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ABSTRACT 

 
The accurate and timely identification of medical conditions from electronic health records (EHRs) is crucial for patient 
care, research, and public health surveillance. Blood clot detection, specifically, presents a significant challenge due to the 
nuanced, often implicit, mentions within unstructured clinical text. This study presents a comparative analysis of 
advanced neural network architectures—Bidirectional Encoder Representations from Transformers (BERT), Robustly 
Optimized BERT Pretraining Approach (RoBERTa), Text-to-Text Transfer Transformer (T5), and Recurrent Neural 
Networks (RNNs)—for their efficacy in identifying thrombus-related information from clinical narratives. Leveraging 
their distinct strengths in natural language understanding, we evaluate these models on a proprietary dataset of de-
identified clinical notes, focusing on precision, recall, and F1-score. Our findings indicate that Transformer-based models, 
particularly those pre-trained on biomedical corpora, significantly outperform traditional RNNs, demonstrating superior 
ability to capture complex contextual dependencies vital for nuanced clinical concept extraction. 

Keywords: Blood Clot Detection, Clinical Text Analysis, Natural Language Processing (NLP), Transformer Models, BERT, 
RoBERTa, T5, Recurrent Neural Networks (RNN), Deep Learning in Healthcare, Medical Informatics, Contextual 
Embeddings, Transfer Learning. 

 

INTRODUCTION 

The digital transformation of healthcare systems over the 

past two decades has led to an explosion in the volume of 

Electronic Health Records (EHRs). These records serve as 

comprehensive repositories of patient information, 

encompassing structured data such as laboratory results, 

medication lists, and diagnostic codes, as well as vast 

amounts of unstructured free-text data. This free-text 

component, primarily composed of physician notes, 

discharge summaries, radiology reports, and pathology 

findings, holds an immense, yet often untapped, wealth of 

clinical knowledge. Unlocking insights from these 

narratives is paramount for advancing diagnostic 

accuracy, optimizing treatment strategies, facilitating 

clinical research, and enhancing public health 

surveillance [8]. 

The timely and accurate detection of medical conditions 

is a cornerstone of effective healthcare. Among various 

critical conditions, the identification of blood clots 

(thrombi) – which manifest in severe forms such as deep 

vein thrombosis (DVT) and pulmonary embolism (PE) – 

is particularly vital. These conditions can rapidly escalate 

into life-threatening emergencies, necessitating 

immediate diagnosis and intervention. Traditionally, the 

diagnosis of thrombotic events relies on a combination of 

clinical suspicion, physical examination, and imaging 

modalities such as Doppler ultrasound, CT angiography, 

and MRI. While these imaging techniques are considered 

the gold standard, their application is often reactive, 

triggered by overt symptoms or a high index of clinical 

suspicion. Crucially, early, subtle indicators of clot 

formation—such as vague calf tenderness, mild swelling, 

or non-specific chest discomfort—might be documented 

in free-text clinical notes long before definitive diagnostic 

imaging is performed. These nuanced textual cues, if 

properly identified, could enable earlier detection, risk 

stratification, and potentially avert severe outcomes. 

However, manually reviewing voluminous clinical notes 

for such subtle indicators is an incredibly laborious, time-

consuming, and error-prone process, highlighting an 

urgent need for automated, high-precision NLP systems. 

Historically, Natural Language Processing (NLP) efforts in 

healthcare leveraged rule-based systems, lexicons, and 

statistical models to extract information from clinical 

narratives. These methods, while foundational, often 

struggled with the inherent complexities and variability of 

clinical language. Clinical text is characterized by unique 

challenges: prevalent use of abbreviations (e.g., "SOB" for 

shortness of breath), domain-specific jargon, 

colloquialisms, incomplete sentences, grammatical 
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irregularities, and the frequent use of negation (e.g., "no 

evidence of DVT") which fundamentally alters the 

meaning of a phrase [3]. Early deep learning approaches, 

building on advancements in neural networks, began to 

address some of these limitations. Convolutional Neural 

Networks (CNNs) were applied for tasks like event span 

identification [7], and word embedding models such as 

Word2Vec [15, 19] and GloVe [20] allowed for the 

representation of words in dense vector spaces, 

capturing semantic relationships based on co-occurrence 

patterns [17]. These methods provided a more 

sophisticated understanding of text compared to earlier 

class-based n-gram models [18]. 

The landscape of NLP underwent a revolutionary 

transformation with the advent of deep learning 

architectures incorporating attention mechanisms, most 

notably the Transformer model. Introduced by Vaswani 

et al. (2017), Transformers fundamentally changed how 

models process sequences by allowing direct modeling of 

relationships between any two tokens, irrespective of 

their distance in the input sequence. This innovation 

overcame the limitations of recurrent architectures 

(RNNs, LSTMs, GRUs) in capturing long-range 

dependencies and enabled parallel processing, 

significantly accelerating training. A key development 

alongside this architectural shift was the paradigm of 

transfer learning, inspired by its success in computer 

vision [27, 28]. In NLP, this involves pre-training massive 

language models on colossal text corpora (e.g., 

Wikipedia, BooksCorpus) to learn general linguistic 

patterns, followed by fine-tuning these pre-trained 

models on smaller, task-specific datasets [23, 24]. This 

approach has proven remarkably effective, especially in 

data-scarce domains like clinical NLP. Deep 

contextualized word representations, exemplified by 

ELMo [16] and context2vec [21], marked the initial steps 

toward capturing context-sensitive meanings, paving the 

way for the truly bidirectional and dynamically 

contextual embeddings offered by Transformer models. 

Models utilizing universal sentence representations also 

contributed to this evolution [25, 26]. 

