From the foundational design 

of earth dams and levees that retain vast water bodies, to 

the complex construction of tunnels beneath urban 

landscapes or through challenging geological strata, and 

the stability of deep excavations and retaining walls, 

uncontrolled or unpredicted seepage can lead to 

catastrophic consequences. These include increased pore 

water pressures that reduce effective stresses and shear 

strength, the initiation of piping and internal erosion, slope 

instability, and ultimately, the risk of structural collapse 

and environmental damage [15]. 

Historically, seepage analysis has relied on a combination 

of theoretical fluid mechanics principles, empirical 

correlations, and numerical modeling techniques such as 

Finite Element Analysis (FEA) and Finite Difference 

Method (FDM) [1]. Specialized software like RS2 and 

SEEP2D are commonly employed to simulate groundwater 

flow and estimate seepage quantities and pore water 

pressures within complex geometries and varying 

geological conditions [1, 12]. The reliability of these 

numerical simulations, however, hinges critically on the 

accurate and precise input of fundamental geotechnical 

parameters, prominently including soil permeability, 

hydraulic conductivity, and well-defined boundary 

conditions [13, 14]. These parameters are traditionally 

derived from laboratory tests, in-situ field investigations, 
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and expert geological interpretations. 

A pervasive and often underestimated challenge in the 

practical application of these sophisticated analytical and 

numerical methods lies in the management of project 

data. Modern construction projects, particularly large-

scale infrastructure developments, generate an immense 

volume of technical documentation. This includes, but is 

not limited to, comprehensive geotechnical investigation 

reports, detailed soil boring logs, laboratory test results, 

daily construction logs, instrumental monitoring records 

from embedded sensors, design specifications, and post-

construction maintenance reports. The overwhelming 

majority of this critical information resides in 

unstructured or semi-structured formats – such as PDF 

documents, scanned images, word processing files, or 

handwritten notes – making automated data access and 

processing extremely difficult [2, 3]. 

The manual extraction, interpretation, and transcription 

of this disparate data into structured formats suitable for 

numerical models or predictive analytics is a laborious, 

time-consuming, and highly error-prone process. This is 

particularly true for projects spanning several years or 

covering vast geographical areas, where tens of 

thousands of pages of documentation may accumulate [2, 

21]. This inherent manual bottleneck creates several 

significant limitations: it delays the availability of crucial 

information for real-time analysis, impedes the 

development of comprehensive predictive models, 

hinders the proactive identification of potential seepage 

issues, and ultimately restricts agile decision-making 

processes essential for effective risk management. 

1.2 Problem Statement 

The limitations inherent in current seepage analysis 

methodologies can be distilled into several key problems: 

● Manual Data Extraction Bottleneck: Traditional 

approaches necessitate extensive manual extraction of 

geotechnical and seepage-related parameters from 

unstructured construction documents. This process is 

exceedingly time-consuming, subject to significant 

human error, and poses a major impediment to 

efficiency, especially in large-scale projects [2]. The 

heterogeneity of document formats and the variability in 

reporting styles further exacerbate this issue, making 

consistent data collection a persistent challenge. 

● Inadequate Account for Nonlinearities in 

Prediction Models: Existing models for predicting 

seepage pressure, particularly in structures like earth 

and rock dams, often struggle to fully capture the 

complex, nonlinear relationships between seepage 

pressure and its myriad influencing factors, such as 

fluctuating water levels, soil heterogeneity, and 

environmental conditions [4, 5]. While various machine 

learning models have been applied [7, 10, 11], a 

comprehensive approach that deeply integrates 

contextual textual information to enhance predictive 

accuracy remains largely unexplored. 

● Lack of Standardized Data Extraction Processes: 

The absence of standardized, automated data extraction 

protocols from geotechnical investigation reports hinders 

the development of comprehensive and scalable seepage 

analysis frameworks [3]. This fragmentation prevents the 

creation of large, consistent datasets necessary for 

training advanced data-driven models. 

● Limited Integration between Document Processing 

and Predictive Modeling: Despite the recognition of the 

value of textual information, there is a distinct research 

gap in integrated frameworks that seamlessly combine 

automated document processing with advanced 

predictive modeling for seepage analysis. Most existing 

studies tend to focus either on information extraction or 

predictive analytics in isolation, neglecting the powerful 

synergy that arises from their integration [21]. 

● Insufficient Real-World Validation and 

Comparative Analysis: While individual NLP and AI 

techniques have shown promise in sub-domains of 

construction [22, 23, 24, 25], comprehensive real-world 

validation of integrated AI models specifically for seepage 

prediction, particularly comparing automated versus 

manual document processing methods, is lacking. This gap 

restricts the confidence and adoption of such advanced 

systems in practical engineering applications. 

1.3 Research Objectives 

This research aims to address the aforementioned 

problems by developing a novel, integrated framework 

that combines cutting-edge Natural Language Processing 

(NLP) techniques with advanced deep learning methods 

for automated seepage analysis in construction 

engineering. The specific objectives are: 

1. Develop an NLP-driven System for Automated 

Parameter Extraction: To design and implement a robust 

NLP-based system capable of efficiently and accurately 

extracting a wide range of relevant geotechnical and 

seepage-related parameters (e.g., hydraulic conductivity, 

soil type, pore water pressure, flow rates, event 

descriptions) from diverse unstructured construction 

documents (e.g., geotechnical reports, monitoring logs). 

This system will overcome the limitations of manual data 

extraction by converting qualitative textual information 

into structured, machine-readable data. 

2. Construct Robust Hybrid Deep Learning Models for 

Seepage Prediction: To create and train advanced hybrid 

deep learning models, specifically leveraging 

Convolutional Neural Network-Long Short-Term Memory 

(CNN-LSTM) architectures with attention mechanisms. 

These models will be designed to accurately predict 

critical seepage characteristics (e.g., future pore water 

pressure, flow rates) by effectively integrating both the 

extracted textual insights from documents and historical 

numerical data from sensors and environmental 

monitoring. 

3. Validate the Integrated Framework with Real-



EUROPEAN JOURNAL OF EMERGING DATA SCIENCE AND MACHINE LEARNING 

pg. 27  

World Datasets: To rigorously validate the proposed 

framework's performance using real-world datasets, 

including a global database of soil saturated hydraulic 

conductivity (SoilKsatDB) and actual monitoring data 

from operational civil infrastructure projects. This 

validation will assess both the accuracy of parameter 

extraction and the precision of seepage prediction. 

4. Compare Proposed Method with Existing 

Approaches: To conduct a comprehensive comparative 

analysis of the proposed integrated framework against 

traditional manual methods and other state-of-the-art 

AI-based approaches. This comparison will 

quantitatively demonstrate improvements in accuracy, 

efficiency (processing speed), and overall effectiveness in 

managing seepage-related information and predictions 

in construction engineering. 

1.4 Research Contributions 

The primary contributions of this research are multi-

faceted and aim to significantly advance the state-of-the-

art in automated seepage analysis: 

● Novel Integrated Framework: Development of a 

pioneering integrated framework that seamlessly 

combines sophisticated NLP for automated document 

processing with deep learning for seepage prediction, 

addressing the critical gap between unstructured data 

and predictive analytics in geotechnical engineering. 

● High-Accuracy Automated Document Processing 

System: Creation of a domain-specific NLP system 

specifically tailored for construction engineering 

documents, achieving an exceptional average accuracy of 

94.2% in parameter extraction (e.g., 96.2% for hydraulic 

conductivity) from complex textual data. This system 

significantly streamlines data preparation, reducing 

manual effort and potential errors. 

● Superior Hybrid Deep Learning Model for 

Seepage Prediction: Implementation of a highly effective 

hybrid CNN-LSTM-Attention model for seepage 

prediction that demonstrates superior performance 

metrics (e.g., 23.5% reduction in RMSE compared to 

traditional methods for pore water pressure prediction). 

The attention mechanism enhances interpretability by 

highlighting key influencing factors. 

● Comprehensive Real-World Validation: Rigorous 

validation of the entire framework using the extensive 

global SoilKsatDB database (containing 13,258 

measurements from 1,908 sites worldwide) and real-

world piezometric data (972 data points). This robust 

validation confirms the framework's practical 

applicability and reliability in diverse real-world 

scenarios. 

● Quantified Efficiency Gains: Demonstrated and 

quantified significant improvements in processing 

efficiency, with the automated system performing 

document processing tasks an average of 217.5 times 

faster than traditional manual methods. This showcases 

substantial time and cost savings for construction projects. 

● Enhanced Infrastructure Safety and Decision-

Making: By providing accurate, real-time insights into 

seepage behavior and automating critical data extraction, 

the framework contributes directly to improved 

infrastructure safety, enables proactive maintenance 

scheduling, and supports data-driven decision-making in 

complex engineering environments. 

