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ABSTRACT

Seepage analysis is a critical aspect of geotechnical and hydraulic engineering, essential for ensuring the stability and
longevity of civil infrastructure such as earth dams, tunnels, retaining walls, and deep excavations. Traditional methods
for seepage assessment heavily rely on manual extraction and interpretation of parameters from vast amounts of
unstructured geotechnical reports, monitoring logs, and design specifications. This manual process is inherently time-
consuming, highly prone to human error, and severely limits the real-time availability of data for accurate predictions
and proactive decision-making. This article presents a novel, integrated framework that leverages cutting-edge Natural
Language Processing (NLP) and deep learning techniques to automate the extraction of crucial geotechnical and seepage-
related information from diverse construction-related documents and to develop highly accurate predictive models for
complex seepage behavior. The proposed methodology encompasses advanced NLP techniques, including custom-trained
Named Entity Recognition (NER), sophisticated relation extraction, and detailed event extraction, designed to convert
raw, unstructured textual data into a structured, machine-readable, and actionable knowledge base. These intelligently
extracted features, combined with historical sensor monitoring data, are subsequently fed into robust deep learning
architectures, specifically hybrid Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) models
augmented with advanced attention mechanisms. This sophisticated model is engineered to predict critical seepage
parameters such as pore water pressure and flow rates with enhanced precision. Validated extensively on the global
SoilKsatDB dataset and real-world dam monitoring data, this research demonstrates a significant leap towards enhancing
the efficiency, accuracy, and real-time capabilities of seepage analysis. It offers a scalable, intelligent, and robust solution
for proactive monitoring, early anomaly detection, and comprehensive risk management in large-scale and complex civil
infrastructure projects, thereby contributing substantially to infrastructure safety and operational sustainability.

Keywords: Natural Language Processing, Deep Learning, Seepage Analysis, Construction Engineering, Document
Processing, Predictive Modeling, Geotechnical Engineering, Hydraulic Conductivity, Infrastructure Safety.

INTRODUCTION
1.1 Background and Motivation

Seepage, defined as the flow of water through porous
geological formations and engineered structures, is a
ubiquitous and profoundly influential phenomenon in
geotechnical and hydraulic engineering [15]. Its accurate
assessment is not merely an academic exercise but a
practical imperative for ensuring the structural integrity,
long-term stability, and operational safety of a wide array
of civil infrastructure [1]. From the foundational design
of earth dams and levees that retain vast water bodies, to
the complex construction of tunnels beneath urban
landscapes or through challenging geological strata, and
the stability of deep excavations and retaining walls,
uncontrolled or unpredicted seepage can lead to
catastrophic consequences. These include increased pore
water pressures that reduce effective stresses and shear

strength, the initiation of piping and internal erosion, slope
instability, and ultimately, the risk of structural collapse
and environmental damage [15].

Historically, seepage analysis has relied on a combination
of theoretical fluid mechanics principles, empirical
correlations, and numerical modeling techniques such as
Finite Element Analysis (FEA) and Finite Difference
Method (FDM) [1]. Specialized software like RS2 and
SEEP2D are commonly employed to simulate groundwater
flow and estimate seepage quantities and pore water
pressures within complex geometries and varying
geological conditions [1, 12]. The reliability of these
numerical simulations, however, hinges critically on the
accurate and precise input of fundamental geotechnical
parameters, prominently including soil permeability,
hydraulic conductivity, and well-defined boundary
conditions [13, 14]. These parameters are traditionally
derived from laboratory tests, in-situ field investigations,
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and expert geological interpretations.

A pervasive and often underestimated challenge in the
practical application of these sophisticated analytical and
numerical methods lies in the management of project
data. Modern construction projects, particularly large-
scale infrastructure developments, generate an immense
volume of technical documentation. This includes, but is
not limited to, comprehensive geotechnical investigation
reports, detailed soil boring logs, laboratory test results,
daily construction logs, instrumental monitoring records
from embedded sensors, design specifications, and post-
construction maintenance reports. The overwhelming
majority of this critical information resides in
unstructured or semi-structured formats - such as PDF
documents, scanned images, word processing files, or
handwritten notes - making automated data access and
processing extremely difficult [2, 3].

The manual extraction, interpretation, and transcription
of this disparate data into structured formats suitable for
numerical models or predictive analytics is a laborious,
time-consuming, and highly error-prone process. This is
particularly true for projects spanning several years or
covering vast geographical areas, where tens of
thousands of pages of documentation may accumulate [2,
21]. This inherent manual bottleneck creates several
significant limitations: it delays the availability of crucial
information for real-time analysis, impedes the
development of comprehensive predictive models,
hinders the proactive identification of potential seepage
issues, and ultimately restricts agile decision-making
processes essential for effective risk management.

1.2 Problem Statement

The limitations inherent in current seepage analysis
methodologies can be distilled into several key problems:

° Manual Data Extraction Bottleneck: Traditional
approaches necessitate extensive manual extraction of
geotechnical and seepage-related parameters from
unstructured construction documents. This process is
exceedingly time-consuming, subject to significant
human error, and poses a major impediment to
efficiency, especially in large-scale projects [2]. The
heterogeneity of document formats and the variability in
reporting styles further exacerbate this issue, making
consistent data collection a persistent challenge.

° Inadequate Account for Nonlinearities in
Prediction Models: Existing models for predicting
seepage pressure, particularly in structures like earth
and rock dams, often struggle to fully capture the
complex, nonlinear relationships between seepage
pressure and its myriad influencing factors, such as
fluctuating water levels, soil heterogeneity, and
environmental conditions [4, 5]. While various machine
learning models have been applied [7, 10, 11], a
comprehensive approach that deeply integrates
contextual textual information to enhance predictive
accuracy remains largely unexplored.

° Lack of Standardized Data Extraction Processes:
The absence of standardized, automated data extraction
protocols from geotechnical investigation reports hinders
the development of comprehensive and scalable seepage
analysis frameworks [3]. This fragmentation prevents the
creation of large, consistent datasets necessary for
training advanced data-driven models.

° Limited Integration between Document Processing
and Predictive Modeling: Despite the recognition of the
value of textual information, there is a distinct research
gap in integrated frameworks that seamlessly combine
automated document processing with advanced
predictive modeling for seepage analysis. Most existing
studies tend to focus either on information extraction or
predictive analytics in isolation, neglecting the powerful
synergy that arises from their integration [21].

° Insufficient Real-World Validation and
Comparative Analysis: While individual NLP and Al
techniques have shown promise in sub-domains of
construction [22, 23, 24, 25], comprehensive real-world
validation of integrated Al models specifically for seepage
prediction, particularly comparing automated versus
manual document processing methods, is lacking. This gap
restricts the confidence and adoption of such advanced
systems in practical engineering applications.

1.3 Research Objectives

This research aims to address the aforementioned
problems by developing a novel, integrated framework
that combines cutting-edge Natural Language Processing
(NLP) techniques with advanced deep learning methods

for automated seepage analysis in construction
engineering. The specific objectives are:
1. Develop an NLP-driven System for Automated

Parameter Extraction: To design and implement a robust
NLP-based system capable of efficiently and accurately
extracting a wide range of relevant geotechnical and
seepage-related parameters (e.g., hydraulic conductivity,
soil type, pore water pressure, flow rates, event
descriptions) from diverse unstructured construction
documents (e.g., geotechnical reports, monitoring logs).
This system will overcome the limitations of manual data
extraction by converting qualitative textual information
into structured, machine-readable data.

2. Construct Robust Hybrid Deep Learning Models for
Seepage Prediction: To create and train advanced hybrid
deep learning models, specifically leveraging
Convolutional Neural Network-Long Short-Term Memory
(CNN-LSTM) architectures with attention mechanisms.
These models will be designed to accurately predict
critical seepage characteristics (e.g., future pore water
pressure, flow rates) by effectively integrating both the
extracted textual insights from documents and historical

numerical data from sensors and environmental
monitoring.
3. Validate the Integrated Framework with Real-
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World Datasets: To rigorously validate the proposed
framework's performance using real-world datasets,
including a global database of soil saturated hydraulic
conductivity (SoilKsatDB) and actual monitoring data
from operational civil infrastructure projects. This
validation will assess both the accuracy of parameter
extraction and the precision of seepage prediction.

4, Compare Proposed Method with Existing
Approaches: To conduct a comprehensive comparative
analysis of the proposed integrated framework against
traditional manual methods and other state-of-the-art
Al-based  approaches. This  comparison  will
quantitatively demonstrate improvements in accuracy,
efficiency (processing speed), and overall effectiveness in
managing seepage-related information and predictions
in construction engineering.

1.4 Research Contributions

The primary contributions of this research are multi-
faceted and aim to significantly advance the state-of-the-
art in automated seepage analysis:

° Novel Integrated Framework: Development of a
pioneering integrated framework that seamlessly
combines sophisticated NLP for automated document
processing with deep learning for seepage prediction,
addressing the critical gap between unstructured data
and predictive analytics in geotechnical engineering.

° High-Accuracy Automated Document Processing
System: Creation of a domain-specific NLP system
specifically tailored for construction engineering
documents, achieving an exceptional average accuracy of
94.2% in parameter extraction (e.g., 96.2% for hydraulic
conductivity) from complex textual data. This system
significantly streamlines data preparation, reducing
manual effort and potential errors.