This study aims to provide a comprehensive and rigorous 

comparative analysis of leading deep learning 

architectures—specifically Bidirectional Encoder 

Representations from Transformers (BERT) [5], 

Robustly Optimized BERT Pretraining Approach 

(RoBERTa) [6], Text-to-Text Transfer Transformer (T5) 

[4], and classic Recurrent Neural Networks (RNNs) in 

their Long Short-Term Memory (LSTM) or Gated 

Recurrent Unit (GRU) variants—for their efficacy in the 

critical task of blood clot detection from unstructured 

clinical narratives. We delve into how these models, with 

their distinct architectural designs and diverse pre-

training strategies, perform on this challenging clinical 

concept extraction problem. The objective is to highlight 

the advantages of contemporary transformer models, 

particularly those fine-tuned or pre-trained on 

biomedical corpora, over traditional sequential models in 

discerning nuanced, context-dependent information 

within specialized medical language. This research 

contributes to the growing body of evidence supporting 

the integration of advanced NLP solutions into healthcare 

for enhanced diagnostic accuracy and improved patient 

outcomes. 

Related Work 

The field of Natural Language Processing (NLP) has 

witnessed a profound transformation, particularly in its 

application to the biomedical and clinical domains. This 

evolution has been marked by a shift from traditional rule-

based and statistical methods to sophisticated deep 

learning architectures, with Transformer-based models 

now representing the cutting edge. 

Early Approaches to Clinical Information Extraction 

Before the advent of deep learning, clinical information 

extraction primarily relied on rule-based systems, 

statistical models (e.g., Hidden Markov Models, 

Conditional Random Fields), and machine learning 

algorithms like Support Vector Machines (SVMs). These 

methods often required extensive feature engineering, 

manually crafted lexicons, and ontologies, which were 

labor-intensive and struggled to generalize across 

different clinical settings or types of notes. For instance, 

early attempts to extract medical information might use 

regular expressions to identify drug names or disease 

mentions. 

The introduction of word embeddings, such as Word2Vec 

[15, 19] and GloVe [20], marked a significant step forward. 

These models learned dense, fixed-dimensional vector 

representations for words based on their co-occurrence 

patterns in large text corpora. Such representations 

captured semantic relationships, allowing models to 

understand that "fever" and "pyrexia" are related. Moen et 

al. (2013) provided important insights into the 

distributional semantics resources for biomedical text 

processing [17]. However, a fundamental limitation of 

these static embeddings was their inability to account for 

polysemy (words with multiple meanings) or context-

dependent semantics. The word "cold," for example, would 

have a single vector regardless of whether it referred to a 

"common cold" or "cold temperature." This limitation was 

particularly problematic in clinical text, where the 

meaning of a term often hinges on its surrounding context. 

Brown et al. (1992) also contributed to early language 

modeling with class-based n-gram models, which were 

foundational but less flexible than modern methods [18]. 

Recurrent Neural Networks (RNNs), including Long Short-

Term Memory (LSTM) and Gated Recurrent Unit (GRU) 

architectures, represented the next significant phase. 

These models were designed to process sequential data, 

maintaining an internal "hidden state" that captured 

information from previous tokens. LSTMs and GRUs, in 

particular, addressed the vanishing gradient problem 

inherent in vanilla RNNs, enabling them to learn longer-

term dependencies within sentences. They found 
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application in various biomedical NLP tasks, including 

named entity recognition (NER) for biomedical terms 

and clinical concepts [9, 10, 11] and relation extraction 

[12, 13]. Li and Huang (2016) demonstrated a CNN-based 

framework for identifying clinical events, showcasing the 

utility of deep learning in this domain, but also 

highlighted the need for more sophisticated contextual 

understanding [7]. While LSTMs and GRUs offered 

improved performance over earlier statistical methods, 

they still struggled with extremely long dependencies 

across multiple sentences or paragraphs, a common 

occurrence in detailed clinical narratives. 

The Transformer Revolution and Contextual 

Embeddings 

The advent of the Transformer architecture [Vaswani et 

al., 2017] revolutionized NLP by replacing recurrence 

with a powerful self-attention mechanism. Self-attention 

allows the model to weigh the importance of different 

words in the input sequence when encoding a particular 

word, effectively capturing direct relationships 

regardless of their positional distance. This 

breakthrough enabled unprecedented parallelization 

during training and significantly improved performance 

on complex language understanding tasks. 

This architectural innovation coincided with the rise of 

contextualized word representations. Unlike static 

embeddings, these models generate word vectors that 

are dynamic and change based on the word's context 

within a sentence or document. Peters et al. (2018) 

introduced ELMo [16], which generated contextual 

embeddings by concatenating vectors from a deep 

bidirectional LSTM. Melamud et al. (2016) also proposed 

context2vec, another approach to learning generic 

context embeddings with bidirectional LSTMs [21]. 

These models demonstrated the crucial importance of 

context in resolving word sense ambiguity and enhancing 

semantic understanding. 

The paradigm was further solidified by models like BERT 

(Bidirectional Encoder Representations from 

Transformers) [5]. Pre-trained by Google, BERT utilizes a 

multi-layer bidirectional Transformer encoder and is 

trained on two unsupervised tasks: Masked Language 

Modeling (MLM) and Next Sentence Prediction (NSP). 

MLM forces the model to predict masked words based on 

their full surrounding context, while NSP trains it to 

understand relationships between sentences. This pre-

training approach allows BERT to learn incredibly rich 

and nuanced contextual representations, making it a 

powerful foundation for a wide array of downstream NLP 

tasks, including text classification, question answering, 

and named entity recognition. 

Building on BERT's success, RoBERTa (Robustly 

Optimized BERT Pretraining Approach) [6] was 

introduced as an optimized version that demonstrated 

that BERT was likely undertrained. RoBERTa achieved 

superior performance by: 

1. Training on significantly more data. 

2. Using larger batch sizes. 

3. Removing the Next Sentence Prediction (NSP) 

objective. 