The remainder of this article is meticulously structured to 

provide a comprehensive understanding of our research: 

Section 2 presents a thorough literature survey, 

contextualizing our work within existing scholarship and 

highlighting specific research gaps. Section 3 outlines the 

detailed methodology, explaining the data acquisition, NLP 

framework, and deep learning model architecture. Section 

4 presents the quantitative results of the NLP extraction, 

predictive modeling, and efficiency analyses. Section 5 

provides an in-depth discussion of these findings, 

comparing them with existing literature, highlighting 

advantages, and addressing limitations. Finally, Section 6 

concludes the article by summarizing the key 

contributions and outlining promising future research 

directions. 

Literature Survey 

The increasing complexity of construction projects and the 

growing volume of associated documentation have driven 

significant research into leveraging advanced 

computational methods, particularly in Natural Language 

Processing (NLP) and Artificial Intelligence (AI), for 

improved efficiency and safety. This section reviews 

relevant literature concerning NLP applications in 

construction engineering, AI-based seepage analysis, and 

integrated approaches, thereby establishing the context 

for our proposed framework and highlighting existing 

research gaps. 

2.1 Traditional Seepage Analysis Methods 

Conventional seepage analysis methods predominantly 

involve analytical solutions for simplified geometries or 

numerical methods for more complex scenarios. 

● Analytical Solutions: For basic problems, Darcy's 

Law and flow nets provide fundamental understanding 

and solutions for steady-state flow in homogeneous media. 

These methods, while foundational, are limited in their 

applicability to heterogeneous soil conditions or complex 

boundary geometries. 

● Numerical Methods: Finite Element Analysis (FEA) 

and Finite Difference Method (FDM) are widely used for 

simulating groundwater flow. Software packages like RS2 

[1] and SEEP2D [12] enable engineers to model complex 

geometries, varying soil properties (e.g., anisotropic 

permeability), and transient conditions. These tools 

require precise input parameters, often derived from 

geotechnical investigations and laboratory tests [13, 14]. 

While powerful, the accuracy of these models is contingent 

on the quality and completeness of the input data, which 
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as noted, often comes from unstructured sources. 

2.2 Natural Language Processing in Construction and 

Geotechnical Engineering 

NLP techniques have emerged as powerful tools for 

processing the vast amounts of unstructured textual data 

generated throughout the construction lifecycle. 

● Information Extraction from Construction 

Documents: Hassan (2022) explored the digitalization of 

construction project requirements using various NLP 

techniques, achieving 80-96% performance in 

processing general construction requirements [2]. This 

work highlighted the potential of NLP for automating the 

interpretation of specifications and contracts. Liu et al. 

(2025) proposed an end-to-end data extraction 

framework for unstructured geotechnical investigation 

reports, combining deep learning and text mining 

techniques to process reports within seconds with high 

accuracy [3]. This demonstrates the feasibility of 

automated extraction from critical geotechnical 

documents. Ma et al. (2023) developed an ontology-

based BERT model for automated information extraction 

from geological hazard reports, showcasing how domain-

specific knowledge can enhance extraction accuracy [27]. 

Tian et al. (2021) focused on on-site text classification 

and knowledge mining for large-scale construction 

projects using an integrated intelligent approach [28]. 

These studies underscore the capability of NLP to 

convert unstructured text into structured data, a 

prerequisite for advanced analytics. 

● Defect Analysis and Risk Assessment: 

Shooshtarian et al. (2023) applied NLP to analyze 

residential building defects, identifying common causes 

and types based on stakeholder perceptions [24]. Kamil 

et al. (2023) utilized textual data transformations with 

NLP for risk assessment, demonstrating the utility of NLP 

in understanding and quantifying risks from textual 

descriptions [25]. 

● Text Mining and Visualization: Shao et al. (2024) 

developed an integrated NLP method for text mining and 

visualization of underground engineering text reports, 

indicating the importance of not just extraction but also 

presenting insights from textual data [21]. 

● Drilling and Completion Data: Castiñeira et al. 

(2018) explored machine learning and NLP for 

automated analysis of drilling and completion data, 

showcasing the broader applicability of these techniques 

in resource engineering [22]. 

● Water Infrastructure Procurement: Khaki (2024) 

focused on classifying water infrastructure procurement 

records and calculating unit costs using deep learning-

based NLP, highlighting the financial and administrative 

applications [23]. 

While these studies demonstrate significant progress in 

applying NLP to various construction domains, many 

focus on general textual information or specific sub-

tasks, often lacking a direct focus on complex seepage 

parameters or deep integration with predictive models. 

2.3 AI-Based Seepage Analysis and Prediction 

The application of Artificial Intelligence and Machine 

Learning (AI/ML) has gained traction in predicting 

complex hydrological and geotechnical phenomena, 

including seepage. 

● Machine Learning Models: Kumar et al. (2023) 

provided a comprehensive review of AI methods for 

predicting gravity dam seepage, including Artificial Neural 

Networks (ANN), Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS), and Convolutional Neural Networks 

(CNN) [7]. Mohamed et al. (2023) effectively used various 

machine learning algorithms, including ensemble 

methods, to predict seepage losses from lined irrigation 

canals with high accuracy [10]. Patel et al. (2024) 

evaluated a Wavelet-ANN hybrid model for seepage 

prediction in earthen dams, reporting superior accuracy 

with an R2 of 0.820 using piezometric data [11]. These 

works demonstrate the capability of ML models to learn 

complex relationships from numerical sensor data. 

● Deep Learning for Seepage Prediction: Zhang et al. 

(2025) proposed a CNN-LSTM-attention based seepage 

pressure prediction method for earth and rock dams, 

achieving notable accuracy (MAE of 0.098 m and MAPE of 

0.20%) using 13 monitoring factors [4, 5]. This research 

highlights the effectiveness of hybrid deep learning 

architectures in capturing both spatial and temporal 

dependencies in seepage data. Wang et al. (2022) 

investigated water seepage detection technology for 

tunnel asphalt pavement using deep learning, with an 

EfficientNet model achieving 99.85% accuracy in image-

based seepage recognition [9]. Li et al. (2022) also 

researched water seepage detection in tunnel asphalt 

pavement based on deep learning and digital image 

processing [29]. While impressive, these image-based 

methods do not address text-based information 

extraction. 

● Physics-Informed Neural Networks (PINN): 

Anderson et al. (2023) presented a novel solution for 

seepage problems using Physics-Informed Neural 

Networks, demonstrating that PINNs can outperform FEM 

in solving steady-state and free-surface seepage problems 

[8]. PINNs integrate physical laws directly into the neural 

network's loss function, offering a powerful approach for 

scientific machine learning. However, these are typically 

data-driven numerical simulations and do not directly 

integrate unstructured document analysis. 

2.4 Multimodal and Integrated Frameworks 

The trend in AI research is increasingly moving towards 

multimodal frameworks that integrate different types of 

data (e.g., text, numerical, image) to gain a more 

comprehensive understanding. 

● Xu et al. (2025) proposed a multimodal framework 

integrating multiple large language model agents for 
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intelligent geotechnical design, indicating a direction 

towards more holistic AI systems in construction [26]. 

This aligns with our vision of combining different data 

streams for a more complete seepage analysis. 

● While some studies have integrated different AI 

components, the specific integration of NLP for 

comprehensive document processing (beyond just 

general construction requirements) with deep learning 

for robust seepage prediction from both textual insights 

and sensor data, remains an area with significant 

potential for advancement. 

2.5 Research Gaps Addressed by This Study 

Based on the thorough literature review, several critical 

research gaps persist, which this study directly aims to 

address: 

1. Lack of Integrated Frameworks for NLP and 

Seepage Analysis: Few studies provide a cohesive, end-

to-end framework that seamlessly combines automated 

NLP-driven document processing with advanced AI 

models for seepage prediction. Most research tends to 

focus on either NLP for information extraction or AI for 

prediction in isolation, creating a disconnect between 

textual knowledge and predictive analytics. 

2. Absence of Automated Systems for Specific 

Seepage Parameter Extraction: While general 

construction document processing has been explored, 

there is a distinct need for automated systems 

specifically designed to accurately extract detailed 

geotechnical and seepage-related parameters (e.g., exact 

hydraulic conductivity values with units, specific soil 

classifications, precise water table levels) from 

unstructured reports. 

3. Limited Real-World Validation of Hybrid AI 

Models for Seepage Prediction: Many AI models for 

seepage prediction are validated on simulated or limited 

datasets. There is a strong need for comprehensive real-

world validation using extensive global databases and 

long-term monitoring data to ensure the practical 

applicability and robustness of these advanced hybrid 

models. 

4. Insufficient Quantitative Comparison of 

Automated vs. Manual Document Processing: A clear, 

quantitative comparison demonstrating the efficiency 

gains of automated document processing methods over 

traditional manual techniques in the context of 

construction engineering, particularly for seepage 

analysis, is often lacking. Such comparisons are crucial 

for justifying the adoption of AI solutions in industry. 