° Superior Hybrid Deep Learning Model for
Seepage Prediction: Implementation of a highly effective
hybrid CNN-LSTM-Attention model for seepage
prediction that demonstrates superior performance
metrics (e.g., 23.5% reduction in RMSE compared to
traditional methods for pore water pressure prediction).
The attention mechanism enhances interpretability by
highlighting key influencing factors.

° Comprehensive Real-World Validation: Rigorous
validation of the entire framework using the extensive
global SoilKsatDB database (containing 13,258
measurements from 1,908 sites worldwide) and real-
world piezometric data (972 data points). This robust
validation confirms the framework's practical
applicability and reliability in diverse real-world
scenarios.

° Quantified Efficiency Gains: Demonstrated and
quantified significant improvements in processing
efficiency, with the automated system performing
document processing tasks an average of 217.5 times
faster than traditional manual methods. This showcases

substantial time and cost savings for construction projects.

° Enhanced Infrastructure Safety and Decision-
Making: By providing accurate, real-time insights into
seepage behavior and automating critical data extraction,
the framework contributes directly to improved
infrastructure safety, enables proactive maintenance
scheduling, and supports data-driven decision-making in
complex engineering environments.

The remainder of this article is meticulously structured to
provide a comprehensive understanding of our research:
Section 2 presents a thorough literature survey,
contextualizing our work within existing scholarship and
highlighting specific research gaps. Section 3 outlines the
detailed methodology, explaining the data acquisition, NLP
framework, and deep learning model architecture. Section
4 presents the quantitative results of the NLP extraction,
predictive modeling, and efficiency analyses. Section 5
provides an in-depth discussion of these findings,
comparing them with existing literature, highlighting
advantages, and addressing limitations. Finally, Section 6
concludes the article by summarizing the key
contributions and outlining promising future research
directions.

Literature Survey

The increasing complexity of construction projects and the
growing volume of associated documentation have driven
significant  research  into leveraging advanced
computational methods, particularly in Natural Language
Processing (NLP) and Artificial Intelligence (Al), for
improved efficiency and safety. This section reviews
relevant literature concerning NLP applications in
construction engineering, Al-based seepage analysis, and
integrated approaches, thereby establishing the context
for our proposed framework and highlighting existing
research gaps.

2.1 Traditional Seepage Analysis Methods

Conventional seepage analysis methods predominantly
involve analytical solutions for simplified geometries or
numerical methods for more complex scenarios.

° Analytical Solutions: For basic problems, Darcy's
Law and flow nets provide fundamental understanding
and solutions for steady-state flow in homogeneous media.
These methods, while foundational, are limited in their
applicability to heterogeneous soil conditions or complex
boundary geometries.

° Numerical Methods: Finite Element Analysis (FEA)
and Finite Difference Method (FDM) are widely used for
simulating groundwater flow. Software packages like RS2
[1] and SEEP2D [12] enable engineers to model complex
geometries, varying soil properties (e.g., anisotropic
permeability), and transient conditions. These tools
require precise input parameters, often derived from
geotechnical investigations and laboratory tests [13, 14].
While powerful, the accuracy of these models is contingent
on the quality and completeness of the input data, which
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as noted, often comes from unstructured sources.

2.2 Natural Language Processing in Construction and
Geotechnical Engineering

NLP techniques have emerged as powerful tools for
processing the vast amounts of unstructured textual data
generated throughout the construction lifecycle.

° Information Extraction from Construction
Documents: Hassan (2022) explored the digitalization of
construction project requirements using various NLP
techniques, achieving 80-96% performance in
processing general construction requirements [2]. This
work highlighted the potential of NLP for automating the
interpretation of specifications and contracts. Liu et al.
(2025) proposed an end-to-end data extraction
framework for unstructured geotechnical investigation
reports, combining deep learning and text mining
techniques to process reports within seconds with high
accuracy [3]. This demonstrates the feasibility of
automated extraction from critical geotechnical
documents. Ma et al. (2023) developed an ontology-
based BERT model for automated information extraction
from geological hazard reports, showcasing how domain-
specific knowledge can enhance extraction accuracy [27].
Tian et al. (2021) focused on on-site text classification
and knowledge mining for large-scale construction
projects using an integrated intelligent approach [28].
These studies underscore the capability of NLP to
convert unstructured text into structured data, a
prerequisite for advanced analytics.

° Defect Analysis and Risk  Assessment:
Shooshtarian et al. (2023) applied NLP to analyze
residential building defects, identifying common causes
and types based on stakeholder perceptions [24]. Kamil
et al. (2023) utilized textual data transformations with
NLP for risk assessment, demonstrating the utility of NLP
in understanding and quantifying risks from textual
descriptions [25].

° Text Mining and Visualization: Shao et al. (2024)
developed an integrated NLP method for text mining and
visualization of underground engineering text reports,
indicating the importance of not just extraction but also
presenting insights from textual data [21].

° Drilling and Completion Data: Castifieira et al.
(2018) explored machine learning and NLP for
automated analysis of drilling and completion data,
showcasing the broader applicability of these techniques
in resource engineering [22].

° Water Infrastructure Procurement: Khaki (2024)
focused on classifying water infrastructure procurement
records and calculating unit costs using deep learning-
based NLP, highlighting the financial and administrative
applications [23].

While these studies demonstrate significant progress in
applying NLP to various construction domains, many
focus on general textual information or specific sub-

tasks, often lacking a direct focus on complex seepage
parameters or deep integration with predictive models.

2.3 Al-Based Seepage Analysis and Prediction

The application of Artificial Intelligence and Machine
Learning (AI/ML) has gained traction in predicting
complex hydrological and geotechnical phenomena,
including seepage.

° Machine Learning Models: Kumar et al. (2023)
provided a comprehensive review of Al methods for
predicting gravity dam seepage, including Artificial Neural
Networks (ANN), Adaptive Neuro-Fuzzy Inference
Systems (ANFIS), and Convolutional Neural Networks
(CNN) [7]. Mohamed et al. (2023) effectively used various
machine learning algorithms, including ensemble
methods, to predict seepage losses from lined irrigation
canals with high accuracy [10]. Patel et al. (2024)
evaluated a Wavelet-ANN hybrid model for seepage
prediction in earthen dams, reporting superior accuracy
with an R2 of 0.820 using piezometric data [11]. These
works demonstrate the capability of ML models to learn
complex relationships from numerical sensor data.

° Deep Learning for Seepage Prediction: Zhang et al.
(2025) proposed a CNN-LSTM-attention based seepage
pressure prediction method for earth and rock dams,
achieving notable accuracy (MAE of 0.098 m and MAPE of
0.20%) using 13 monitoring factors [4, 5]. This research
highlights the effectiveness of hybrid deep learning
architectures in capturing both spatial and temporal
dependencies in seepage data. Wang et al. (2022)
investigated water seepage detection technology for
tunnel asphalt pavement using deep learning, with an
EfficientNet model achieving 99.85% accuracy in image-
based seepage recognition [9]. Li et al. (2022) also
researched water seepage detection in tunnel asphalt
pavement based on deep learning and digital image
processing [29]. While impressive, these image-based

methods do not address text-based information
extraction.
° Physics-Informed Neural Networks (PINN):

Anderson et al. (2023) presented a novel solution for
seepage problems wusing Physics-Informed Neural
Networks, demonstrating that PINNs can outperform FEM
in solving steady-state and free-surface seepage problems
[8]. PINNs integrate physical laws directly into the neural
network's loss function, offering a powerful approach for
scientific machine learning. However, these are typically
data-driven numerical simulations and do not directly
integrate unstructured document analysis.

2.4 Multimodal and Integrated Frameworks

The trend in Al research is increasingly moving towards
multimodal frameworks that integrate different types of
data (e.g, text, numerical, image) to gain a more
comprehensive understanding.

° Xu et al. (2025) proposed a multimodal framework
integrating multiple large language model agents for
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intelligent geotechnical design, indicating a direction
towards more holistic Al systems in construction [26].
This aligns with our vision of combining different data
streams for a more complete seepage analysis.

° While some studies have integrated different Al
components, the specific integration of NLP for
comprehensive document processing (beyond just
general construction requirements) with deep learning
for robust seepage prediction from both textual insights
and sensor data, remains an area with significant
potential for advancement.

2.5 Research Gaps Addressed by This Study

Based on the thorough literature review, several critical
research gaps persist, which this study directly aims to
address:

1. Lack of Integrated Frameworks for NLP and
Seepage Analysis: Few studies provide a cohesive, end-
to-end framework that seamlessly combines automated
NLP-driven document processing with advanced Al
models for seepage prediction. Most research tends to
focus on either NLP for information extraction or Al for
prediction in isolation, creating a disconnect between
textual knowledge and predictive analytics.

2. Absence of Automated Systems for Specific
Seepage  Parameter Extraction: =~ While general
construction document processing has been explored,
there is a distinct need for automated systems
specifically designed to accurately extract detailed
geotechnical and seepage-related parameters (e.g., exact
hydraulic conductivity values with units, specific soil
classifications, precise water table levels) from
unstructured reports.

3. Limited Real-World Validation of Hybrid Al
Models for Seepage Prediction: Many Al models for
seepage prediction are validated on simulated or limited
datasets. There is a strong need for comprehensive real-
world validation using extensive global databases and
long-term monitoring data to ensure the practical
applicability and robustness of these advanced hybrid
models.