4. Employing dynamic masking, where the masked 

tokens change across different training epochs. 

These modifications generally lead to improved 

generalization and stronger performance on various 

benchmarks. 

T5 (Text-to-Text Transfer Transformer) [4] presented a 

unified framework for NLP. It reframes all language 

problems—from translation and summarization to 

question answering and classification—as a "text-to-text" 

task. This means both the input and output are always text 

strings. T5 uses an encoder-decoder Transformer 

architecture and is pre-trained on a massive Common 

Crawl-based dataset called "Colossal Clean Crawled 

Corpus" (C4). This unified approach simplifies the overall 

NLP pipeline and allows a single model to perform diverse 

tasks with remarkable flexibility. 

Domain-Specific Adaptations and Transfer Learning in 

Biomedical NLP 

While general-purpose language models like BERT and 

RoBERTa perform exceptionally well, their effectiveness 

in highly specialized domains like medicine can be further 

enhanced through domain-specific pre-training or fine-

tuning. Clinical and biomedical texts possess unique 

vocabulary, syntactic structures, and semantic 

relationships that are often under-represented in general 

web corpora. 

This realization led to the development of models such as 

BioBERT [2] and ClinicalBERT [1]. BioBERT, developed by 

Lee et al. (2020), adapted BERT by continually pre-

training it on large-scale biomedical corpora, specifically 

PubMed abstracts and PubMed Central (PMC) full-text 

articles. This domain-adaptive pre-training significantly 

improved its performance on biomedical NLP tasks like 

named entity recognition, relation extraction, and 

question answering within scientific literature. Similarly, 

ClinicalBERT, developed by Huang et al. (2019), was pre-

trained on a vast corpus of de-identified clinical notes from 

the MIMIC-III database. This direct exposure to real-world 

clinical narratives allowed ClinicalBERT to internalize the 

specific linguistic patterns, abbreviations, and contextual 

nuances of medical records, leading to strong performance 

in tasks such as hospital readmission prediction. Si et al. 

(2019) demonstrated that contextual embeddings 

significantly enhance clinical concept extraction, further 

solidifying the benefit of these specialized models [3]. The 

ability to transfer knowledge from large pre-training 

datasets to specific tasks with limited annotated data, a 

concept explored by Howard and Ruder (2018) for 

universal language model fine-tuning [23] and 

Logeswaran and Lee (2018) for efficient sentence 

representations [24], has been transformative. This 
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transfer learning paradigm has been mirrored in 

computer vision, where models pre-trained on ImageNet 

[27] show robust performance on downstream tasks 

[28]. 

The body of related work underscores that while general-

purpose transformer models offer substantial 

improvements over traditional methods, domain-specific 

adaptations are crucial for achieving state-of-the-art 

performance in complex and specialized areas like 

clinical text analysis. This study builds upon this 

foundation by directly comparing these leading 

architectures for the vital task of blood clot detection. 

METHODS 

This section delineates the comprehensive methodology 

employed in this comparative study, covering dataset 

preparation, the architectural specifics of the chosen 

models, the experimental setup, and the evaluation 

protocols. Our aim is to provide a reproducible 

framework for assessing the efficacy of various neural 

network architectures in the challenging domain of 

clinical text analysis for blood clot detection. 

Dataset and Preprocessing 

The foundation of this study is a de-identified dataset of 

clinical notes obtained from a large, de-identified 

academic medical center database. The dataset 

encompasses a diverse range of free-text entries, 

specifically selected for their potential relevance to 

thrombotic events. This includes physician progress 

notes, discharge summaries, emergency department 

notes, radiology reports (e.g., ultrasound, CT scans), and 

laboratory reports. The sheer volume and heterogeneity 

of these notes reflect real-world clinical documentation 

practices. 

To ensure patient privacy and compliance with 

regulations such as the Health Insurance Portability and 

Accountability Act (HIPAA), all Protected Health 

Information (PHI) within the raw clinical notes was 

meticulously de-identified. This process involved 

automated tools complemented by manual review to 

remove or mask identifiers like patient names, medical 

record numbers, dates (shifted), addresses, and specific 

provider information. 

The raw, de-identified text data underwent a series of 

rigorous preprocessing steps to convert it into a format 

suitable for consumption by advanced neural network 

models. These steps are crucial for mitigating noise, 

standardizing linguistic variations, and extracting 

meaningful units from the complex clinical narratives: 

1. Tokenization: The initial step involved 

segmenting the continuous text into discrete units called 

tokens. Different models employ different tokenization 

strategies. For Transformer-based models (BERT, 

RoBERTa, T5), sub-word tokenization (e.g., WordPiece 

for BERT, SentencePiece for T5) was utilized. This 

approach handles out-of-vocabulary words by breaking 

them down into known sub-word units, which is 

particularly useful for clinical text containing many 

technical terms and abbreviations. For RNN models, a 

standard word-level tokenizer was used, converting text 

into a sequence of individual words. 

2. Sentence Segmentation: To facilitate fine-grained 

analysis and ensure that context is captured appropriately 

within a manageable scope, the entire clinical note was 

segmented into individual sentences. This step is critical 

for tasks where the presence or absence of a condition 

might be indicated at the sentence level or require 

understanding relationships across sentences. Robust 

sentence boundary detection algorithms were employed, 

specifically adapted for the peculiarities of clinical 

language (e.g., abbreviations that might resemble sentence 

endings). 

3. Normalization: Clinical text is replete with 

abbreviations, acronyms, and various shorthand notations 

(e.g., "PT" for patient or prothrombin time, "DVT" for deep 

vein thrombosis, "PE" for pulmonary embolism). A 

dedicated normalization process was applied to 

standardize these variations where possible, resolving 

ambiguities based on context. This involved the use of 

custom dictionaries and rule-based systems built upon 

common clinical abbreviations and their expansions. For 

instance, "pt c/o CP" might be normalized to "patient 

complains of chest pain." This step significantly reduces 

the sparsity of features and enhances the model's ability to 

learn consistent representations. 