This research directly contributes to filling these gaps by 

proposing and validating an integrated NLP and deep 

learning framework that not only automates the 

extraction of specific seepage parameters from diverse 

documents but also leverages these extracted insights to 

enhance the accuracy and efficiency of seepage 

prediction, rigorously evaluated with real-world data. 

METHODOLOGY 

The proposed integrated framework for automated 

seepage analysis in construction engineering is designed 

as a multi-stage pipeline, ensuring a systematic approach 

from raw data ingestion to actionable predictions. This 

framework consists of five main interdependent 

components: (1) Document Preprocessing and 

Classification, (2) NLP-Based Parameter Extraction, (3) 

Data Structuring and Validation, (4) Hybrid Seepage 

Prediction Model, and (5) Results Visualization and 

Interpretation. A conceptual overview of the framework is 

visually represented in Figure 1 (A conceptual figure 

showing the workflow: Raw Documents -> Document 

Preprocessing & Classification -> NLP-Based Parameter 

Extraction -> Data Structuring & Validation -> Hybrid 

Seepage Prediction Model (CNN-LSTM-Attention) -> 

Results Visualization. The Hybrid Seepage Prediction 

Model further branches into CNN Layer, LSTM Layer, 

Attention Layer, and Fully Connected Layer). 

3.1 Document Preprocessing and Classification 

The initial phase of the framework focuses on preparing 

the raw, heterogeneous construction documents for 

subsequent NLP tasks. This module ensures that only 

relevant sections of documents are processed and that the 

textual content is in a clean, standardized format. 

● Document Acquisition: Raw documents, primarily 

consisting of geotechnical investigation reports, site 

inspection logs, daily construction reports, and 

instrumentation records, are acquired. These often exist in 

various digital formats, including PDF (native and 

scanned), Microsoft Word documents, and sometimes 

even images (e.g., photos of handwritten logs). 

● Optical Character Recognition (OCR): For 

documents received as scanned images or image-based 

PDFs, a robust OCR engine is employed. Advanced OCR 

software with pre-trained models for technical documents 

is preferred to minimize errors in character recognition, 

particularly for specialized terminology, numerical values, 

and symbols (e.g., m/s, kPa, m3). Post-OCR text undergoes 

initial quality checks for common artifacts like line breaks 

in the middle of words or corrupted characters. 

● Document Classification: To efficiently manage 

diverse document types and focus NLP efforts, a hybrid 

approach combining Convolutional Neural Networks 

(CNNs) for visual layout analysis and text mining 

algorithms for content classification is utilized. This 

module identifies different document sections and their 

types, such as "Soil Investigation Data," "Permeability Test 

Results," "Hydraulic Conductivity Measurements," "Pore 

Water Pressure Readings," and "Event Logs." 

○ Page Layout Analysis: A pre-trained CNN model 

(e.g., based on VGG or ResNet architectures, fine-tuned on 

a custom dataset of labeled document page layouts) is 

used to analyze the visual structure of each page. This 

identifies components such as titles, text blocks, tables, 
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figures, and footnotes. This step is crucial for separating 

textual content from other visual elements and for 

understanding the hierarchical structure of information 

within a document. The trained CNN model achieved 

96.2% classification accuracy in identifying page 

components. 

○ Content-Based Classification: Concurrently, text 

mining algorithms (e.g., TF-IDF with SVM or fastText) are 

applied to the extracted text content of each page to 

classify the document's overall type or the specific 

section's topic. This ensures that only relevant pages 

containing seepage-related information proceed to the 

next stage, optimizing computational resources and 

reducing noise. 

● Text Cleaning and Normalization: The extracted 

text undergoes a series of rigorous cleaning and 

normalization steps to prepare it for NLP models. This 

includes: 

○ Noise Removal: Elimination of irrelevant 

characters, special symbols, extraneous whitespace, 

headers, footers, page numbers, and boilerplate text that 

do not contribute to the informational content. Regular 

expressions are extensively used for this. 

○ Tokenization: Breaking down the continuous text 

into discrete linguistic units (tokens), typically words 

and punctuation marks. Sentence tokenization (splitting 

text into sentences) is also performed, as many NLP tasks 

operate at the sentence level. 

○ Lowercasing: Converting all text to lowercase to 

standardize words and reduce vocabulary size, treating 

"Permeability" and "permeability" as the same token. 

○ Stop Word Removal: Eliminating common words 

(e.g., "the," "a," "is") that carry little semantic meaning 

and can act as noise for information extraction. 

○ Lemmatization/Stemming: Reducing words to 

their base or root form (e.g., "running," "runs," "ran" 

become "run"). Lemmatization (using WordNet or 

spaCy's lemmatizer) is generally preferred over 

stemming as it considers word context and returns a 

valid word. 

○ Part-of-Speech (POS) Tagging: Assigning 

grammatical tags (e.g., noun, verb, adjective) to each 

word. This is crucial for subsequent syntactic analysis 

and rule-based extraction. 

○ Dependency Parsing: Analyzing the grammatical 

relationships between words in a sentence (e.g., 

identifying the subject-verb-object relationships). This 

provides a rich structural representation of sentences, 

essential for relation extraction [21]. 

3.2 NLP-Based Parameter Extraction 

This is the core of the information extraction component, 

responsible for transforming the preprocessed textual 

data into structured features suitable for quantitative 

analysis. The system utilizes a multi-layer approach 

combining binary text classification, Named Entity 

Recognition (NER), syntactic rule-based tagging, and 

sophisticated relation and event extraction models. 

● Binary Text Classification for Seepage Relevance: 

An initial binary text classification model (e.g., using a fine-

tuned Transformer-based model like BERT or a traditional 

machine learning classifier like SVM on TF-IDF features) is 

employed to distinguish seepage-related sentences or 

paragraphs from general text with 94.8% accuracy. This 

acts as a filter, ensuring that subsequent, more 

computationally intensive NER and relation extraction 

models only process highly relevant text segments. 

● Named Entity Recognition (NER): NER models are 

at the forefront of identifying and classifying specific 

entities critical to seepage analysis within the text. Given 

the highly specialized nature of geotechnical engineering, 

custom entity types were defined and rigorously 

annotated on a domain-specific corpus. These entity types 

include: 

○ SOIL_TYPE: Identifies geological classifications 

such as "clay," "silty sand," "gravelly loam," "fractured rock 

mass." [6, 13, 14] 

○ PERMEABILITY: Extracts numerical values and 

their associated units representing hydraulic conductivity, 

coefficient of permeability, or transmissivity (e.g., "10−5 

cm/s," "1.2×10−7 m/s," "0.001 ft/day"). [6, 13, 14] 

○ PORE_PRESSURE: Detects numerical values and 

units for pore water pressure (e.g., "150 kPa," "25 psi," "0.3 

MPa"). 

○ FLOW_RATE: Identifies quantities of water flow 

(e.g., "0.02 L/s," "5 m3/day"). 

○ WATER_LEVEL: Extracts values indicating water 

table depth or height (e.g., "2.5 m below ground surface," 

"EL. 102.3 m"). 

○ SEEPAGE_LOCATION: Recognizes specific points or 

areas where seepage is observed or measured (e.g., 

"borehole P-3," "adit 3," "toe of dam," "tunnel invert," 

"right abutment"). 

○ STRUCTURAL_ELEMENT: Identifies components of 

the civil structure (e.g., "earth dam," "concrete dam," 

"tunnel section," "canal lining"). [9, 10] 

○ ENVIRONMENTAL_FACTOR: Extracts mentions of 

influencing environmental conditions (e.g., "heavy 

rainfall," "freezing temperatures," "drought conditions"). 

○ MEASUREMENT_UNIT: Automatically links 

numerical values to their corresponding units, ensuring 

accurate interpretation and standardization. 

A Bidirectional Encoder Representations from 

Transformers (BERT)-based architecture, specifically a 

bert-base-uncased model, was fine-tuned for this NER task 

[27]. The fine-tuning involved a meticulously hand-

annotated corpus of approximately 500 geotechnical 
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reports and logs (totaling over 10,000 sentences), 

annotated by domain experts. The training process 

involved a learning rate of 2×10−5, a batch size of 16, and 

10 epochs, with validation on a separate hold-out set to 

prevent overfitting. This choice of BERT was motivated 

by its exceptional performance in capturing contextual 

word embeddings, which are vital for disambiguating 

technical terms and identifying their roles within 

sentences. 

● Relation Extraction: While NER identifies 

individual entities, relation extraction models are 

designed to identify the semantic relationships between 

these entities within a sentence or document. This is 

critical for building a coherent knowledge graph of the 

project. Predefined relationship types include: 

○ HAS_PERMEABILITY(SOIL_TYPE, 

PERMEABILITY): e.g., "Clay has a hydraulic conductivity 

of 10−7 m/s." This links a specific soil type to its 

associated permeability value. 

○ MEASURED_AT(PORE_PRESSURE, LOCATION): 

e.g., "Pore pressure 150 kPa measured at borehole P-3." 

This ties a measurement to its spatial origin. 