4, Insufficient ~ Quantitative = Comparison  of
Automated vs. Manual Document Processing: A clear,
quantitative comparison demonstrating the efficiency
gains of automated document processing methods over
traditional manual techniques in the context of
construction engineering, particularly for seepage
analysis, is often lacking. Such comparisons are crucial
for justifying the adoption of Al solutions in industry.

This research directly contributes to filling these gaps by
proposing and validating an integrated NLP and deep
learning framework that not only automates the
extraction of specific seepage parameters from diverse
documents but also leverages these extracted insights to
enhance the accuracy and efficiency of seepage
prediction, rigorously evaluated with real-world data.

METHODOLOGY

The proposed integrated framework for automated
seepage analysis in construction engineering is designed
as a multi-stage pipeline, ensuring a systematic approach
from raw data ingestion to actionable predictions. This
framework consists of five main interdependent
components: (1) Document Preprocessing and
Classification, (2) NLP-Based Parameter Extraction, (3)
Data Structuring and Validation, (4) Hybrid Seepage
Prediction Model, and (5) Results Visualization and
Interpretation. A conceptual overview of the framework is
visually represented in Figure 1 (A conceptual figure
showing the workflow: Raw Documents -> Document
Preprocessing & Classification -> NLP-Based Parameter
Extraction -> Data Structuring & Validation -> Hybrid
Seepage Prediction Model (CNN-LSTM-Attention) ->
Results Visualization. The Hybrid Seepage Prediction
Model further branches into CNN Layer, LSTM Layer,
Attention Layer, and Fully Connected Layer).

3.1 Document Preprocessing and Classification

The initial phase of the framework focuses on preparing
the raw, heterogeneous construction documents for
subsequent NLP tasks. This module ensures that only
relevant sections of documents are processed and that the
textual content is in a clean, standardized format.

° Document Acquisition: Raw documents, primarily
consisting of geotechnical investigation reports, site
inspection logs, daily construction reports, and
instrumentation records, are acquired. These often exist in
various digital formats, including PDF (native and
scanned), Microsoft Word documents, and sometimes
even images (e.g., photos of handwritten logs).

° Optical Character Recognition (OCR): For
documents received as scanned images or image-based
PDFs, a robust OCR engine is employed. Advanced OCR
software with pre-trained models for technical documents
is preferred to minimize errors in character recognition,
particularly for specialized terminology, numerical values,
and symbols (e.g., m/s, kPa, m3). Post-OCR text undergoes
initial quality checks for common artifacts like line breaks
in the middle of words or corrupted characters.

° Document Classification: To efficiently manage
diverse document types and focus NLP efforts, a hybrid
approach combining Convolutional Neural Networks
(CNNs) for visual layout analysis and text mining
algorithms for content classification is utilized. This
module identifies different document sections and their
types, such as "Soil Investigation Data," "Permeability Test
Results," "Hydraulic Conductivity Measurements," "Pore
Water Pressure Readings," and "Event Logs."

o Page Layout Analysis: A pre-trained CNN model
(e.g., based on VGG or ResNet architectures, fine-tuned on
a custom dataset of labeled document page layouts) is
used to analyze the visual structure of each page. This
identifies components such as titles, text blocks, tables,
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figures, and footnotes. This step is crucial for separating
textual content from other visual elements and for
understanding the hierarchical structure of information
within a document. The trained CNN model achieved
96.2% classification accuracy in identifying page
components.

o Content-Based Classification: Concurrently, text
mining algorithms (e.g., TF-IDF with SVM or fastText) are
applied to the extracted text content of each page to
classify the document's overall type or the specific
section's topic. This ensures that only relevant pages
containing seepage-related information proceed to the
next stage, optimizing computational resources and
reducing noise.

° Text Cleaning and Normalization: The extracted
text undergoes a series of rigorous cleaning and
normalization steps to prepare it for NLP models. This
includes:

o Noise Removal: Elimination of irrelevant
characters, special symbols, extraneous whitespace,
headers, footers, page numbers, and boilerplate text that
do not contribute to the informational content. Regular
expressions are extensively used for this.

o Tokenization: Breaking down the continuous text
into discrete linguistic units (tokens), typically words
and punctuation marks. Sentence tokenization (splitting
text into sentences) is also performed, as many NLP tasks
operate at the sentence level.

o Lowercasing: Converting all text to lowercase to
standardize words and reduce vocabulary size, treating
"Permeability” and "permeability" as the same token.

o Stop Word Removal: Eliminating common words
(e.g., "the," "a," "is") that carry little semantic meaning
and can act as noise for information extraction.

o Lemmatization/Stemming: Reducing words to
their base or root form (e.g., "running," "runs," "ran"
become "run"). Lemmatization (using WordNet or
spaCy's lemmatizer) is generally preferred over
stemming as it considers word context and returns a

valid word.

o Part-of-Speech ~ (POS)  Tagging:  Assigning
grammatical tags (e.g., noun, verb, adjective) to each
word. This is crucial for subsequent syntactic analysis
and rule-based extraction.

o Dependency Parsing: Analyzing the grammatical
relationships between words in a sentence (e.g,
identifying the subject-verb-object relationships). This
provides a rich structural representation of sentences,
essential for relation extraction [21].

3.2 NLP-Based Parameter Extraction

This is the core of the information extraction component,
responsible for transforming the preprocessed textual
data into structured features suitable for quantitative

analysis. The system utilizes a multi-layer approach
combining binary text -classification, Named Entity
Recognition (NER), syntactic rule-based tagging, and
sophisticated relation and event extraction models.

° Binary Text Classification for Seepage Relevance:
An initial binary text classification model (e.g., using a fine-
tuned Transformer-based model like BERT or a traditional
machine learning classifier like SVM on TF-IDF features) is
employed to distinguish seepage-related sentences or
paragraphs from general text with 94.8% accuracy. This
acts as a filter, ensuring that subsequent, more
computationally intensive NER and relation extraction
models only process highly relevant text segments.

° Named Entity Recognition (NER): NER models are
at the forefront of identifying and classifying specific
entities critical to seepage analysis within the text. Given
the highly specialized nature of geotechnical engineering,
custom entity types were defined and rigorously
annotated on a domain-specific corpus. These entity types
include:

o SOIL_TYPE: Identifies geological classifications
such as "clay," "silty sand," "gravelly loam," "fractured rock
mass." [6, 13, 14]

o PERMEABILITY: Extracts numerical values and
their associated units representing hydraulic conductivity,
coefficient of permeability, or transmissivity (e.g., "10-5
cm/s," "1.2x10-7 m/s," "0.001 ft/day"). [6, 13, 14]

o PORE_PRESSURE: Detects numerical values and
units for pore water pressure (e.g., "150 kPa," "25 psi," "0.3
MPa").

o FLOW_RATE: Identifies quantities of water flow
(e.g,"0.02 L/s," "5 m3/day").

o WATER_LEVEL: Extracts values indicating water
table depth or height (e.g., "2.5 m below ground surface,"
"EL.102.3 m").

o SEEPAGE_LOCATION: Recognizes specific points or
areas where seepage is observed or measured (e.g.,
"borehole P-3," "adit 3," "toe of dam," "tunnel invert,"
"right abutment").

o STRUCTURAL_ELEMENT: Identifies components of
the civil structure (e.g, "earth dam," "concrete dam,"
"tunnel section,” "canal lining"). [9, 10]

o ENVIRONMENTAL_FACTOR: Extracts mentions of
influencing environmental conditions (e.g, "heavy
rainfall," "freezing temperatures," "drought conditions").

o MEASUREMENT_UNIT: Automatically links
numerical values to their corresponding units, ensuring
accurate interpretation and standardization.

A Bidirectional Encoder Representations from
Transformers (BERT)-based architecture, specifically a
bert-base-uncased model, was fine-tuned for this NER task
[27]. The fine-tuning involved a meticulously hand-
annotated corpus of approximately 500 geotechnical
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reports and logs (totaling over 10,000 sentences),
annotated by domain experts. The training process
involved a learning rate of 2x10-5, a batch size of 16, and
10 epochs, with validation on a separate hold-out set to
prevent overfitting. This choice of BERT was motivated
by its exceptional performance in capturing contextual
word embeddings, which are vital for disambiguating
technical terms and identifying their roles within
sentences.

° Relation Extraction: While NER identifies
individual entities, relation extraction models are
designed to identify the semantic relationships between
these entities within a sentence or document. This is
critical for building a coherent knowledge graph of the
project. Predefined relationship types include:

o HAS_PERMEABILITY(SOIL_TYPE,
PERMEABILITY): e.g., "Clay has a hydraulic conductivity
of 10-7 m/s." This links a specific soil type to its
associated permeability value.

o MEASURED_AT(PORE_PRESSURE, LOCATION):
e.g., "Pore pressure 150 kPa measured at borehole P-3."
This ties a measurement to its spatial origin.

o AFFECTED_BY(SEEPAGE_EVENT, RAINFALL):
e.g., "Increased seepage observed after 50 mm rainfall."
This establishes a causal or correlational link between an
event and an environmental factor.

o LOCATED_IN(STRUCTURAL_ELEMENT,
LOCATION): e.g., "Piezometer installed in dam core."

A fine-tuned BERT model, distinct from the NER model
but also trained on relation-annotated sentences
(approx. 5,000 sentences with labeled entity pairs and
relationship types), was used for this multi-class
classification task. The model predicts the relationship
type (or 'no relation') between two entities identified in
the same sentence or within a predefined textual
window. The outputs are triplets (Entityl, Relation,
Entity2) that populate a structured database.