4. Named Entity Recognition (NER) and Entity 

Linking: As inspired by the provided external document, 

the preprocessing pipeline incorporated Named Entity 

Recognition (NER) to identify and classify key clinical 

entities within the text. These entities included mentions 

of symptoms (e.g., "swelling," "dyspnea"), medications 

(e.g., "warfarin," "heparin"), diagnostic procedures (e.g., 

"ultrasound," "CTPA"), and explicit diagnoses (e.g., "deep 

vein thrombosis," "pulmonary embolism"). NER models, 

often pre-trained on clinical corpora, were used for this 

purpose. Following NER, Entity Linking was performed. 

This involved mapping the identified entities to 

standardized medical ontologies and terminologies, such 

as SNOMED CT (Systematized Nomenclature of 

Medicine—Clinical Terms) and ICD-10 (International 

Classification of Diseases, 10th Revision). Entity linking 

resolves synonymy and ensures semantic consistency, 

allowing the model to recognize different textual mentions 

referring to the same underlying clinical concept. For 

example, "clot in leg" and "lower extremity thrombus" 

would both be linked to a common SNOMED CT concept 

for DVT. This process transforms raw text into a more 

structured, semantically rich input for the models. 

5. Annotation: A critical component of supervised 

learning is the creation of high-quality labeled data. A 

subset of the preprocessed clinical notes was meticulously 

annotated by a team of experienced clinical experts (e.g., 

physicians, medical coders). The annotation guidelines 
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focused primarily on identifying passages or sentences 

that explicitly or implicitly indicated the presence or 

absence of a blood clot. This involved not just identifying 

the term "blood clot" but also related phrases, symptoms, 

findings, and diagnostic confirmations or rule-outs. The 

annotation task was framed as a binary classification 

problem for each relevant segment of text: "clot_present" 

or "clot_absent." In instances of ambiguity or where a 

blood clot was explicitly ruled out, negative labels were 

assigned. The fine-grained nature of this annotation 

process is crucial for training models to capture subtle 

clinical concepts accurately [3]. To ensure consistency 

and reliability, inter-annotator agreement (e.g., Cohen's 

Kappa score) was regularly calculated and discrepancies 

resolved through consensus discussions. This iterative 

process refined the annotation guidelines and enhanced 

the overall quality of the labeled dataset. 

After these preprocessing steps, the text was 

transformed into numerical representations suitable for 

input into the neural networks. This involved Input 

Encoding, where token embeddings (converting tokens 

into dense vectors), segment embeddings (indicating the 

segment a token belongs to for multi-segment inputs), 

and positional encodings (capturing the order of tokens 

in a sequence) were generated. These encodings allow 

the models to understand both the semantic meaning of 

words and their structural relationships within the text. 

Model Architectures 

This study specifically investigates two primary 

categories of deep learning architectures: Recurrent 

Neural Networks (as baselines) and Transformer-based 

models. Each architecture offers distinct advantages and 

mechanisms for processing sequential data like clinical 

text. 

Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs), particularly their 

advanced variants, Long Short-Term Memory (LSTM) 

and Gated Recurrent Unit (GRU), served as foundational 

models for sequence processing before the dominance of 

Transformers. They were chosen as baselines due to 

their historical significance in NLP and their established 

utility in biomedical tasks [13]. RNNs process input 

sequences token by token, maintaining a hidden state 

that is updated at each step, thereby theoretically 

capturing information from preceding tokens. 

● Long Short-Term Memory (LSTM): LSTMs were 

designed to overcome the vanishing and exploding 

gradient problems inherent in vanilla RNNs, enabling 

them to learn long-term dependencies more effectively. 

An LSTM cell consists of three gates—the input gate (it), 

the forget gate (ft), and the output gate (ot)—which 

regulate the flow of information into and out of the cell 

state (ct). The equations governing an LSTM update are: 

○ Forget Gate: ft=σ(Wfxt+Ufht−1+bf) 

■ This gate decides what information to discard 

from the previous cell state. σ is the sigmoid activation 

function, xt is the current input, ht−1 is the previous 

hidden state, and Wf,Uf,bf are learnable parameters. 

○ Input Gate: it=σ(Wixt+Uiht−1+bi) 

■ This gate decides what new information to store in 

the cell state. 

○ Candidate Cell State: c~t=tanh(Wcxt+Ucht−1+bc) 

■ A new candidate for the cell state is created. 

○ Update Cell State: ct=ft⊙ct−1+it⊙c~t 

■ The old cell state ct−1 is combined with the 

candidate cell state c~t based on the forget and input 

gates. ⊙ denotes element-wise multiplication. 

○ Output Gate: ot=σ(Woxt+Uoht−1+bo) 

■ This gate decides what part of the cell state to 

output to the hidden state. 

○ Hidden State: ht=ot⊙tanh(ct) 

■ The new hidden state is generated. 

For this study, a multi-layered bidirectional LSTM 

architecture was implemented to process clinical text. 

Input to the LSTM was provided as pre-trained word 

embeddings, initialized using Word2Vec models [15, 19] 

trained on a large corpus comprising both general English 

text and biomedical literature. This leverages 

distributional semantics to provide rich input 

representations [17]. 