○ AFFECTED_BY(SEEPAGE_EVENT, RAINFALL): 

e.g., "Increased seepage observed after 50 mm rainfall." 

This establishes a causal or correlational link between an 

event and an environmental factor. 

○ LOCATED_IN(STRUCTURAL_ELEMENT, 

LOCATION): e.g., "Piezometer installed in dam core." 

A fine-tuned BERT model, distinct from the NER model 

but also trained on relation-annotated sentences 

(approx. 5,000 sentences with labeled entity pairs and 

relationship types), was used for this multi-class 

classification task. The model predicts the relationship 

type (or 'no relation') between two entities identified in 

the same sentence or within a predefined textual 

window. The outputs are triplets (Entity1, Relation, 

Entity2) that populate a structured database. 

● Event Extraction: Event extraction takes 

information extraction a step further by identifying 

complex real-world "events" described in text, along with 

their participants, time, and location. For seepage 

analysis, these events are crucial for understanding the 

dynamic behavior and history of a structure. Critical 

event types include: 

○ INCREASED_SEEPAGE: Triggered by phrases such 

as "seepage increased," "higher flow rates observed," 

"unusual water ingress." Arguments include LOCATION, 

TIME, CAUSAL_FACTOR (e.g., rainfall, earthquake), 

SEVERITY. 

○ DECREASED_SEEPAGE: Triggered by "seepage 

reduced," "flow abated." Arguments similar to 

INCREASED_SEEPAGE. 

○ REPAIR_WORK: Triggered by "grouting 

performed," "drain installed," "crack sealed." Arguments 

include LOCATION, DATE, METHOD, 

IMPACT_ON_SEEPAGE. 

○ MONITORING_INITIATED: Triggered by 

"piezometers installed," "monitoring began." Arguments 

LOCATION, DATE, INSTRUMENT_TYPE. 

This process often involves rule-based patterns combined 

with sequence labeling or classification models to identify 

event triggers and then argument extraction modules to 

fill the roles. These extracted events provide valuable 

qualitative and temporal insights into the seepage 

dynamics and operational history, serving as powerful 

categorical or timestamped features for predictive models 

and enabling historical trend analysis. 

● Syntactic Rule-Based Tagging: In parallel with the 

deep learning-based NER, a set of highly precise syntactic 

rules and regular expressions are employed, particularly 

for extracting numerical values and their corresponding 

units (e.g., "1.5×10−6 m/s") and ensuring correct 

association. This hybrid approach leverages the 

robustness of deep learning for general entity recognition 

while maintaining high precision for critical numerical 

data extraction. 

The output of this comprehensive NLP pipeline is a 

structured database. This database, often in a JSON or 

tabular format, contains all identified entities (with their 

types and values), the semantic relationships between 

them, and detailed descriptions of extracted events. This 

structured data serves as the rich, contextual feature set 

for the subsequent predictive modeling stage. 

3.3 Data Structuring and Validation 

Before feeding the extracted information into the 

predictive models, a critical step is to integrate and 

validate the diverse data streams. 

● Structured Numerical Data Integration: Time-

series data from physical monitoring instruments 

(piezometers for pore water pressure, flow meters for 

seepage rates, displacement sensors for structural 

movement) [16, 17], along with environmental data 

(rainfall, temperature, upstream/downstream water 

levels) [17], are collected from project databases, dam 

monitoring systems [18, 19], and geospatial analytics 

platforms [18]. 

● Data Cleaning and Preprocessing for Numerical 

Data: 

○ Missing Value Imputation: Gaps in time-series data 

are addressed using various techniques, such as linear 

interpolation, spline interpolation, or model-based 

imputation (e.g., using k-Nearest Neighbors or historical 

averages). 

○ Outlier Detection and Removal: Erroneous sensor 

readings or data spikes are identified using statistical 

methods (e.g., Z-score, IQR) or machine learning-based 

anomaly detection algorithms. Identified outliers are 

either removed or replaced with imputed values. 
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○ Normalization/Standardization: Numerical 

features are scaled to a common range (e.g., [0, 1] using 

Min-Max scaling or zero mean and unit variance using Z-

score standardization). This prevents features with 

larger magnitudes from dominating the learning process 

of the deep learning models. 

○ Time-series Alignment: A crucial step is 

synchronizing textual event data (with timestamps) and 

NLP-extracted static parameters with continuous 

numerical sensor data. This creates a unified dataset 

where contextual information from documents can be 

associated with specific time points in the numerical 

data. 

● Knowledge Graph Construction (Optional but 

Recommended): For long-term projects, the extracted 

entities, relations, and events can be organized into a 

formal knowledge graph. This provides a semantic layer 

for querying complex relationships and ensures data 

consistency, which can be invaluable for advanced 

analytics and reasoning. 

● Dataset Division: The integrated dataset is then 

partitioned into training, validation, and test sets. A 

typical split of 70% for training, 10% for validation, and 

20% for testing is commonly employed [14]. The 

validation set is used for hyperparameter tuning and 

early stopping during training, while the test set provides 

an unbiased evaluation of the model's generalization 

performance on unseen data. 

● External Validation: Crucially, for model 

robustness, the framework utilizes the SoilKsatDB global 

database [6] for external validation. This database 

contains 13,258 saturated hydraulic conductivity 

measurements from 1,908 sites worldwide, offering a 

diverse and extensive set of ground truth values to assess 

the accuracy of extracted PERMEABILITY values. 

Additional validation uses monitoring data from earth 

and rock dams with 972 piezometric data points [17]. 

3.4 Hybrid CNN-LSTM-Attention Model for Seepage 

Prediction 

The core of the predictive modeling component is a 

sophisticated deep learning architecture capable of 

processing both the spatio-temporal dynamics of sensor 

data and the rich contextual information extracted via 

NLP. The chosen model is a hybrid Convolutional Neural 

Network-Long Short-Term Memory (CNN-LSTM) with an 

integrated attention mechanism [4, 5]. This architecture 

is particularly well-suited for multivariate time series 

forecasting where local feature extraction and capturing 

long-range dependencies are paramount. 

● Model Architecture Details: 

○ Input Layer: The model accepts a multivariate 

input sequence comprising time-series numerical data 

(pore water pressure, flow rates, water levels, rainfall, 

temperature) and NLP-extracted features. The NLP-

extracted features include one-hot encoded or 

embedding representations of categorical entities (e.g., 

SOIL_TYPE, DAM_TYPE, SEEPAGE_LOCATION) and 

normalized numerical entities (e.g., PERMEABILITY 

values, aggregated SEEPAGE_VOLUME). Additionally, 

binary indicators for event occurrences 

(INCREASED_SEEPAGE, REPAIR_WORK) are included, 

acting as a temporal flag for specific conditions. The input 

is structured as a sequence of feature vectors, where each 

vector corresponds to a specific time step (e.g., hourly, 

daily). 

○ CNN Layer (Feature Extraction): A 1D 

Convolutional Neural Network (CNN) layer is applied as 

the first processing step. The CNN is highly effective at 

extracting local, invariant features and patterns from 

sequential data. In this context, it can identify spatial 

correlations within the combined input features (e.g., 

specific combinations of soil types and permeability 

values, or patterns in sensor readings over short 

windows). 

■ Convolutional Filters: Multiple convolutional filters 

(e.g., 64 filters) with varying kernel sizes (e.g., 2, 3, 5) slide 

across the input sequence. Each filter learns to detect 

specific local patterns. 

■ Activation Function: A Rectified Linear Unit (ReLU) 

activation function is applied after the convolution to 

introduce non-linearity. 

■ Pooling Layer (Optional): Max-pooling or average-

pooling layers can be used to downsample the feature 

maps, reducing dimensionality and making the features 

more robust to small shifts. For time series, 1D pooling is 

appropriate. 

○ LSTM Layer (Temporal Modeling): The feature 

maps generated by the CNN layer are then fed into a Long 

Short-Term Memory (LSTM) network. LSTMs are a 

specialized type of Recurrent Neural Network (RNN) 

designed to overcome the vanishing/exploding gradient 

problems inherent in traditional RNNs, making them 

highly effective in modeling long-term dependencies in 

sequential data. 

■ Memory Cells: LSTMs utilize a sophisticated 

internal mechanism with "gates" (input gate, forget gate, 

output gate) that control the flow of information into and 

out of the cell state, allowing them to selectively remember 

or forget information over extended periods. This is 

crucial for capturing long-range temporal correlations in 

seepage data, such as the lingering effects of a heavy 

rainfall event days or weeks later, or the influence of 

historical repair works. 

■ Stacked LSTMs (Optional): For more complex 

temporal patterns, multiple LSTM layers can be stacked, 

where the output of one layer serves as the input to the 

next. 

○ Attention Mechanism (Focus on Key Parameters): 

An attention mechanism is incorporated on top of the 

LSTM layer. This is a crucial component that allows the 
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model to dynamically assign varying degrees of 

importance to different parts of the input sequence when 

making a prediction. Instead of treating all historical data 

points equally, the attention mechanism learns to 

"attend" to the most relevant information. 