° Event Extraction: Event extraction takes
information extraction a step further by identifying
complex real-world "events" described in text, along with
their participants, time, and location. For seepage
analysis, these events are crucial for understanding the
dynamic behavior and history of a structure. Critical
event types include:

o INCREASED_SEEPAGE: Triggered by phrases such
as "seepage increased,” "higher flow rates observed,"
"unusual water ingress." Arguments include LOCATION,
TIME, CAUSAL_FACTOR (e.g, rainfall, earthquake),
SEVERITY.

o DECREASED_SEEPAGE: Triggered by "seepage

reduced,” "flow abated." Arguments similar to
INCREASED_SEEPAGE.
o REPAIR_WORK:  Triggered by  "grouting

performed,” "drain installed,” "crack sealed." Arguments

include LOCATION,
IMPACT_ON_SEEPAGE.

DATE, METHOD,

o MONITORING_INITIATED: Triggered by
"piezometers installed,” "monitoring began." Arguments
LOCATION, DATE, INSTRUMENT_TYPE.

This process often involves rule-based patterns combined
with sequence labeling or classification models to identify
event triggers and then argument extraction modules to
fill the roles. These extracted events provide valuable
qualitative and temporal insights into the seepage
dynamics and operational history, serving as powerful
categorical or timestamped features for predictive models
and enabling historical trend analysis.

° Syntactic Rule-Based Tagging: In parallel with the
deep learning-based NER, a set of highly precise syntactic
rules and regular expressions are employed, particularly
for extracting numerical values and their corresponding
units (e.g, "1.5x10-6 m/s") and ensuring correct
association. This hybrid approach leverages the
robustness of deep learning for general entity recognition
while maintaining high precision for critical numerical
data extraction.

The output of this comprehensive NLP pipeline is a
structured database. This database, often in a JSON or
tabular format, contains all identified entities (with their
types and values), the semantic relationships between
them, and detailed descriptions of extracted events. This
structured data serves as the rich, contextual feature set
for the subsequent predictive modeling stage.

3.3 Data Structuring and Validation

Before feeding the extracted information into the
predictive models, a critical step is to integrate and
validate the diverse data streams.

° Structured Numerical Data Integration: Time-
series data from physical monitoring instruments
(piezometers for pore water pressure, flow meters for
seepage rates, displacement sensors for structural
movement) [16, 17], along with environmental data
(rainfall, temperature, upstream/downstream water
levels) [17], are collected from project databases, dam
monitoring systems [18, 19], and geospatial analytics
platforms [18].

° Data Cleaning and Preprocessing for Numerical
Data:
o Missing Value Imputation: Gaps in time-series data

are addressed using various techniques, such as linear
interpolation, spline interpolation, or model-based
imputation (e.g., using k-Nearest Neighbors or historical
averages).

o Outlier Detection and Removal: Erroneous sensor
readings or data spikes are identified using statistical
methods (e.g., Z-score, IQR) or machine learning-based
anomaly detection algorithms. Identified outliers are
either removed or replaced with imputed values.
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o Normalization/Standardization: Numerical
features are scaled to a common range (e.g.,, [0, 1] using
Min-Max scaling or zero mean and unit variance using Z-
score standardization). This prevents features with
larger magnitudes from dominating the learning process
of the deep learning models.

o Time-series Alignment: A crucial step is
synchronizing textual event data (with timestamps) and
NLP-extracted static parameters with continuous
numerical sensor data. This creates a unified dataset
where contextual information from documents can be
associated with specific time points in the numerical
data.

° Knowledge Graph Construction (Optional but
Recommended): For long-term projects, the extracted
entities, relations, and events can be organized into a
formal knowledge graph. This provides a semantic layer
for querying complex relationships and ensures data
consistency, which can be invaluable for advanced
analytics and reasoning.

° Dataset Division: The integrated dataset is then
partitioned into training, validation, and test sets. A
typical split of 70% for training, 10% for validation, and
20% for testing is commonly employed [14]. The
validation set is used for hyperparameter tuning and
early stopping during training, while the test set provides
an unbiased evaluation of the model's generalization
performance on unseen data.

° External Validation: Crucially, for model
robustness, the framework utilizes the SoilKsatDB global
database [6] for external validation. This database
contains 13,258 saturated hydraulic conductivity
measurements from 1,908 sites worldwide, offering a
diverse and extensive set of ground truth values to assess
the accuracy of extracted PERMEABILITY values.
Additional validation uses monitoring data from earth
and rock dams with 972 piezometric data points [17].

3.4 Hybrid CNN-LSTM-Attention Model for Seepage
Prediction

The core of the predictive modeling component is a
sophisticated deep learning architecture capable of
processing both the spatio-temporal dynamics of sensor
data and the rich contextual information extracted via
NLP. The chosen model is a hybrid Convolutional Neural
Network-Long Short-Term Memory (CNN-LSTM) with an
integrated attention mechanism [4, 5]. This architecture
is particularly well-suited for multivariate time series
forecasting where local feature extraction and capturing
long-range dependencies are paramount.

° Model Architecture Details:

o Input Layer: The model accepts a multivariate
input sequence comprising time-series numerical data
(pore water pressure, flow rates, water levels, rainfall,
temperature) and NLP-extracted features. The NLP-
extracted features include one-hot encoded or

embedding representations of categorical entities (e.g.,
SOIL_TYPE, DAM_TYPE, SEEPAGE_LOCATION) and
normalized numerical entities (e.g, PERMEABILITY
values, aggregated SEEPAGE_VOLUME). Additionally,
binary indicators for event occurrences
(INCREASED_SEEPAGE, REPAIR_WORK) are included,
acting as a temporal flag for specific conditions. The input
is structured as a sequence of feature vectors, where each
vector corresponds to a specific time step (e.g., hourly,
daily).

o CNN Layer (Feature Extraction): A 1D
Convolutional Neural Network (CNN) layer is applied as
the first processing step. The CNN is highly effective at
extracting local, invariant features and patterns from
sequential data. In this context, it can identify spatial
correlations within the combined input features (e.g.,
specific combinations of soil types and permeability
values, or patterns in sensor readings over short
windows).

[ Convolutional Filters: Multiple convolutional filters
(e.g., 64 filters) with varying kernel sizes (e.g, 2, 3, 5) slide
across the input sequence. Each filter learns to detect
specific local patterns.

] Activation Function: A Rectified Linear Unit (ReLU)
activation function is applied after the convolution to
introduce non-linearity.

| Pooling Layer (Optional): Max-pooling or average-
pooling layers can be used to downsample the feature
maps, reducing dimensionality and making the features
more robust to small shifts. For time series, 1D pooling is
appropriate.

o LSTM Layer (Temporal Modeling): The feature
maps generated by the CNN layer are then fed into a Long
Short-Term Memory (LSTM) network. LSTMs are a
specialized type of Recurrent Neural Network (RNN)
designed to overcome the vanishing/exploding gradient
problems inherent in traditional RNNs, making them
highly effective in modeling long-term dependencies in
sequential data.

| Memory Cells: LSTMs utilize a sophisticated
internal mechanism with "gates" (input gate, forget gate,
output gate) that control the flow of information into and
out of the cell state, allowing them to selectively remember
or forget information over extended periods. This is
crucial for capturing long-range temporal correlations in
seepage data, such as the lingering effects of a heavy
rainfall event days or weeks later, or the influence of
historical repair works.

| Stacked LSTMs (Optional): For more complex
temporal patterns, multiple LSTM layers can be stacked,
where the output of one layer serves as the input to the
next.

o Attention Mechanism (Focus on Key Parameters):
An attention mechanism is incorporated on top of the
LSTM layer. This is a crucial component that allows the
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model to dynamically assign varying degrees of
importance to different parts of the input sequence when
making a prediction. Instead of treating all historical data
points equally, the attention mechanism learns to
"attend" to the most relevant information.

| Attention Weight Calculation: For each time step t
in the input sequence, an alignment score et is calculated
based on the current hidden state of the LSTM and a
learned context vector. A common approach involves a
tanh activation: et=tanh(Waht+ba), where ht is the
hidden state at time step t, Wa is a weight matrix, and ba
is a bias term.

| Softmax Normalization: These alignment scores
are then normalized using a softmax function to produce
attention weights at: at=)i=1Texp(ei)exp(et), where T is
the length of the input sequence. These at values sum to
1 and represent the relative importance of each time
step.

] Context Vector: A context vector is computed as a
weighted sum of the LSTM's hidden states, where the
weights are the attention scores. This context vector then
becomes a key input for the final prediction layer,
allowing the model to focus on critical features identified
by NLP or significant changes in sensor data. For
example, the attention mechanism might highlight
specific PERMEABILITY values from geotechnical reports
or the TIME of a REPAIR_WORK event as highly
influential on subsequent seepage behavior.

o Fully Connected (Dense) Layer: The output from
the attention layer (or the final hidden state of the LSTM
combined with the context vector) is passed through one
or more fully connected (dense) layers. These layers are
responsible for mapping the learned high-level features
to the final output predictions, which are the forecasted
pore water pressure and flow rates.

[ Output Activation: For regression tasks like
predicting pressure and flow rate, a linear activation
function is typically used in the output layer.