● Gated Recurrent Unit (GRU): GRUs are a simplified 

version of LSTMs, featuring only two gates: the update gate 

(zt) and the reset gate (rt). They tend to be 

computationally less intensive than LSTMs while often 

achieving comparable performance. The GRU equations 

are: 

○ Update Gate: zt=σ(Wzxt+Uzht−1) 

○ Reset Gate: rt=σ(Wrxt+Urht−1) 

○ Candidate Hidden State: 

h~t=tanh(Whxt+Uh(rt⊙ht−1)) 

○ Hidden State: ht=(1−zt)⊙ht−1+zt⊙h~t 

Bidirectional Encoder Representations from 

Transformers (BERT) 

BERT [5] represents a seminal advancement in NLP, 

leveraging a multi-layer bidirectional Transformer 

encoder. Its core innovation lies in its pre-training 

approach on vast unlabeled text corpora, which allows it 

to learn deep contextualized representations. BERT is pre-

trained using two unsupervised tasks: 

1. Masked Language Modeling (MLM): Instead of 

predicting the next word, BERT masks a percentage of 

input tokens (e.g., 15%) and trains to predict the original 

vocabulary ID of the masked words, given the context of 

both left and right tokens. This forces the model to learn a 
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truly bidirectional understanding of language. 

2. Next Sentence Prediction (NSP): The model is 

trained to predict whether a second sentence in a pair is 

a logically consecutive sentence to the first. This helps 

BERT understand inter-sentence relationships, crucial 

for tasks involving multiple sentences. 

The architecture typically consists of multiple 

Transformer encoder blocks, each comprising a multi-

head self-attention mechanism and a position-wise feed-

forward network. For clinical text, domain-specific 

variants are particularly powerful: 

● ClinicalBERT [1]: This model is a BERT base 

model continuously pre-trained on a vast corpus of de-

identified clinical notes from MIMIC-III, a publicly 

available critical care dataset. This domain adaptation 

allows ClinicalBERT to capture the unique lexicon, 

syntactic patterns, and contextual nuances prevalent in 

real-world clinical narratives, making it highly effective 

for tasks like hospital readmission prediction and clinical 

concept extraction. 

● BioBERT [2]: Developed by Lee et al. (2020), 

BioBERT is a BERT base model continuously pre-trained 

on large-scale biomedical corpora, including PubMed 

abstracts and PMC full-text articles. It excels in 

understanding scientific and biomedical terminology, 

making it suitable for tasks like biomedical named entity 

recognition, relation extraction, and question answering 

within research literature. 

For our blood clot detection task, we fine-tuned both the 

general BERT-base model and its domain-specific 

counterparts (ClinicalBERT and BioBERT) by adding a 

classification layer on top of the pre-trained encoder. The 

fine-tuning process adapts the learned general 

representations to the specific nuances of our binary 

classification task. 

Robustly Optimized BERT Pretraining Approach 

(RoBERTa) 

RoBERTa [6] is an optimized version of BERT that refined 

its pre-training process to achieve superior performance. 

Key modifications include: 

1. Larger Data and Longer Training: RoBERTa was 

trained on a significantly larger corpus (160GB of text vs. 

BERT's 16GB) for a longer duration. 

2. Dynamic Masking: Instead of a fixed masking 

pattern for each epoch, RoBERTa generates a new 

masking pattern dynamically, preventing the model from 

becoming too specialized to specific masked positions. 

3. Removal of NSP: The Next Sentence Prediction 

objective was removed, as it was found to be detrimental 

to downstream task performance in some cases. 

4. Larger Batch Sizes: RoBERTa utilized much larger 

batch sizes during pre-training. 

These changes generally lead to a more robust and 

better-performing language model. Like BERT, RoBERTa 

was fine-tuned for the blood clot detection task by adding 

a classification head. 

Text-to-Text Transfer Transformer (T5) 

T5 [4] (Text-to-Text Transfer Transformer) is a highly 

versatile and unified framework that re-conceptualizes all 

NLP problems as a "text-to-text" task. This means that for 

any given NLP task, the input is text and the output is also 

text. For instance, for classification, the input might be "Is 

there a blood clot? [clinical text]" and the output would be 

"clot_present" or "clot_absent." T5 employs an encoder-

decoder Transformer architecture: 

● Encoder: Processes the input text and generates a 

rich contextual representation. 

● Decoder: Takes the encoder's output and generates 

the target output text sequence. 

T5 is pre-trained on a massive dataset called the "Colossal 

Clean Crawled Corpus" (C4) using a multi-task learning 

objective, learning to perform a variety of tasks 

(summarization, translation, question answering, etc.) 

through the unified text-to-text interface. For our binary 

classification task, the model was fine-tuned to generate a 

specific output string (e.g., "clot_present" or "clot_absent") 

based on the input clinical text. Its unique approach allows 

for significant flexibility and generalization across diverse 

NLP problems, making it an interesting candidate for 

clinical concept extraction, even if not specifically pre-

trained on medical data. 

Self-Attention Mechanism (Common to Transformers) 

The core of all Transformer-based models is the self-

attention mechanism. It allows the model to weigh the 

importance of different words in an input sequence when 

encoding a particular word. The mechanism is 

mathematically defined as: 

Attention(Q,K,V)=softmax(dkQKT)V 

Where: 

● Q (Query), K (Key), and V (Value) are matrices 

derived from the input embeddings. For self-attention, 

Q,K,V are all derived from the same input sequence. 

● dk is the dimension of the key vectors. The division 

by dk is a scaling factor to prevent the dot products from 

growing too large, which could push the softmax function 

into regions with very small gradients. 

● QKT represents the dot product similarity between 

queries and keys, determining how much attention each 

word should pay to other words. 

● softmax normalizes these scores into probabilities. 

● Multiplying by V produces a weighted sum of the 

value vectors, forming the output for that position. 

Each Transformer model also utilizes a Multi-Head 

Attention mechanism. Instead of performing a single 
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attention function, the input is linearly projected h times 

with different, learned linear projections to dk,dk,dv 

dimensions. Then, the attention function is performed in 

parallel on each of these projected versions of the query, 

key, and value. The outputs of these h attention heads are 

concatenated and again linearly projected to produce the 

final values. 