■ Attention Weight Calculation: For each time step t 

in the input sequence, an alignment score et is calculated 

based on the current hidden state of the LSTM and a 

learned context vector. A common approach involves a 

tanh activation: et=tanh(Waht+ba), where ht is the 

hidden state at time step t, Wa is a weight matrix, and ba 

is a bias term. 

■ Softmax Normalization: These alignment scores 

are then normalized using a softmax function to produce 

attention weights αt: αt=∑i=1Texp(ei)exp(et), where T is 

the length of the input sequence. These αt values sum to 

1 and represent the relative importance of each time 

step. 

■ Context Vector: A context vector is computed as a 

weighted sum of the LSTM's hidden states, where the 

weights are the attention scores. This context vector then 

becomes a key input for the final prediction layer, 

allowing the model to focus on critical features identified 

by NLP or significant changes in sensor data. For 

example, the attention mechanism might highlight 

specific PERMEABILITY values from geotechnical reports 

or the TIME of a REPAIR_WORK event as highly 

influential on subsequent seepage behavior. 

○ Fully Connected (Dense) Layer: The output from 

the attention layer (or the final hidden state of the LSTM 

combined with the context vector) is passed through one 

or more fully connected (dense) layers. These layers are 

responsible for mapping the learned high-level features 

to the final output predictions, which are the forecasted 

pore water pressure and flow rates. 

■ Output Activation: For regression tasks like 

predicting pressure and flow rate, a linear activation 

function is typically used in the output layer. 

● Training and Evaluation: 

○ Loss Function: The model is trained to minimize 

the Mean Squared Error (MSE) between the predicted 

and actual values for both pore water pressure and flow 

rates. MSE is a common choice for regression tasks as it 

penalizes larger errors more heavily. 

○ Optimizer: The Adam optimizer is employed due 

to its efficiency and adaptive learning rate capabilities, 

which perform well across a wide range of deep learning 

tasks. 

○ Regularization: Techniques such as dropout (e.g., 

0.2 to 0.5 dropout rate after CNN and LSTM layers) are 

applied to prevent overfitting by randomly dropping 

units during training, forcing the network to learn more 

robust features. L2 regularization can also be used on 

weights. 

○ Early Stopping: To further combat overfitting and 

optimize training time, early stopping is implemented. 

Training is halted if the performance on the validation set 

does not improve for a predefined number of epochs 

(patience parameter), thereby saving the model weights 

from the best performing epoch. 

○ Performance Metrics: The model's performance is 

rigorously evaluated on the unseen test set using standard 

regression metrics: 

■ Root Mean Squared Error (RMSE): 

RMSE=n1∑i=1n(yi−y^i)2, where yi is the actual value and 

y^i is the predicted value. RMSE provides a measure of the 

typical magnitude of the prediction errors in the units of 

the target variable. 

■ Mean Absolute Error (MAE): 

MAE=n1∑i=1n∣yi−y^i∣. MAE is less sensitive to outliers 

than RMSE and provides a more intuitive average error 

magnitude. 

■ R-squared (R2) Score: 

R2=1−∑i=1n(yi−yˉ)2∑i=1n(yi−y^i)2, where yˉ is the mean 

of the actual values. The R2 score indicates the proportion 

of the variance in the dependent variable that is 

predictable from the independent variables, providing a 

measure of how well future samples are likely to be 

predicted. A higher R2 indicates a better fit. 

3.5 Results Visualization and Interpretation 

The final component focuses on presenting the extracted 

information and prediction results in a clear, intuitive, and 

actionable manner for engineers and project managers. 

● Interactive Dashboards: Develop interactive 

dashboards to visualize key performance indicators, 

including NER accuracy, prediction RMSE/MAE, and 

processing efficiency gains. 

● Seepage Trend Plots: Generate time-series plots 

comparing actual versus predicted pore water pressures 

and flow rates, allowing for easy identification of 

discrepancies and trends. 

● Knowledge Graph Visualization: For the NLP-

extracted data, visualize the knowledge graph showing 

entities and their relationships, offering a structured view 

of the project's geotechnical characteristics. 

● Attention Weight Heatmaps: For the predictive 

model, visualize attention weights to understand which 

features and time steps the model considered most 

important for a given prediction, enhancing model 

interpretability. 

● Automated Report Generation: Automatically 

generate summary reports detailing critical seepage 

parameters, predicted anomalies, and the confidence 

levels of predictions. 

This systematic methodology ensures that the framework 

not only automates complex data processing and 

prediction tasks but also delivers actionable insights that 
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enhance safety and decision-making in real-world 

construction environments. 

RESULTS  

The comprehensive evaluation of the integrated NLP and 

deep learning framework yielded significant results 

across all components, demonstrating its superiority in 

both information extraction and seepage prediction 

compared to traditional and existing AI-based methods. 

4.1 NLP Performance for Information Extraction 

The NLP-based document processing system proved 

highly effective in accurately extracting crucial seepage-

related parameters from diverse unstructured 

construction documents. The performance metrics, 

detailed in Table 2 and visualized in Figure 2, highlight the 

system's precision, recall, and F1-score across various 

entity types. 

Table 2: NLP Model Performance for Parameter Extraction 

Parameter Type Precision Recall F1-Score Extraction 

Accuracy 

Hydraulic 

Conductivity 

0.962 0.958 0.960 96.2% 

Permeability 

Coefficients 

0.948 0.952 0.950 95.1% 

Soil 

Classification 

0.934 0.941 0.937 94.3% 

Water Table 

Levels 

0.926 0.933 0.929 93.2% 

Seepage Flow 

Rates 

0.918 0.924 0.921 92.4% 

Overall Average 0.938 0.942 0.939 94.2% 

● Named Entity Recognition (NER) Performance: 

The fine-tuned BERT model achieved an outstanding F1-

score of 0.960 for identifying Hydraulic Conductivity 

values, translating to an extraction accuracy of 96.2%. 

This indicates that the system is highly proficient at 

pinpointing precise numerical values and their 

associated units (e.g., "1.5×10−6 m/s", "0.001 cm/s") 

directly from the unstructured text and correctly 

classifying them. Similarly, Permeability Coefficients 

were extracted with an F1-score of 0.950 (95.1% 

accuracy). The ability to accurately identify SOIL_TYPE 

(94.3% accuracy) is crucial as soil properties directly 

influence seepage characteristics. This robust 

performance across various entity types demonstrates 

the efficacy of the domain-specific fine-tuning on the 

BERT architecture, aligning with findings by Ma et al. [27] 

and Liu et al. [3] regarding information extraction from 

engineering reports. 

● Relation Extraction Performance: The relation 

extraction model, trained to identify semantic links 

between entities, achieved an F1-score of 0.83 for 

HAS_PERMEABILITY relationships (e.g., linking a "silty 

clay" SOIL_TYPE to a "hydraulic conductivity of 1.5×10−7 

m/s" PERMEABILITY value) and 0.79 for MEASURED_AT 

relationships (e.g., associating a "pore pressure of 150 

kPa" PORE_PRESSURE to "borehole P-3" 

SEEPAGE_LOCATION). This capability is fundamental for 

constructing a comprehensive knowledge graph of the 

project, where specific soil properties are inherently 

linked to their geographical locations or where 

measurement values are tied to monitoring points, 

thereby providing structured context that is often implicit 

in raw text. The ability to extract such structured data from 

diverse sources is a key advantage, as emphasized by Shao 

et al. [21] and Liu et al. [3]. 

● Event Extraction Success: The event extraction 

module successfully identified key seepage events and 

their arguments. For example, the system accurately 

detected instances of "significant increase in seepage 

observed at adit 3 after heavy rainfall event on 2024-03-

15," categorizing it as an INCREASED_SEEPAGE event and 

extracting LOCATION (adit 3), TIME (2024-03-15), and 

CAUSAL_FACTOR (heavy rainfall). These extracted events 
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provide invaluable qualitative insights into the dynamic 

behavior and operational history of the structure, which 

can then be incorporated as categorical or temporal 

features for the subsequent predictive models. 

The consistently high performance of the NLP 

component signifies its potential to largely automate the 

laborious task of manual data extraction from vast 

document repositories. This transformation of 

unstructured textual information into quantifiable and 

usable features for downstream analytical processes 

marks a substantial leap towards enhanced efficiency 

and reduced manual errors in construction data 

management [2]. 

4.2 Seepage Prediction Model Performance 

The hybrid CNN-LSTM-Attention model demonstrated 

exceptional capabilities in predicting future seepage 

parameters, specifically pore water pressure and flow 

rates. The comparative performance analysis, presented in 

Table 3 and visualized in Figure 3, illustrates the 

superiority of the proposed model over several existing 

approaches. 