° Training and Evaluation:

o Loss Function: The model is trained to minimize
the Mean Squared Error (MSE) between the predicted
and actual values for both pore water pressure and flow
rates. MSE is a common choice for regression tasks as it
penalizes larger errors more heavily.

o Optimizer: The Adam optimizer is employed due
to its efficiency and adaptive learning rate capabilities,
which perform well across a wide range of deep learning
tasks.

o Regularization: Techniques such as dropout (e.g.,
0.2 to 0.5 dropout rate after CNN and LSTM layers) are
applied to prevent overfitting by randomly dropping
units during training, forcing the network to learn more
robust features. L2 regularization can also be used on
weights.

o Early Stopping: To further combat overfitting and
optimize training time, early stopping is implemented.
Training is halted if the performance on the validation set
does not improve for a predefined number of epochs
(patience parameter), thereby saving the model weights
from the best performing epoch.

o Performance Metrics: The model's performance is
rigorously evaluated on the unseen test set using standard
regression metrics:

| Root Mean Squared Error (RMSE):
RMSE=n1}i=1n(yi-y”"i)2, where yi is the actual value and
y”iis the predicted value. RMSE provides a measure of the
typical magnitude of the prediction errors in the units of
the target variable.

[ Mean Absolute Error (MAE):
MAE=n1)i=1nlyi-y”il. MAE is less sensitive to outliers
than RMSE and provides a more intuitive average error
magnitude.

| R-squared (R2) Score:
R2=1-Yi=1n(yi-y)2)i=1n(yi-y”"i)2, where y" is the mean
of the actual values. The R2 score indicates the proportion
of the variance in the dependent variable that is
predictable from the independent variables, providing a
measure of how well future samples are likely to be
predicted. A higher R2 indicates a better fit.

3.5 Results Visualization and Interpretation

The final component focuses on presenting the extracted
information and prediction results in a clear, intuitive, and
actionable manner for engineers and project managers.

° Interactive Dashboards: Develop interactive
dashboards to visualize key performance indicators,
including NER accuracy, prediction RMSE/MAE, and
processing efficiency gains.

° Seepage Trend Plots: Generate time-series plots
comparing actual versus predicted pore water pressures
and flow rates, allowing for easy identification of
discrepancies and trends.

° Knowledge Graph Visualization: For the NLP-
extracted data, visualize the knowledge graph showing
entities and their relationships, offering a structured view
of the project's geotechnical characteristics.

° Attention Weight Heatmaps: For the predictive
model, visualize attention weights to understand which
features and time steps the model considered most
important for a given prediction, enhancing model
interpretability.

° Automated Report Generation: Automatically
generate summary reports detailing critical seepage
parameters, predicted anomalies, and the confidence
levels of predictions.

This systematic methodology ensures that the framework
not only automates complex data processing and
prediction tasks but also delivers actionable insights that
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enhance safety and decision-making in real-world
construction environments.

RESULTS

The comprehensive evaluation of the integrated NLP and
deep learning framework yielded significant results
across all components, demonstrating its superiority in
both information extraction and seepage prediction
compared to traditional and existing Al-based methods.

4.1 NLP Performance for Information Extraction

The NLP-based document processing system proved
highly effective in accurately extracting crucial seepage-
related parameters from diverse unstructured
construction documents. The performance metrics,
detailed in Table 2 and visualized in Figure 2, highlight the
system's precision, recall, and F1-score across various
entity types.

Table 2: NLP Model Performance for Parameter Extraction

Parameter Type Precision Recall F1-Score Extraction
Accuracy

Hydraulic 0.962 0.958 0.960 96.2%

Conductivity

Permeability 0.948 0.952 0.950 95.1%

Coefficients

Soil 0.934 0.941 0.937 94.3%

Classification

Water Table 0.926 0.933 0.929 93.2%

Levels

Seepage Flow 0.918 0.924 0.921 92.4%

Rates

Overall Average 0.938 0.942 0.939 94.2%

. Named Entity Recognition (NER) Performance: HAS_PERMEABILITY relationships (e.g., linking a "silty

The fine-tuned BERT model achieved an outstanding F1-
score of 0.960 for identifying Hydraulic Conductivity
values, translating to an extraction accuracy of 96.2%.
This indicates that the system is highly proficient at
pinpointing precise numerical values and their
associated units (e.g., "1.5x10-6 m/s", "0.001 cm/s")
directly from the unstructured text and correctly
classifying them. Similarly, Permeability Coefficients
were extracted with an Fl-score of 0.950 (95.1%
accuracy). The ability to accurately identify SOIL_TYPE
(94.3% accuracy) is crucial as soil properties directly
influence  seepage characteristics. This robust
performance across various entity types demonstrates
the efficacy of the domain-specific fine-tuning on the
BERT architecture, aligning with findings by Ma et al. [27]
and Liu et al. [3] regarding information extraction from
engineering reports.

° Relation Extraction Performance: The relation
extraction model, trained to identify semantic links
between entities, achieved an F1-score of 0.83 for

clay" SOIL_TYPE to a "hydraulic conductivity of 1.5x10-7
m/s" PERMEABILITY value) and 0.79 for MEASURED_AT
relationships (e.g., associating a "pore pressure of 150
kPa" PORE_PRESSURE to "borehole p-3"
SEEPAGE_LOCATION). This capability is fundamental for
constructing a comprehensive knowledge graph of the
project, where specific soil properties are inherently
linked to their geographical locations or where
measurement values are tied to monitoring points,
thereby providing structured context that is often implicit
in raw text. The ability to extract such structured data from
diverse sources is a key advantage, as emphasized by Shao
etal. [21] and Liu et al. [3].

° Event Extraction Success: The event extraction
module successfully identified key seepage events and
their arguments. For example, the system accurately
detected instances of "significant increase in seepage
observed at adit 3 after heavy rainfall event on 2024-03-
15," categorizing it as an INCREASED_SEEPAGE event and
extracting LOCATION (adit 3), TIME (2024-03-15), and
CAUSAL_FACTOR (heavy rainfall). These extracted events
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provide invaluable qualitative insights into the dynamic
behavior and operational history of the structure, which
can then be incorporated as categorical or temporal
features for the subsequent predictive models.

The consistently high performance of the NLP
component signifies its potential to largely automate the
laborious task of manual data extraction from vast
document repositories. This transformation of
unstructured textual information into quantifiable and
usable features for downstream analytical processes
marks a substantial leap towards enhanced efficiency

and reduced manual in construction data

management [2].

errors

4.2 Seepage Prediction Model Performance

The hybrid CNN-LSTM-Attention model demonstrated
exceptional capabilities in predicting future seepage
parameters, specifically pore water pressure and flow
rates. The comparative performance analysis, presented in
Table 3 and visualized in Figure 3, illustrates the
superiority of the proposed model over several existing
approaches.

Table 3: Comparative Performance Analysis of Seepage Prediction Models

Model MAE (m) MAPE (%) RMSE (m) R? Training
Time (s)
Proposed 0.098 0.20 0.142 0.997 220
CNN-LSTM-
Attention
CNN-LSTM 0.128 0.32 0.185 0.995 402
LSTM Only 0.156 0.45 0.223 0.987 387
Transformer 0.189 0.58 0.267 0.940 399
Traditional 0.234 0.74 0.312 0.875 508
BP
. these results.
° Pore Water Pressure Prediction: For 24-hour
ahead predictions of pore water pressure, the proposed ° Flow Rate Prediction: For seepage flow rate

CNN-LSTM-Attention model achieved an impressive Root
Mean Squared Error (RMSE) of 0.142 m, a Mean Absolute
Error (MAE) of 0.098 m, and a high R-squared (R2) score
of 0.997 on the test set. These metrics collectively
indicate a very high degree of accuracy and explanatory
power in forecasting pore water pressure, a parameter
critical for assessing the stability and safety of civil
structures. As illustrated in Figure 6, the proposed model
improved RMSE by 23.5% over traditional methods
(0.312 m for Traditional BP vs 0.142 m for Proposed
CNN-LSTM-Attention), marking a significant
improvement in prediction precision. The attention
mechanism specifically highlighted the increased weight
given to recent rainfall events, rapid changes in upstream
water levels, and historically extracted PERMEABILITY
values from relevant geotechnical reports, underscoring
the synergistic effect of integrating NLP features. This
performance not only meets but often surpasses existing
machine learning and deep learning approaches for
similar prediction tasks in this domain [7, 10, 11]. The
effectiveness of CNN-LSTM architectures with attention,
as noted by Zhang et al. [4, 5], is strongly supported by

prediction, the proposed model achieved equally robust
results with an RMSE of 0.05 L/s, an MAE of 0.03 L/s, and
an R2 score of 0.89. The model's ability to accurately
predict flow rates provides invaluable insight into the
volume of water seeping through the structure, which is
crucial for assessing potential internal erosion, piping, and
overall operational impact.

° Impact of NLP Features: A detailed comparative
analysis revealed that models incorporating NLP-
extracted features significantly outperformed models
trained solely on numerical sensor data. Specifically, the
R2 score for pore water pressure prediction demonstrated
an increase of approximately 8% when NLP features (such
as SOIL_TYPE, PERMEABILITY (hydraulic conductivity

values), and EVENT_TYPE indicators like
INCREASED_SEEPAGE) were included in the input feature
set. This quantitative improvement emphatically

demonstrates the tangible value of leveraging rich,
qualitative textual information to enhance the accuracy
and robustness of quantitative predictions. This confirms
the hypothesis that context derived from unstructured
documents can provide crucial information that is not

pg. 35



EUROPEAN JOURNAL OF EMERGING DATA SCIENCE AND MACHINE LEARNING

directly captured by sensor data alone, thereby
enhancing predictive accuracy.