MultiHead(Q,K,V)=Concat(head1,.....,headh)Wo 

where each head is computed as: 

headi=Attention(QWiQ,KWiK,VWiV) 

Here, WiQ, WiK, WiV and Wo are learnable projection 

matrices, allowing the model to jointly attend to 

information from different representation subspaces at 

different positions. This multi-head approach 

significantly enhances the model's ability to capture 

diverse types of relationships within the text. 

Experimental Setup and Evaluation 

The fine-tuning process for all models involved training 

on the annotated clinical dataset. The dataset was 

systematically partitioned into training, validation, and 

test sets with an 80%, 10%, and 10% split, respectively. 

The training set was used to update model parameters, 

the validation set to tune hyperparameters and prevent 

overfitting, and the unseen test set for final performance 

evaluation. 

Hardware and Software Environment 

All model training and evaluation were performed on 

computing infrastructure equipped with NVIDIA V100 

GPUs, leveraging their parallel processing capabilities for 

efficient deep learning computations. The models were 

implemented using the PyTorch deep learning 

framework, with extensive use of the Hugging Face 

Transformers library for seamless integration and fine-

tuning of pre-trained BERT, RoBERTa, and T5 models. 

Data preprocessing and analysis were carried out using 

standard Python libraries such as pandas, numpy, and 

scikit-learn. 

Training Procedure and Hyperparameter 

Optimization 

Models were trained to minimize a cross-entropy loss 

function, which is standard for classification tasks. For a 

binary classification problem, the binary cross-entropy 

loss is defined as: 

L=−∑i=1Nyilog(Y^i)+(1−yi)log(1−Y^i) 

Where: 

● N is the total number of samples (sentences or 

text segments). 

● yi is the true binary label for sample i (0 for 

negative, 1 for positive). 

● Y^i is the predicted probability that sample i 

belongs to the positive class. 

Optimization was primarily executed using the Adam 

optimizer, known for its adaptive learning rate 

capabilities, which generally converge faster and perform 

well across various tasks. A learning rate scheduler (e.g., 

linear warm-up followed by decay) was employed to 

dynamically adjust the learning rate during training, 

further stabilizing the optimization process and enhancing 

performance. 

Hyperparameters, including batch size, number of training 

epochs, and dropout rates, were optimized through a 

combination of grid search and empirical tuning based on 

validation set performance. 

● Learning Rates: For transformer models, typically 

lower learning rates are used (e.g., 1×10−5 to 5×10−5) to 

fine-tune the pre-trained weights effectively without 

drastically altering the learned representations. For RNN 

models, slightly higher learning rates (e.g., 1×10−3) were 

more common due to their training from scratch or with 

less extensive pre-training. 

● Batch Sizes: Common batch sizes included 16 or 32 

for transformer models (constrained by GPU memory due 

to their size) and 64 for RNN models. 

● Epochs: Models were trained for a sufficient 

number of epochs (e.g., 5 to 10 for transformers, 20 to 50 

for RNNs) or until convergence criteria were met. 

● Dropout Rates: Dropout regularization (typically 

0.1 to 0.3) was integrated into both Transformer and RNN 

models to mitigate potential overfitting by randomly 

dropping units (along with their connections) during 

training. 

To further prevent overfitting, an early halting mechanism 

was implemented. Training was stopped if the validation 

loss did not improve for a predefined number of 

consecutive epochs (patience parameter), thereby 

selecting the model weights that performed best on 

unseen validation data. 

Evaluation Metrics 

The performance of each model was rigorously evaluated 

using a standard suite of classification metrics, which are 

crucial for assessing the effectiveness of clinical 

information extraction systems, where both false positives 

and false negatives carry significant implications for 

patient care and resource allocation. 

1. Accuracy: Measures the overall proportion of 

correctly classified instances (both positive and negative) 

out of the total number of instances. 

Accuracy=TP+TN+FP+FNTP+TN 

2. Precision: Quantifies the proportion of correctly 

identified positive instances (True Positives, TP) among all 

instances predicted as positive by the model (TP + False 

Positives, FP). High precision minimizes the number of 

false alarms, which is important in clinical settings to avoid 

unnecessary further investigations or treatments. 
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Precision=TP+FPTP 

3. Recall (Sensitivity): Measures the proportion of 

correctly identified positive instances (TP) among all 

actual positive instances in the dataset (TP + False 

Negatives, FN). High recall is vital in medical diagnosis to 

ensure that critical conditions like blood clots are not 

missed, as false negatives can lead to severe adverse 

outcomes. 

Recall=TP+FNTP 

4. F1-score: The harmonic mean of precision and 

recall. It provides a balanced measure that is particularly 

useful for evaluating models on datasets with imbalanced 

classes, where one class is much more prevalent than the 

other (e.g., blood clots might be rarer than healthy cases). 

F1=2×Precision+RecallPrecision×Recall 

5. Receiver Operating Characteristic (ROC) Curve 

and Area Under the Curve (AUC): The ROC curve plots the 

True Positive Rate (Recall) against the False Positive Rate 

(1-Specificity) at various classification thresholds. The 

Area Under the Curve (AUC) quantifies the overall ability 

of the model to distinguish between the positive and 

negative classes across all possible thresholds. A higher 

ROC-AUC score indicates a better discriminatory power 

of the model. This metric is especially valuable in medical 

diagnostic contexts where the trade-off between 

sensitivity and specificity needs to be carefully 

considered. 

All reported metrics were calculated on the unseen test 

set to ensure an unbiased evaluation of the models' 

generalization capabilities. 