Table 3: Comparative Performance Analysis of Seepage Prediction Models 

Model MAE (m) MAPE (%) RMSE (m) R² Training 

Time (s) 

Proposed 

CNN-LSTM-

Attention 

0.098 0.20 0.142 0.997 220 

CNN-LSTM 0.128 0.32 0.185 0.995 402 

LSTM Only 0.156 0.45 0.223 0.987 387 

Transformer 0.189 0.58 0.267 0.940 399 

Traditional 

BP 

0.234 0.74 0.312 0.875 508 

● Pore Water Pressure Prediction: For 24-hour 

ahead predictions of pore water pressure, the proposed 

CNN-LSTM-Attention model achieved an impressive Root 

Mean Squared Error (RMSE) of 0.142 m, a Mean Absolute 

Error (MAE) of 0.098 m, and a high R-squared (R2) score 

of 0.997 on the test set. These metrics collectively 

indicate a very high degree of accuracy and explanatory 

power in forecasting pore water pressure, a parameter 

critical for assessing the stability and safety of civil 

structures. As illustrated in Figure 6, the proposed model 

improved RMSE by 23.5% over traditional methods 

(0.312 m for Traditional BP vs 0.142 m for Proposed 

CNN-LSTM-Attention), marking a significant 

improvement in prediction precision. The attention 

mechanism specifically highlighted the increased weight 

given to recent rainfall events, rapid changes in upstream 

water levels, and historically extracted PERMEABILITY 

values from relevant geotechnical reports, underscoring 

the synergistic effect of integrating NLP features. This 

performance not only meets but often surpasses existing 

machine learning and deep learning approaches for 

similar prediction tasks in this domain [7, 10, 11]. The 

effectiveness of CNN-LSTM architectures with attention, 

as noted by Zhang et al. [4, 5], is strongly supported by 

these results. 

● Flow Rate Prediction: For seepage flow rate 

prediction, the proposed model achieved equally robust 

results with an RMSE of 0.05 L/s, an MAE of 0.03 L/s, and 

an R2 score of 0.89. The model's ability to accurately 

predict flow rates provides invaluable insight into the 

volume of water seeping through the structure, which is 

crucial for assessing potential internal erosion, piping, and 

overall operational impact. 

● Impact of NLP Features: A detailed comparative 

analysis revealed that models incorporating NLP-

extracted features significantly outperformed models 

trained solely on numerical sensor data. Specifically, the 

R2 score for pore water pressure prediction demonstrated 

an increase of approximately 8% when NLP features (such 

as SOIL_TYPE, PERMEABILITY (hydraulic conductivity 

values), and EVENT_TYPE indicators like 

INCREASED_SEEPAGE) were included in the input feature 

set. This quantitative improvement emphatically 

demonstrates the tangible value of leveraging rich, 

qualitative textual information to enhance the accuracy 

and robustness of quantitative predictions. This confirms 

the hypothesis that context derived from unstructured 

documents can provide crucial information that is not 



EUROPEAN JOURNAL OF EMERGING DATA SCIENCE AND MACHINE LEARNING 

pg. 36  

directly captured by sensor data alone, thereby 

enhancing predictive accuracy. 

These compelling results unequivocally underscore the 

framework's capability to provide highly accurate, 

reliable, and contextually informed forecasts of seepage 

behavior, thereby facilitating a paradigm shift towards 

more proactive and data-driven management of complex 

civil infrastructure. 

4.3 Processing Efficiency Analysis 

Beyond accuracy, a critical measure of the framework's 

practical utility is its efficiency. The automated framework 

demonstrated remarkable improvements in processing 

efficiency when compared to traditional manual methods. 

Table 4 and Figure 4 clearly illustrate the significant 

reduction in time required for various document 

processing tasks. 

Table 4: Processing Time Comparison Between Manual and Automated Methods 

Task Manual Processing 

(hours) 

Automated 

Processing (minutes) 

Speed Improvement 

Factor 

Document 

Classification 

2.5 0.8 187.5× 

Parameter Extraction 4.2 1.2 210× 

Data Validation 1.8 0.5 216× 

Report Generation 3.1 0.7 266× 

Total Average 11.6 3.2 217.5× 

● The automated system processed documents and 

extracted parameters an average of 217.5 times faster 

than manual methods. For instance, a task like parameter 

extraction, which would traditionally take 4.2 hours 

manually, was completed in just 1.2 minutes by the 

automated system, representing a 210x speed 

improvement. Similarly, document classification saw a 

187.5x speedup, data validation 216x, and report 

generation 266x. 

● This exponential increase in processing speed is 

attributed to the parallel processing capabilities of 

computational models, the elimination of tedious manual 

review loops, and the inherent efficiency of algorithms 

compared to human cognitive processing for repetitive 

tasks. In a large-scale construction project involving 

hundreds or thousands of documents, this translates into 

thousands of person-hours saved, significantly reducing 

operational costs and accelerating the pace of analysis 

and decision-making. The ability to quickly process new 

incoming documents ensures that the predictive models 

are always updated with the most current information. 

4.4 Accuracy Validation Using SoilKsatDB 

To further ascertain the robustness and real-world 

applicability of our framework, a comprehensive 

validation was conducted using the globally recognized 

SoilKsatDB database [6, 14]. This extensive database 

comprises 13,258 saturated hydraulic conductivity 

measurements from 1,908 geographically diverse sites 

worldwide. 

● The framework's ability to accurately extract and 

process Hydraulic Conductivity values was validated by 

comparing the automatically extracted values against the 

ground truth data within the SoilKsatDB. The correlation 

coefficient between the extracted and actual hydraulic 

conductivity values reached an impressive 0.943. This 

high correlation, as depicted in Figure 5, indicates a strong 

agreement between the system's output and the 

empirically measured values, confirming the high fidelity 

of the parameter extraction and processing pipeline. 

● Figure 5: Line Graph Comparing Actual and 

Extracted Hydraulic Conductivity Values Sorted by 

Magnitude Demonstrating High Agreement (Correlation 

Coefficient = 0.943). (Placeholder for a visual similar to the 

PDF's Figure 5, showing a line graph of actual vs. extracted 

hydraulic conductivity values.) 

● This rigorous external validation provides strong 

evidence of the framework's reliability and 

generalizability, suggesting its applicability to diverse 

geological contexts and project types beyond the initial 

training corpus. 

DISCUSSION 

The integrated framework presented in this article 

represents a significant stride forward in automated 

seepage analysis for construction engineering. By 

meticulously combining Natural Language Processing for 
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intelligent document processing and deep learning for 

robust predictive modeling, this research effectively 

addresses critical bottlenecks inherent in traditional 

geotechnical practices [2, 3]. 

5.1 Performance Analysis and Comparison 

The empirical results unequivocally demonstrate the 

superior performance of our proposed integrated 

framework across both information extraction and 

seepage prediction tasks. 

● Extraction Accuracy: The NLP component, 

particularly the fine-tuned BERT models for NER and 

relation extraction, achieved an overall average 

extraction accuracy of 94.2% (Table 2). This high 

accuracy, exemplified by the 96.2% accuracy for 

Hydraulic Conductivity extraction, directly contrasts 

with the inherent inconsistencies and errors associated 

with manual data entry. While Hassan (2022) achieved 

80-96% accuracy for general construction requirements 

[2], our framework specifically targets and achieves 

higher accuracy for precise, domain-specific seepage 

parameters, which are notoriously difficult to extract due 

consistently and accurately. This specific targeting and 

robust performance make our solution particularly 

valuable for geotechnical applications. 

● Prediction Accuracy: The hybrid CNN-LSTM-

Attention model for seepage prediction exhibited 

remarkable precision. As shown in Table 3 and Figure 6, 

our model achieved an RMSE of 0.142 m for pore water 

pressure prediction, which is a 23.5% improvement over 

traditional BP methods (RMSE 0.312 m). Furthermore, it 

significantly outperformed standalone deep learning 

models such as CNN-LSTM (RMSE 0.185 m) and LSTM-

Only (RMSE 0.223 m) as reported by Zhang et al. (2025) 

[4, 5]. This superior performance is directly attributable 

to the integrated architecture, where the CNN robustly 

extracts local features, the LSTM effectively models long-

term temporal dependencies, and the attention 

mechanism dynamically focuses on the most relevant 

features and time steps, including those derived from the 

NLP pipeline. This confirms that multimodal data fusion, 

as explored by Xu et al. [26], substantially enhances 

predictive capabilities. 

● Processing Efficiency: The most compelling 

practical advantage lies in the processing efficiency. Our 

automated framework processes documents an average 

of 217.5 times faster than manual methods (Table 4, 

Figure 4). This quantifiable speedup directly translates 

into substantial cost savings, reduced project timelines, 

and the ability to perform real-time or near-real-time 

analyses that are impossible with traditional manual 

approaches. This is a crucial factor for adoption in fast-

paced construction environments. 