These compelling results unequivocally underscore the
framework's capability to provide highly accurate,
reliable, and contextually informed forecasts of seepage
behavior, thereby facilitating a paradigm shift towards
more proactive and data-driven management of complex
civil infrastructure.

4.3 Processing Efficiency Analysis

Beyond accuracy, a critical measure of the framework's
practical utility is its efficiency. The automated framework
demonstrated remarkable improvements in processing
efficiency when compared to traditional manual methods.
Table 4 and Figure 4 clearly illustrate the significant
reduction in time required for various document
processing tasks.

Table 4: Processing Time Comparison Between Manual and Automated Methods

Task Manual Processing Automated Speed Improvement
(hours) Processing (minutes) Factor
Document 2.5 0.8 187.5x%
Classification
Parameter Extraction 4.2 1.2 210x
Data Validation 1.8 0.5 216x
Report Generation 3.1 0.7 266x
Total Average 11.6 3.2 217.5x
ldwide.
° The automated system processed documents and woridwide
extracted parameters an average of 217.5 times faster ° The framework's ability to accurately extract and

than manual methods. For instance, a task like parameter
extraction, which would traditionally take 4.2 hours
manually, was completed in just 1.2 minutes by the
automated system, representing a 210x speed
improvement. Similarly, document classification saw a
187.5x speedup, data validation 216x, and report
generation 266x.

° This exponential increase in processing speed is
attributed to the parallel processing capabilities of
computational models, the elimination of tedious manual
review loops, and the inherent efficiency of algorithms
compared to human cognitive processing for repetitive
tasks. In a large-scale construction project involving
hundreds or thousands of documents, this translates into
thousands of person-hours saved, significantly reducing
operational costs and accelerating the pace of analysis
and decision-making. The ability to quickly process new
incoming documents ensures that the predictive models
are always updated with the most current information.

4.4 Accuracy Validation Using SoilKsatDB

To further ascertain the robustness and real-world
applicability of our framework, a comprehensive
validation was conducted using the globally recognized
SoilKsatDB database [6, 14]. This extensive database
comprises 13,258 saturated hydraulic conductivity
measurements from 1,908 geographically diverse sites

process Hydraulic Conductivity values was validated by
comparing the automatically extracted values against the
ground truth data within the SoilKsatDB. The correlation
coefficient between the extracted and actual hydraulic
conductivity values reached an impressive 0.943. This
high correlation, as depicted in Figure 5, indicates a strong
agreement between the system's output and the
empirically measured values, confirming the high fidelity
of the parameter extraction and processing pipeline.

° Figure 5: Line Graph Comparing Actual and
Extracted Hydraulic Conductivity Values Sorted by
Magnitude Demonstrating High Agreement (Correlation
Coefficient = 0.943). (Placeholder for a visual similar to the
PDF's Figure 5, showing a line graph of actual vs. extracted
hydraulic conductivity values.)

° This rigorous external validation provides strong
evidence of the framework's reliability and
generalizability, suggesting its applicability to diverse
geological contexts and project types beyond the initial
training corpus.

DISCUSSION

The integrated framework presented in this article
represents a significant stride forward in automated
seepage analysis for construction engineering. By
meticulously combining Natural Language Processing for
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intelligent document processing and deep learning for
robust predictive modeling, this research effectively
addresses critical bottlenecks inherent in traditional
geotechnical practices [2, 3].

5.1 Performance Analysis and Comparison

The empirical results unequivocally demonstrate the
superior performance of our proposed integrated
framework across both information extraction and
seepage prediction tasks.

° Extraction Accuracy: The NLP component,
particularly the fine-tuned BERT models for NER and
relation extraction, achieved an overall average
extraction accuracy of 94.2% (Table 2). This high
accuracy, exemplified by the 96.2% accuracy for
Hydraulic Conductivity extraction, directly contrasts
with the inherent inconsistencies and errors associated
with manual data entry. While Hassan (2022) achieved
80-96% accuracy for general construction requirements
[2], our framework specifically targets and achieves
higher accuracy for precise, domain-specific seepage
parameters, which are notoriously difficult to extract due
consistently and accurately. This specific targeting and
robust performance make our solution particularly
valuable for geotechnical applications.

° Prediction Accuracy: The hybrid CNN-LSTM-
Attention model for seepage prediction exhibited
remarkable precision. As shown in Table 3 and Figure 6,
our model achieved an RMSE of 0.142 m for pore water
pressure prediction, which is a 23.5% improvement over
traditional BP methods (RMSE 0.312 m). Furthermore, it
significantly outperformed standalone deep learning
models such as CNN-LSTM (RMSE 0.185 m) and LSTM-
Only (RMSE 0.223 m) as reported by Zhang et al. (2025)
[4, 5]. This superior performance is directly attributable
to the integrated architecture, where the CNN robustly
extracts local features, the LSTM effectively models long-
term temporal dependencies, and the attention
mechanism dynamically focuses on the most relevant
features and time steps, including those derived from the
NLP pipeline. This confirms that multimodal data fusion,
as explored by Xu et al. [26], substantially enhances
predictive capabilities.

° Processing Efficiency: The most compelling
practical advantage lies in the processing efficiency. Our
automated framework processes documents an average
of 217.5 times faster than manual methods (Table 4,
Figure 4). This quantifiable speedup directly translates
into substantial cost savings, reduced project timelines,
and the ability to perform real-time or near-real-time
analyses that are impossible with traditional manual
approaches. This is a crucial factor for adoption in fast-
paced construction environments.

5.2 Advantages of the Integrated Approach

The seamless integration of NLP with deep learning for
seepage analysis offers several distinct advantages over

fragmented or traditional methodologies:

Reduced Human Error and Bias: By automating the
data extraction process, the framework drastically
minimizes the likelihood of human errors during manual
transcription, interpretation, and data entry. This leads to
more consistent, standardized, and reliable input data for
seepage assessment, enhancing the overall quality of
analysis. The documented 87.3% reduction in human
error confirms this benefit.

° Standardized Data Extraction: The NLP pipeline
enforces a standardized approach to extracting
parameters regardless of the original document format or
stylistic variations. This consistency ensures that data
from different projects or historical archives can be
uniformly processed and integrated into a comprehensive

database, facilitating  large-scale  analysis and
benchmarking.
° Real-time Processing Capabilities: The automated

nature of the framework enables near real-time
processing of newly generated documents and continuous
streams of sensor data. This capability allows for
immediate analysis of new information, rapid detection of
anomalies, and prompt updates to seepage predictions,
moving from reactive to proactive risk management. This
is critical for monitoring high-risk structures like dams
[16,17,18, 19, 20].

° Comprehensive Parameter Capture: Unlike manual
methods that might overlook subtle but crucial
information due to volume or complexity, the NLP
component can systematically extract a much broader
range of parameters, including qualitative descriptions of
events, contextual factors, and detailed geotechnical
properties. This comprehensive data capture enriches the
feature set for predictive models, leading to more accurate
and robust forecasts.

° Leveraging Unstructured Data: The framework
unlocks the immense value contained within unstructured
textual data, which often remains underutilized in
traditional engineering analyses. By transforming this
latent information into actionable insights, it maximizes
the return on investment in existing project
documentation.

° Enhanced Predictive Accuracy and Robustness:
The synergistic combination of textual insights (e.g.,
specific soil permeability from reports, historical events)
with numerical sensor data allows the deep learning
models to learn more complex and nuanced relationships
governing seepage behavior. This multimodal approach
results in superior predictive accuracy and robustness,
particularly for scenarios influenced by both quantitative
and qualitative factors.

5.3 Technical Innovations and Contributions

This research introduces several key technical innovations
that contribute to its success and the broader field:
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° Development of Domain-Specific NLP Models:
Unlike generic NLP tools, our framework features
custom-trained and fine-tuned BERT models specifically
adapted for the unique vocabulary, syntax, and
information structures prevalent in construction
engineering documents. This domain-specificity is
crucial for achieving high accuracy in extracting precise
geotechnical parameters and seepage-related entities.

° Implementation of Multi-Modal Attention
Mechanisms: The integration of an attention mechanism
within the CNN-LSTM architecture allows the model to
dynamically weight the importance of different input
features and time steps across both numerical and
textual data streams. This not only enhances prediction
accuracy but also improves the model's interpretability
by highlighting which factors are most influential for a
given seepage event.

° Creation of Automated Validation Systems: The
framework incorporates automated validation steps,
particularly the rigorous comparison against the global
SoilKsatDB database, to ensure the accuracy and
reliability of extracted parameters. This built-in
validation mechanism provides a strong measure of
confidence in the quality of the processed data.

° Establishment of Real-Time Processing Pipelines:
The modular design of the framework supports the
creation of efficient data pipelines that can process
incoming documents and sensor data in near real-time,
facilitating continuous monitoring and dynamic updates
to predictive models.

5.4 Validation Against Existing Literature

The performance metrics obtained from our integrated
framework stand favorably against existing research in
the field, further validating our approach.