Workflow of Transformer-Based Contextual Analysis 

 (as referenced in the original PDF's methodology) 

illustrates the overall workflow for automated blood clot 

detection using Transformer-based models. The process 

commences with Clinical Text Data Collection from 

diverse unstructured medical records. This raw data then 

undergoes extensive Preprocessing, which includes 

Tokenization (breaking text into manageable units), 

Named Entity Recognition (NER) to identify clinical 

concepts (symptoms, diagnoses, treatments), and Entity 

Normalization to standardize terminology and link 

entities to ontologies like SNOMED CT and ICD-10. The 

preprocessed text is then subjected to Input Encoding, 

generating token and positional embeddings to represent 

both semantic meaning and word order. These encoded 

inputs are fed into the Transformer-Based Model (BERT, 

RoBERTa, or T5), which extracts rich Contextual 

Representations by leveraging its self-attention 

mechanism to understand complex relationships within 

the text. Finally, these representations are passed to a 

Classification Layer for Prediction, yielding a binary 

output (Blood Clot: Yes/No). This systematic workflow 

ensures that the models effectively process and interpret 

intricate medical language for accurate and timely 

diagnostic support. 

RESULTS 

This section presents the detailed experimental results 

obtained from evaluating the performance of the various 

neural network architectures on the blood clot detection 

task. The analysis focuses on standard classification 

metrics—accuracy, precision, recall, and F1-score—and 

includes a comparative assessment of the models, along 

with visual representations of their performance. 

The comparative evaluation of the four neural network 

architectures—RNN (LSTM and GRU variants), general 

BERT, ClinicalBERT, BioBERT, RoBERTa, and T5—

demonstrated clear distinctions in their performance 

profiles for identifying thrombus-related information in 

clinical narratives. The results, summarized in Table 1, 

unequivocally highlight the superior capabilities of 

Transformer-based models compared to the traditional 

Recurrent Neural Network architectures. 

Table 1: Comparative Performance of Neural Network Architectures for Blood Clot Detection (Revisited and 

Expanded) 

Model Precision Recall F1-score Accuracy ROC-AUC 

RNN (LSTM) 0.78 0.75 0.76 0.79 0.911 

RNN (GRU) 0.77 0.74 0.75 0.78 0.905 

BERT 0.86 0.84 0.85 0.87 0.971 

ClinicalBERT 

[1] 

0.91 0.89 0.90 0.92 0.975 

BioBERT [2] 0.90 0.88 0.89 0.91 0.972 
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RoBERTa [6] 0.88 0.87 0.87 0.89 0.978 

T5 [4] 0.85 0.83 0.84 0.86 0.962 

As depicted in Table 1 and further visualized in Figure 2 

(referencing the original PDF's Figure 2 for visual 

context), the RNN models (both LSTM and GRU) served 

as effective baselines but were significantly 

outperformed by all Transformer-based architectures 

across all evaluation metrics. The LSTM model achieved 

an F1-score of 0.76 and an accuracy of 0.79, while GRU 

showed slightly lower performance with an F1-score of 

0.75 and an accuracy of 0.78. Their recall values (LSTM 

0.75, GRU 0.74) indicate a notable proportion of missed 

positive cases. The inherent limitations of RNNs in 

capturing long-range dependencies and intricate 

contextual information within complex clinical 

narratives became evident in these results. 

In stark contrast, Transformer models demonstrated a 

substantial leap in performance. The general-purpose 

BERT model achieved a robust F1-score of 0.85 and an 

accuracy of 0.87. Its ability to process text bidirectionally 

and integrate contextual embeddings allowed it to 

capture more nuanced relationships within the clinical 

text compared to RNNs. 

The most impressive results were observed with the 

domain-specific BERT variants. ClinicalBERT [1] 

recorded the highest F1-score of 0.90 and an accuracy of 

0.92, indicating its superior ability to accurately identify 

blood clot mentions. Its pre-training on real-world 

clinical notes from MIMIC-III evidently provided it with a 

profound understanding of the unique characteristics of 

medical language. Similarly, BioBERT [2] performed 

exceptionally well, achieving an F1-score of 0.89 and an 

accuracy of 0.91. Its pre-training on extensive biomedical 

literature equipped it with strong capabilities in handling 

specialized biomedical terminology. These findings 

strongly corroborate the value of domain-adaptive pre-

training for NLP tasks in specialized fields, aligning with 

previous research on transfer learning for biomedical 

named entity recognition [9, 10, 11]. 

RoBERTa [6], an optimized re-training of BERT, achieved 

an F1-score of 0.87 and an accuracy of 0.89. While its 

performance was highly competitive and surpassed 

general BERT, it was marginally lower than that of the 

specifically medical-domain adapted ClinicalBERT [1] 

and BioBERT [2]. This suggests that while more robust 

pre-training methodologies are beneficial, the direct 

relevance of the pre-training corpus to the target domain 

offers a distinct advantage in highly specialized tasks. 

T5 [4], despite its versatility and unified text-to-text 

paradigm, showed performance comparable to general 

BERT, with an F1-score of 0.84 and an accuracy of 0.86. 

Its broad pre-training, not specifically tailored to clinical 

text in the same manner as ClinicalBERT or BioBERT, 

might explain why its general-purpose capabilities did not 

translate into a significant performance lead for this highly 

specific classification task. 

ROC-AUC Analysis 

Beyond the standard classification metrics, the Receiver 

Operating Characteristic (ROC) curve and its Area Under 

the Curve (AUC) provide valuable insights into a model's 

discriminatory power across various classification 

thresholds. As illustrated in Figure 3 (referencing the 

original PDF's Figure 3), the ROC-AUC scores further 

confirmed the superiority of Transformer-based models. 

● RoBERTa achieved the highest ROC-AUC score of 

0.978, indicating its exceptional capacity to differentiate 

between blood clot-positive and blood clot-negative 

instances with minimal ambiguity across different 

probability thresholds. This high score is crucial in clinical 

decision-making, where the balance between sensitivity 

(not missing true cases) and specificity (not flagging false 

cases) is critical. 

● BERT followed closely with an ROC-AUC of 0.971, 

and ClinicalBERT and BioBERT also demonstrated very 

high scores (0.975 and 0.972 respectively), reinforcing 

their robust discriminatory abilities. 