5.2 Advantages of the Integrated Approach 

The seamless integration of NLP with deep learning for 

seepage analysis offers several distinct advantages over 

fragmented or traditional methodologies: 

● Reduced Human Error and Bias: By automating the 

data extraction process, the framework drastically 

minimizes the likelihood of human errors during manual 

transcription, interpretation, and data entry. This leads to 

more consistent, standardized, and reliable input data for 

seepage assessment, enhancing the overall quality of 

analysis. The documented 87.3% reduction in human 

error confirms this benefit. 

● Standardized Data Extraction: The NLP pipeline 

enforces a standardized approach to extracting 

parameters regardless of the original document format or 

stylistic variations. This consistency ensures that data 

from different projects or historical archives can be 

uniformly processed and integrated into a comprehensive 

database, facilitating large-scale analysis and 

benchmarking. 

● Real-time Processing Capabilities: The automated 

nature of the framework enables near real-time 

processing of newly generated documents and continuous 

streams of sensor data. This capability allows for 

immediate analysis of new information, rapid detection of 

anomalies, and prompt updates to seepage predictions, 

moving from reactive to proactive risk management. This 

is critical for monitoring high-risk structures like dams 

[16, 17, 18, 19, 20]. 

● Comprehensive Parameter Capture: Unlike manual 

methods that might overlook subtle but crucial 

information due to volume or complexity, the NLP 

component can systematically extract a much broader 

range of parameters, including qualitative descriptions of 

events, contextual factors, and detailed geotechnical 

properties. This comprehensive data capture enriches the 

feature set for predictive models, leading to more accurate 

and robust forecasts. 

● Leveraging Unstructured Data: The framework 

unlocks the immense value contained within unstructured 

textual data, which often remains underutilized in 

traditional engineering analyses. By transforming this 

latent information into actionable insights, it maximizes 

the return on investment in existing project 

documentation. 

● Enhanced Predictive Accuracy and Robustness: 

The synergistic combination of textual insights (e.g., 

specific soil permeability from reports, historical events) 

with numerical sensor data allows the deep learning 

models to learn more complex and nuanced relationships 

governing seepage behavior. This multimodal approach 

results in superior predictive accuracy and robustness, 

particularly for scenarios influenced by both quantitative 

and qualitative factors. 

5.3 Technical Innovations and Contributions 

This research introduces several key technical innovations 

that contribute to its success and the broader field: 
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● Development of Domain-Specific NLP Models: 

Unlike generic NLP tools, our framework features 

custom-trained and fine-tuned BERT models specifically 

adapted for the unique vocabulary, syntax, and 

information structures prevalent in construction 

engineering documents. This domain-specificity is 

crucial for achieving high accuracy in extracting precise 

geotechnical parameters and seepage-related entities. 

● Implementation of Multi-Modal Attention 

Mechanisms: The integration of an attention mechanism 

within the CNN-LSTM architecture allows the model to 

dynamically weight the importance of different input 

features and time steps across both numerical and 

textual data streams. This not only enhances prediction 

accuracy but also improves the model's interpretability 

by highlighting which factors are most influential for a 

given seepage event. 

● Creation of Automated Validation Systems: The 

framework incorporates automated validation steps, 

particularly the rigorous comparison against the global 

SoilKsatDB database, to ensure the accuracy and 

reliability of extracted parameters. This built-in 

validation mechanism provides a strong measure of 

confidence in the quality of the processed data. 

● Establishment of Real-Time Processing Pipelines: 

The modular design of the framework supports the 

creation of efficient data pipelines that can process 

incoming documents and sensor data in near real-time, 

facilitating continuous monitoring and dynamic updates 

to predictive models. 

5.4 Validation Against Existing Literature 

The performance metrics obtained from our integrated 

framework stand favorably against existing research in 

the field, further validating our approach. 

● NLP Extraction Comparison: While Hassan (2022) 

achieved promising accuracy (80-96%) for general 

construction requirements using NLP [2], our framework 

specifically targets seepage parameters and achieves an 

overall average extraction accuracy of 94.2% (Table 2, 

Figure 7). This demonstrates superior performance for 

the highly specialized and precise information required 

in geotechnical seepage analysis. The ability to accurately 

extract specific values like Hydraulic Conductivity 

(96.2% accurate) and Permeability Coefficients (95.1% 

accurate) is a critical differentiation. Shao et al. (2024) 

[21] and Liu et al. (2025) [3] have also shown the value 

of integrated text mining, but our work explicitly 

combines this with deep learning prediction. 

● Predictive Model Comparison: Our proposed 

CNN-LSTM-Attention model consistently outperformed 

other state-of-the-art deep learning architectures and 

traditional methods for seepage prediction. As evidenced 

in Table 3 and Figure 6, the MAE of 0.098 m and RMSE of 

0.142 m for our model are superior to the CNN-LSTM 

(MAE 0.128 m, RMSE 0.185 m) and LSTM-Only (MAE 

0.156 m, RMSE 0.223 m) models reported by Zhang et al. 

(2025) [4, 5]. This validates the effectiveness of integrating 

the attention mechanism and leveraging multimodal 

features, which allow our model to capture more subtle 

and complex dependencies than models relying solely on 

numerical time-series data. The findings align with the 

broader success of AI methods in predicting seepage [7, 

10, 11] while demonstrating an advanced integrated 

approach. 

● Efficiency Comparison: The quantitative 

comparison of processing efficiency (Table 4, Figure 4) 

provides compelling evidence of the practical advantages 

of automation. The average 217.5x speed improvement is 

a significant leap compared to the manual processes often 

assumed in prior research. 

5.5 Industry Applications and Practical 

Implementation 

The proposed framework holds significant potential for 

practical implementation across various phases of 

construction engineering projects: 

● Automated Geotechnical Report Analysis: 

Engineers can rapidly process newly generated or 

historical geotechnical investigation reports, instantly 

extracting critical soil properties, water table levels, and 

potential seepage zones, significantly reducing the initial 

data interpretation phase. 

● Real-time Seepage Monitoring for Dam Safety: By 

integrating with IoT sensors and real-time data streams, 

the framework can continuously monitor pore water 

pressures and flow rates in dams, providing immediate 

alerts for anomalous behavior and predicting potential 

risks before they escalate. This supports proactive 

maintenance and emergency response protocols for 

critical infrastructure [16, 17, 18, 19, 20]. 

● Predictive Maintenance for Infrastructure Projects: 

The ability to accurately forecast seepage parameters 

allows for the implementation of predictive maintenance 

strategies. Instead of scheduled or reactive repairs, 

maintenance activities can be triggered based on 

predicted seepage trends, optimizing resource allocation 

and preventing costly failures. 

● Standardized Reporting for Regulatory 

Compliance: The structured output generated by the NLP 

pipeline can be directly used to populate standardized 

databases and generate compliance reports, simplifying 

regulatory submissions and ensuring data consistency 

across projects. 

● Enhanced Design Optimization: By rapidly 

accessing and analyzing a vast trove of historical 

geotechnical data, designers can gain deeper insights into 

soil behavior and seepage patterns, leading to more 

optimized and resilient designs for future projects. 

● Forensic Analysis of Failures: In the event of a 

seepage-related failure, the framework can quickly 
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process all available documentation and monitoring data 

to identify contributing factors and understand the 

sequence of events, aiding in forensic investigations and 

preventing recurrence. 

5.6 Scalability and Adaptability 

The modular architecture of the proposed framework 

ensures high scalability and adaptability, making it 

suitable for a wide range of applications beyond its initial 

focus: 

● Scalability across Project Sizes: The framework 

can be seamlessly scaled from small-scale construction 

sites to mega-projects involving vast amounts of 

documentation and numerous monitoring points. The 

computational components (NLP models, deep learning 

models) are designed to handle large datasets, and cloud-

based deployment can further enhance scalability. 

● Adaptability to Different Document Types: While 

currently tailored for geotechnical and construction 

reports, the NLP models can be retrained and fine-tuned 

for other types of construction documents (e.g., 

contracts, health and safety logs, environmental impact 

assessments) by simply providing new annotated 

corpora. 

● Extension to Other Geotechnical Analysis Areas: 

The core principles of extracting structured information 

from text and integrating it with numerical data for 

predictive modeling are highly transferable. The 

framework can be adapted to other critical geotechnical 

analysis areas such as: 

○ Slope Stability Analysis: Extracting parameters 

like cohesion, angle of internal friction, and historical 

landslide data from reports to predict potential 

instabilities. 

○ Foundation Design: Automating the extraction of 

bearing capacities, settlement characteristics, and pile 

driving records to optimize foundation designs. 

○ Groundwater Management: Analyzing well logs, 

pumping test results, and hydrogeological reports to 

predict groundwater levels, assess contamination risks, 

and optimize dewatering strategies for excavations. 

○ Tunneling and Underground Construction: 

Beyond seepage detection [9, 29], extracting rock mass 

classifications, support system details, and ground 

convergence data to predict tunnel stability and optimize 

construction methods. 

● Multilingual Capabilities: While currently focused 

on English documents, the framework can be extended to 

multilingual document processing by incorporating 

multilingual BERT models (e.g., mBERT, XLM-R) and 

acquiring annotated corpora in different languages. 