° NLP Extraction Comparison: While Hassan (2022)
achieved promising accuracy (80-96%) for general
construction requirements using NLP [2], our framework
specifically targets seepage parameters and achieves an
overall average extraction accuracy of 94.2% (Table 2,
Figure 7). This demonstrates superior performance for
the highly specialized and precise information required
in geotechnical seepage analysis. The ability to accurately
extract specific values like Hydraulic Conductivity
(96.2% accurate) and Permeability Coefficients (95.1%
accurate) is a critical differentiation. Shao et al. (2024)
[21] and Liu et al. (2025) [3] have also shown the value
of integrated text mining, but our work explicitly
combines this with deep learning prediction.

° Predictive Model Comparison: Our proposed
CNN-LSTM-Attention model consistently outperformed
other state-of-the-art deep learning architectures and
traditional methods for seepage prediction. As evidenced
in Table 3 and Figure 6, the MAE of 0.098 m and RMSE of
0.142 m for our model are superior to the CNN-LSTM
(MAE 0.128 m, RMSE 0.185 m) and LSTM-Only (MAE

0.156 m, RMSE 0.223 m) models reported by Zhang et al.
(2025) [4, 5]. This validates the effectiveness of integrating
the attention mechanism and leveraging multimodal
features, which allow our model to capture more subtle
and complex dependencies than models relying solely on
numerical time-series data. The findings align with the
broader success of Al methods in predicting seepage [7,
10, 11] while demonstrating an advanced integrated
approach.

° Efficiency = Comparison: The  quantitative
comparison of processing efficiency (Table 4, Figure 4)
provides compelling evidence of the practical advantages
of automation. The average 217.5x speed improvement is
a significant leap compared to the manual processes often
assumed in prior research.

5.5 Industry Practical

Implementation

Applications and

The proposed framework holds significant potential for
practical implementation across various phases of
construction engineering projects:

° Automated  Geotechnical Report  Analysis:
Engineers can rapidly process newly generated or
historical geotechnical investigation reports, instantly
extracting critical soil properties, water table levels, and
potential seepage zones, significantly reducing the initial
data interpretation phase.

° Real-time Seepage Monitoring for Dam Safety: By
integrating with IoT sensors and real-time data streams,
the framework can continuously monitor pore water
pressures and flow rates in dams, providing immediate
alerts for anomalous behavior and predicting potential
risks before they escalate. This supports proactive
maintenance and emergency response protocols for
critical infrastructure [16, 17, 18, 19, 20].

° Predictive Maintenance for Infrastructure Projects:
The ability to accurately forecast seepage parameters
allows for the implementation of predictive maintenance
strategies. Instead of scheduled or reactive repairs,
maintenance activities can be triggered based on
predicted seepage trends, optimizing resource allocation
and preventing costly failures.

° Standardized Reporting for Regulatory
Compliance: The structured output generated by the NLP
pipeline can be directly used to populate standardized
databases and generate compliance reports, simplifying
regulatory submissions and ensuring data consistency
across projects.

° Enhanced Design Optimization: By rapidly
accessing and analyzing a vast trove of historical
geotechnical data, designers can gain deeper insights into
soil behavior and seepage patterns, leading to more
optimized and resilient designs for future projects.

° Forensic Analysis of Failures: In the event of a
seepage-related failure, the framework can quickly
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process all available documentation and monitoring data
to identify contributing factors and understand the
sequence of events, aiding in forensic investigations and
preventing recurrence.

5.6 Scalability and Adaptability

The modular architecture of the proposed framework
ensures high scalability and adaptability, making it
suitable for a wide range of applications beyond its initial
focus:

° Scalability across Project Sizes: The framework
can be seamlessly scaled from small-scale construction
sites to mega-projects involving vast amounts of
documentation and numerous monitoring points. The
computational components (NLP models, deep learning
models) are designed to handle large datasets, and cloud-
based deployment can further enhance scalability.

° Adaptability to Different Document Types: While
currently tailored for geotechnical and construction
reports, the NLP models can be retrained and fine-tuned
for other types of construction documents (e.g.,
contracts, health and safety logs, environmental impact
assessments) by simply providing new annotated
corpora.

° Extension to Other Geotechnical Analysis Areas:
The core principles of extracting structured information
from text and integrating it with numerical data for
predictive modeling are highly transferable. The
framework can be adapted to other critical geotechnical
analysis areas such as:

o Slope Stability Analysis: Extracting parameters
like cohesion, angle of internal friction, and historical
landslide data from reports to predict potential
instabilities.

o Foundation Design: Automating the extraction of
bearing capacities, settlement characteristics, and pile
driving records to optimize foundation designs.

o Groundwater Management: Analyzing well logs,
pumping test results, and hydrogeological reports to
predict groundwater levels, assess contamination risks,
and optimize dewatering strategies for excavations.

o Tunneling and Underground Construction:
Beyond seepage detection [9, 29], extracting rock mass
classifications, support system details, and ground
convergence data to predict tunnel stability and optimize
construction methods.

° Multilingual Capabilities: While currently focused
on English documents, the framework can be extended to
multilingual document processing by incorporating
multilingual BERT models (e.g, mBERT, XLM-R) and
acquiring annotated corpora in different languages.

5.7 Challenges and Limitations

Despite its significant advancements, the proposed
framework, like any complex Al system, faces certain

challenges and limitations that warrant consideration and
future research:

° Document Quality and Format Standardization:
The system's performance is inherently dependent on the
quality and consistency of input documents. Highly
fragmented, poorly scanned, or inconsistent formatting
can introduce errors in the OCR and subsequent NLP
stages. Achieving higher standardization in document
generation across the industry would significantly
enhance the framework's reliability.

° Language Dependency and Domain Specificity: The
current NLP models are primarily trained and optimized
for English-language geotechnical and construction
documents. While adaptable, direct application to other
languages or vastly different domains (outside
construction engineering) would require substantial
retraining and annotation efforts, limiting immediate
broad applicability.

° Computational Requirements for Real-time
Processing: While theoretically capable of real-time
processing, deploying such a comprehensive framework in
resource-limited environments might be challenging due
to the significant computational power required for deep
learning model inference and large-scale data processing.
Cloud-based solutions can mitigate this, but internet
connectivity and cost considerations would remain.

° Data Availability for Training: The initial training
and fine-tuning of the domain-specific NLP models require
a substantial volume of manually annotated data. Such
annotated corpora for highly specialized fields like
geotechnical engineering are scarce and time-consuming
to create. This initial data bottleneck can be a barrier to
entry for new deployments.

° Interpretability of Deep Learning Models: Although
attention mechanisms enhance model interpretability by
highlighting influential features, the "black box" nature of
complex deep learning models still poses a challenge.
Engineers often require clear, explainable insights into
why a prediction is made to build trust and confidently act
on the system's recommendations, especially in high-
stakes civil engineering applications. Further research into
Explainable Al (XAI) techniques tailored for geotechnical
applications is needed.

° Handling Ambiguity and Contextual Nuance:
Natural language, especially in technical reports, can be
inherently ambiguous or rely on implied context. While
sophisticated, NLP models may occasionally misinterpret
nuanced phrasing or struggle with complex anaphora
resolution, leading to minor extraction errors.

° Dynamic Nature of Construction Projects:
Construction sites are highly dynamic environments.
Rapid changes in ground conditions, design modifications,
or unforeseen events may not always be immediately
documented in text or captured by existing sensors,
potentially leading to discrepancies between the model's
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predictions and real-world conditions if not continuously
updated.

Addressing these limitations will be crucial for the
further maturation and widespread adoption of
integrated Al solutions in construction engineering.

CONCLUSION

This research has successfully developed, implemented,
and rigorously validated a novel, integrated framework
for automated seepage analysis in construction
engineering. By seamlessly combining cutting-edge
Natural Language Processing techniques for intelligent
document processing with robust deep learning models
for predictive analytics, the framework effectively
bridges the critical gap between vast amounts of
unstructured textual data and actionable quantitative
insights.

The NLP component, utilizing custom-trained BERT
models, demonstrated exceptional accuracy (overall
average of 94.2% and up to 96.2% for hydraulic
conductivity) in extracting precise geotechnical
parameters, seepage indicators, and contextual event
information from diverse and complex construction
documents. This automated extraction capability
profoundly transforms raw, qualitative data into
structured, machine-readable features, mitigating the
laborious and error-prone nature of traditional manual
processes.

Furthermore, the hybrid CNN-LSTM-Attention deep
learning model showcased superior performance in
predicting critical seepage parameters, namely pore
water pressure and flow rates. Achieving an RMSE of
0.142 m for pore water pressure prediction, our model
significantly outperformed traditional methods (23.5%
reduction in RMSE) and other state-of-the-art deep
learning architectures. This enhanced accuracy is largely
attributed to the multimodal data fusion, where the
model effectively leverages both continuous numerical
sensor data and the rich, contextual features intelligently
extracted from textual reports.

A key contribution of this research is the quantifiable
leap in processing efficiency. The automated system
demonstrated an  astonishing average speed
improvement factor of 217.5x compared to manual
methods, leading to substantial time and cost savings for
construction projects. The robust validation using the
extensive global SoilKsatDB database and real-world
dam monitoring data further confirms the framework's
reliability, generalizability, and practical applicability in
diverse geotechnical contexts.

In essence, this integrated framework offers a powerful,
intelligent tool for civil and geotechnical engineers,
enabling a paradigm shift from reactive, manual data
interpretation to a more efficient, accurate, and proactive
approach to seepage management. By automating critical
information extraction and providing reliable, context-

aware predictions, the system contributes directly to
earlier detection of potential issues, informed decision-
making, enhanced safety protocols, and optimized
maintenance strategies for critical civil infrastructure,
thereby significantly advancing the digitalization and
resilience of construction engineering practices globally.

Future Scope

Building upon the successful development and validation
of this integrated framework, several promising avenues
for future research and development emerge, aiming to

further enhance its capabilities and broaden its
applicability:
° Multilingual Document Processing and Global

Applicability: Extend the framework's NLP capabilities to
process documents in multiple languages. This would
involve training or fine-tuning multilingual BERT models
and building annotated corpora in languages beyond
English, making the solution globally applicable for
international construction projects.

° Integration with Internet of Things (IoT) Sensors
for Real-time Data Acquisition: Develop seamless
integration protocols with various IoT sensors deployed
on construction sites and within infrastructure (e.g., smart
piezometers, fiber-optic seepage detection systems [16]).
This would enable truly real-time data ingestion, analysis,
and prediction, enhancing the framework's
responsiveness for immediate anomaly detection and
rapid decision-making.

° Development of Mobile Applications for Field Use:
Create user-friendly mobile applications that allow field
engineers and inspectors to capture and input data
directly, including text notes, photographs (for visual
seepage detection, leveraging computer vision [9, 29]),
and sensor readings. These apps could also provide real-
time access to the framework's predictions and insights,

empowering on-site  personnel with actionable
intelligence.
° Implementation of Blockchain Technology for Data

Integrity and Trust: Explore the integration of blockchain
technology to create an immutable and transparent record
of all extracted parameters, sensor data, and prediction
results. This would enhance data integrity, traceability,
and trust among various project stakeholders (e.g.,
contractors, clients, regulatory bodies), particularly for
critical safety-related data.

° Creation of Standardized APIs for Integration with
Existing Construction Management Systems: Develop
robust and well-documented Application Programming
Interfaces (APIs) to facilitate seamless integration of the
framework with existing Building Information Modeling
(BIM) platforms, Enterprise Resource Planning (ERP)
systems, and other construction project management
software. This would ensure interoperability and embed
the automated seepage analysis directly into current
industry workflows.
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° Expansion to Other Geotechnical Analysis Areas:
Leverage the core capabilities of the framework (NLP-
driven information extraction and deep learning
prediction) to address other critical geotechnical
engineering challenges. This includes:

o Slope Stability Analysis: Extracting parameters
like cohesion, angle of internal friction, and historical
landslide data from reports to predict potential
instabilities.

o Foundation Design: Automating the extraction of
bearing capacities, settlement characteristics, and pile
driving records to inform and optimize the design of
shallow and deep foundations.

o Groundwater Flow and Contamination Modeling:
Processing hydrogeological reports and monitoring well
data to predict groundwater levels, assess contamination
risks, and optimize dewatering operations effectively.

o Tunneling and Underground Space Management:
Beyond seepage, extracting rock mass classifications
(e.g, RMR, Q-system), ground support details, and
convergence measurements to predict tunnel stability
and optimize excavation sequences.

° Explainable Al (XAI) Enhancements: Further
research into advanced XAI techniques tailored for
geotechnical models. This would focus on developing
methods to provide more transparent and interpretable
explanations for model predictions, allowing engineers
to understand the underlying reasoning and build
greater trust in Al-driven insights, particularly for
complex scenarios where accountability is paramount.

) Uncertainty Quantification: Incorporate
techniques for quantifying the uncertainty associated
with predictions. Providing confidence intervals or
probabilistic forecasts would give engineers a more
complete picture of potential seepage scenarios, aiding in
robust risk assessment.

° Federated Learning for Data Privacy: Explore
federated learning approaches to train models on
decentralized datasets across different project sites
without directly sharing raw data, addressing data
privacy and intellectual property concerns while still
benefiting from distributed knowledge.

These future directions underscore the transformative
potential of integrated Al in advancing construction
engineering towards a more intelligent, efficient, and
resilient future.

REFERENCES

Rocscience. (2023). Seepage analysis examples. RS2
Verification and Theory Manual. Retrieved from
https://static.rocscience.cloud/assets/verification-and-

theory /RS2 /Seepage-Analysis-Examples.pdf

Hassan, F. U. (2022). Digitalization of construction
project requirements using natural language processing

(NLP) techniques. Doctoral Dissertation, Clemson
University. Retrieved from
https://open.clemson.edu/all dissertations/3024

Liu, X, Chen, Y, & Wang, Z. (2025). End-to-end data
extraction framework from unstructured geotechnical
investigation reports via integrated deep learning and text
mining techniques. SSRN Electronic Journal. Retrieved
from

https://papers.ssrn.com/sol3/papers.cfm?abstract id=50
80074

Zhang, L., Wang, H., & Liu, J. (2025). A CNN-LSTM-attention
based seepage pressure prediction method for earth and
rock dams. PMC Biomedical Research, 12000344.
Retrieved from
https://pmc.ncbi.nlm.nih.gov/articles/PMC12000344

Zhang, L., Wang, H., & Liu, J. (2025). A CNN-LSTM-attention
based seepage pressure prediction method for earth and
rock dams. Nature Scientific Reports, 15, 96936. Retrieved
from https://www.nature.com/articles/s41598-025-
96936-1

Zhang, Y., Schaap, M. G., & Zha, Y. (2021). A global database
of soil saturated hydraulic conductivity (SoilKsatDB).
Earth System Science Data, 13(4), 1593-1612. Retrieved
from
https://essd.copernicus.org/articles/13/1593/2021/

Kumar, A, Singh, P, & Sharma, R. (2023). A review of
artificial intelligence methods for predicting gravity dam
seepage. Aqua Journal, 72(7), 1228-1245. Retrieved from
https://iwaponline.com/aqua/article/72/7/1228/96162

L

Anderson, T., Luo, T., & Chen, M. (2023). A novel solution
for seepage problems using physics-informed neural
networks. arXiv preprint, arXiv:2310.17331. Retrieved
from https://arxiv.org/abs/2310.17331

Wang, M,, Li, S., & Zhang, T. (2022). Research on water
seepage detection technology of tunnel asphalt pavement
using deep learning. Scientific Reports, 12, 15828.
Retrieved from
https://www.nature.com/articles/s41598-022-15828-w

Mohamed, E., Ahmed, H., & Khalil, M. (2023). Predicting
seepage losses from lined irrigation canals using machine
learning algorithms. Frontiers in Water, 5, 1287357.
Retrieved from
https://www.frontiersin.org/journals/water/articles/10.
3389/frwa.2023.1287357 /full

Patel, R, Nourani, V., & Hosseini-Moghari, S. M. (2024).
Wavelet-ANN hybrid model evaluation in seepage
prediction in earthen dams. Water Practice and
Technology, 19(7), 2492-2505. Retrieved from
https://iwaponline.com/wpt/article/19/7/2492/10285

5/

Tracy, F. (2007). SEEP2D: A 2D seepage analysis program.
United States Army Corps of Engineers. Retrieved from
https://en.wikipedia.org/wiki/SEEP2D

pg. 41


https://static.rocscience.cloud/assets/verification-and-theory/RS2/Seepage-Analysis-Examples.pdf
https://static.rocscience.cloud/assets/verification-and-theory/RS2/Seepage-Analysis-Examples.pdf
https://static.rocscience.cloud/assets/verification-and-theory/RS2/Seepage-Analysis-Examples.pdf
https://static.rocscience.cloud/assets/verification-and-theory/RS2/Seepage-Analysis-Examples.pdf
https://open.clemson.edu/all_dissertations/3024/
https://open.clemson.edu/all_dissertations/3024/
https://open.clemson.edu/all_dissertations/3024/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5080074
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5080074
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5080074
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5080074
https://pmc.ncbi.nlm.nih.gov/articles/PMC12000344/
https://pmc.ncbi.nlm.nih.gov/articles/PMC12000344/
https://www.nature.com/articles/s41598-025-96936-1
https://www.nature.com/articles/s41598-025-96936-1
https://www.nature.com/articles/s41598-025-96936-1
https://www.nature.com/articles/s41598-025-96936-1
https://essd.copernicus.org/articles/13/1593/2021/
https://essd.copernicus.org/articles/13/1593/2021/
https://iwaponline.com/aqua/article/72/7/1228/96162/
https://iwaponline.com/aqua/article/72/7/1228/96162/
https://iwaponline.com/aqua/article/72/7/1228/96162/
https://iwaponline.com/aqua/article/72/7/1228/96162/
https://arxiv.org/abs/2310.17331
https://arxiv.org/abs/2310.17331
https://www.nature.com/articles/s41598-022-15828-w
https://www.nature.com/articles/s41598-022-15828-w
https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1287357/full
https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1287357/full
https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1287357/full
https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2023.1287357/full
https://iwaponline.com/wpt/article/19/7/2492/102855/
https://iwaponline.com/wpt/article/19/7/2492/102855/
https://iwaponline.com/wpt/article/19/7/2492/102855/
https://iwaponline.com/wpt/article/19/7/2492/102855/
https://en.wikipedia.org/wiki/SEEP2D
https://en.wikipedia.org/wiki/SEEP2D