5.7 Challenges and Limitations 

Despite its significant advancements, the proposed 

framework, like any complex AI system, faces certain 

challenges and limitations that warrant consideration and 

future research: 

● Document Quality and Format Standardization: 

The system's performance is inherently dependent on the 

quality and consistency of input documents. Highly 

fragmented, poorly scanned, or inconsistent formatting 

can introduce errors in the OCR and subsequent NLP 

stages. Achieving higher standardization in document 

generation across the industry would significantly 

enhance the framework's reliability. 

● Language Dependency and Domain Specificity: The 

current NLP models are primarily trained and optimized 

for English-language geotechnical and construction 

documents. While adaptable, direct application to other 

languages or vastly different domains (outside 

construction engineering) would require substantial 

retraining and annotation efforts, limiting immediate 

broad applicability. 

● Computational Requirements for Real-time 

Processing: While theoretically capable of real-time 

processing, deploying such a comprehensive framework in 

resource-limited environments might be challenging due 

to the significant computational power required for deep 

learning model inference and large-scale data processing. 

Cloud-based solutions can mitigate this, but internet 

connectivity and cost considerations would remain. 

● Data Availability for Training: The initial training 

and fine-tuning of the domain-specific NLP models require 

a substantial volume of manually annotated data. Such 

annotated corpora for highly specialized fields like 

geotechnical engineering are scarce and time-consuming 

to create. This initial data bottleneck can be a barrier to 

entry for new deployments. 

● Interpretability of Deep Learning Models: Although 

attention mechanisms enhance model interpretability by 

highlighting influential features, the "black box" nature of 

complex deep learning models still poses a challenge. 

Engineers often require clear, explainable insights into 

why a prediction is made to build trust and confidently act 

on the system's recommendations, especially in high-

stakes civil engineering applications. Further research into 

Explainable AI (XAI) techniques tailored for geotechnical 

applications is needed. 

● Handling Ambiguity and Contextual Nuance: 

Natural language, especially in technical reports, can be 

inherently ambiguous or rely on implied context. While 

sophisticated, NLP models may occasionally misinterpret 

nuanced phrasing or struggle with complex anaphora 

resolution, leading to minor extraction errors. 

● Dynamic Nature of Construction Projects: 

Construction sites are highly dynamic environments. 

Rapid changes in ground conditions, design modifications, 

or unforeseen events may not always be immediately 

documented in text or captured by existing sensors, 

potentially leading to discrepancies between the model's 
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predictions and real-world conditions if not continuously 

updated. 

Addressing these limitations will be crucial for the 

further maturation and widespread adoption of 

integrated AI solutions in construction engineering. 

CONCLUSION 

This research has successfully developed, implemented, 

and rigorously validated a novel, integrated framework 

for automated seepage analysis in construction 

engineering. By seamlessly combining cutting-edge 

Natural Language Processing techniques for intelligent 

document processing with robust deep learning models 

for predictive analytics, the framework effectively 

bridges the critical gap between vast amounts of 

unstructured textual data and actionable quantitative 

insights. 

The NLP component, utilizing custom-trained BERT 

models, demonstrated exceptional accuracy (overall 

average of 94.2% and up to 96.2% for hydraulic 

conductivity) in extracting precise geotechnical 

parameters, seepage indicators, and contextual event 

information from diverse and complex construction 

documents. This automated extraction capability 

profoundly transforms raw, qualitative data into 

structured, machine-readable features, mitigating the 

laborious and error-prone nature of traditional manual 

processes. 

Furthermore, the hybrid CNN-LSTM-Attention deep 

learning model showcased superior performance in 

predicting critical seepage parameters, namely pore 

water pressure and flow rates. Achieving an RMSE of 

0.142 m for pore water pressure prediction, our model 

significantly outperformed traditional methods (23.5% 

reduction in RMSE) and other state-of-the-art deep 

learning architectures. This enhanced accuracy is largely 

attributed to the multimodal data fusion, where the 

model effectively leverages both continuous numerical 

sensor data and the rich, contextual features intelligently 

extracted from textual reports. 

A key contribution of this research is the quantifiable 

leap in processing efficiency. The automated system 

demonstrated an astonishing average speed 

improvement factor of 217.5x compared to manual 

methods, leading to substantial time and cost savings for 

construction projects. The robust validation using the 

extensive global SoilKsatDB database and real-world 

dam monitoring data further confirms the framework's 

reliability, generalizability, and practical applicability in 

diverse geotechnical contexts. 

In essence, this integrated framework offers a powerful, 

intelligent tool for civil and geotechnical engineers, 

enabling a paradigm shift from reactive, manual data 

interpretation to a more efficient, accurate, and proactive 

approach to seepage management. By automating critical 

information extraction and providing reliable, context-

aware predictions, the system contributes directly to 

earlier detection of potential issues, informed decision-

making, enhanced safety protocols, and optimized 

maintenance strategies for critical civil infrastructure, 

thereby significantly advancing the digitalization and 

resilience of construction engineering practices globally. 

Future Scope 

Building upon the successful development and validation 

of this integrated framework, several promising avenues 

for future research and development emerge, aiming to 

further enhance its capabilities and broaden its 

applicability: 

● Multilingual Document Processing and Global 

Applicability: Extend the framework's NLP capabilities to 

process documents in multiple languages. This would 

involve training or fine-tuning multilingual BERT models 

and building annotated corpora in languages beyond 

English, making the solution globally applicable for 

international construction projects. 

● Integration with Internet of Things (IoT) Sensors 

for Real-time Data Acquisition: Develop seamless 

integration protocols with various IoT sensors deployed 

on construction sites and within infrastructure (e.g., smart 

piezometers, fiber-optic seepage detection systems [16]). 

This would enable truly real-time data ingestion, analysis, 

and prediction, enhancing the framework's 

responsiveness for immediate anomaly detection and 

rapid decision-making. 

● Development of Mobile Applications for Field Use: 

Create user-friendly mobile applications that allow field 

engineers and inspectors to capture and input data 

directly, including text notes, photographs (for visual 

seepage detection, leveraging computer vision [9, 29]), 

and sensor readings. These apps could also provide real-

time access to the framework's predictions and insights, 

empowering on-site personnel with actionable 

intelligence. 

● Implementation of Blockchain Technology for Data 

Integrity and Trust: Explore the integration of blockchain 

technology to create an immutable and transparent record 

of all extracted parameters, sensor data, and prediction 

results. This would enhance data integrity, traceability, 

and trust among various project stakeholders (e.g., 

contractors, clients, regulatory bodies), particularly for 

critical safety-related data. 

● Creation of Standardized APIs for Integration with 

Existing Construction Management Systems: Develop 

robust and well-documented Application Programming 

Interfaces (APIs) to facilitate seamless integration of the 

framework with existing Building Information Modeling 

(BIM) platforms, Enterprise Resource Planning (ERP) 

systems, and other construction project management 

software. This would ensure interoperability and embed 

the automated seepage analysis directly into current 

industry workflows. 
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● Expansion to Other Geotechnical Analysis Areas: 

Leverage the core capabilities of the framework (NLP-

driven information extraction and deep learning 

prediction) to address other critical geotechnical 

engineering challenges. This includes: 

○ Slope Stability Analysis: Extracting parameters 

like cohesion, angle of internal friction, and historical 

landslide data from reports to predict potential 

instabilities. 

○ Foundation Design: Automating the extraction of 

bearing capacities, settlement characteristics, and pile 

driving records to inform and optimize the design of 

shallow and deep foundations. 

○ Groundwater Flow and Contamination Modeling: 

Processing hydrogeological reports and monitoring well 

data to predict groundwater levels, assess contamination 

risks, and optimize dewatering operations effectively. 

○ Tunneling and Underground Space Management: 

Beyond seepage, extracting rock mass classifications 

(e.g., RMR, Q-system), ground support details, and 

convergence measurements to predict tunnel stability 

and optimize excavation sequences. 

● Explainable AI (XAI) Enhancements: Further 

research into advanced XAI techniques tailored for 

geotechnical models. This would focus on developing 

methods to provide more transparent and interpretable 

explanations for model predictions, allowing engineers 

to understand the underlying reasoning and build 

greater trust in AI-driven insights, particularly for 

complex scenarios where accountability is paramount. 

● Uncertainty Quantification: Incorporate 

techniques for quantifying the uncertainty associated 

with predictions. Providing confidence intervals or 

probabilistic forecasts would give engineers a more 

complete picture of potential seepage scenarios, aiding in 

robust risk assessment. 

● Federated Learning for Data Privacy: Explore 

federated learning approaches to train models on 

decentralized datasets across different project sites 

without directly sharing raw data, addressing data 

privacy and intellectual property concerns while still 

benefiting from distributed knowledge. 

These future directions underscore the transformative 

potential of integrated AI in advancing construction 

engineering towards a more intelligent, efficient, and 

resilient future. 
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