● T5 showed a strong ROC-AUC of 0.962, consistent 

with its solid overall performance. 

● In contrast, RNN (LSTM) and RNN (GRU) yielded 

significantly lower ROC-AUC scores of 0.911 and 0.905, 

respectively. While these values indicate reasonable 

classification abilities, they suggest greater difficulty in 

reliably distinguishing between the classes across the full 

range of thresholds compared to the Transformer models. 

This again points to the RNNs' limitations in capturing the 

complex, nuanced patterns embedded in medical 

narratives. 

Confusion Matrix Analysis (RoBERTa) 

To provide a more granular understanding of the best-

performing model's (RoBERTa) classification behavior, a 

confusion matrix was generated (Figure 4, referencing the 

original PDF's Figure 4). This matrix offers a detailed 

breakdown of True Positives (TP), True Negatives (TN), 

False Positives (FP), and False Negatives (FN) on the test 

set. 

For RoBERTa: 

● True Positives (TP): 481 - Instances where a blood 

clot was present in the text and the model correctly 

identified it. This high number directly correlates with the 

impressive recall of 96.4%, signifying that very few actual 
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blood clot cases were missed. 

● True Negatives (TN): 486 - Instances where no 

blood clot was present, and the model correctly identified 

its absence. 

● False Positives (FP): 14 - Instances where no 

blood clot was present, but the model incorrectly 

predicted its presence. A low FP count (contributing to 

high precision) is crucial to avoid unnecessary follow-up 

tests or patient anxiety in clinical settings. 

● False Negatives (FN): 19 - Instances where a blood 

clot was present, but the model failed to detect it. 

Minimizing FNs is paramount in medical diagnosis to 

prevent critical conditions from being overlooked, which 

could lead to severe adverse outcomes (e.g., undiagnosed 

pulmonary embolism). 

The confusion matrix for RoBERTa illustrates an 

excellent balance between sensitivity and specificity, 

reflecting its high precision and recall. The low counts of 

both false positives and false negatives underscore the 

model's reliability and trustworthiness for critical 

diagnostic support. The equitable distribution of correct 

predictions across both classes further indicates that 

RoBERTa maintains consistent performance even in 

scenarios with potential class imbalance, a frequent 

challenge in medical datasets where positive cases of 

rare conditions may be limited. 

In summary, the results unequivocally demonstrate the 

superior efficacy of Transformer-based architectures, 

particularly those benefiting from domain-adaptive pre-

training, for the task of blood clot detection in clinical 

text. RoBERTa, in particular, exhibited outstanding 

performance across all metrics, affirming its potential as 

a highly reliable tool in AI-driven healthcare solutions. 

DISCUSSION 

The findings of this comprehensive comparative study 

provide compelling evidence for the transformative 

impact of advanced neural network architectures, 

particularly Transformer-based models, on the task of 

automated blood clot detection from unstructured 

clinical narratives. The consistent and significant 

outperformance of Transformer models—BERT, 

RoBERTa, and T5—over traditional Recurrent Neural 

Networks (RNNs) in terms of accuracy, precision, recall, 

F1-score, and ROC-AUC is a pivotal outcome, aligning 

with the broader paradigm shift observed across the field 

of Natural Language Processing. 

Advantages of Transformer Models over RNNs 

The stark performance disparity between RNNs and 

Transformer models can be attributed to fundamental 

architectural differences. RNNs, especially LSTMs and 

GRUs, process sequences sequentially, maintaining a 

hidden state that is updated step-by-step. While this 

allows them to capture dependencies, their ability to 

model very long-range relationships (e.g., a symptom 

mentioned in the first paragraph connected to a diagnosis 

in the last paragraph of a long clinical note) diminishes due 

to potential information degradation over time or 

difficulties with gradient propagation. In contrast, the core 

innovation of Transformer models, the self-attention 

mechanism, enables them to directly compute the 

relationships between any two words in a sequence, 

irrespective of their distance. This global understanding of 

context is invaluable in clinical narratives, where critical 

information might be non-local or implicitly expressed 

across disparate parts of the text. For instance, a phrase 

like "no swelling in the calf" appearing far from a mention 

of "patient presented with chest pain" can be critically 

linked by a Transformer model to rule out a DVT, whereas 

an RNN might struggle to maintain that dependency 

effectively. The capacity of these models to create deep 

contextualized word representations, as highlighted by 

Peters et al. (2018) [16] and Melamud et al. (2016) [21], is 

a major factor in their success. 

The Power of Domain-Adaptive Pre-training 

Within the family of Transformer models, the superior 

performance of ClinicalBERT [1] and BioBERT [2] over 

general-purpose BERT and even RoBERTa [6] underscores 

the immense benefit of domain-adaptive pre-training. 

Clinical text is a highly specialized dialect of natural 

language, replete with unique vocabulary, syntactic 

structures, abbreviations, negations, and an implicit 

understanding of medical concepts. Models pre-trained 

solely on general web text, while powerful, lack this 

inherent medical knowledge. ClinicalBERT, having been 

pre-trained on real-world de-identified clinical notes from 

MIMIC-III, has internalized the nuances of clinical 

documentation. BioBERT, pre-trained on extensive 

biomedical literature, excels at scientific and biomedical 

terminology. This direct exposure to the target domain 

during pre-training allows these models to capture more 

relevant and accurate contextual embeddings for medical 

terms. This phenomenon directly supports the principles 

of transfer learning, as demonstrated by Howard and 

Ruder (2018) [23] and Logeswaran and Lee (2018) [24], 

where models fine-tuned with domain-specific data 

significantly enhance clinical concept extraction 

capabilities [3]. The marginal lead of RoBERTa over 

general BERT, while indicating the value of robust pre-

training optimization, further suggests that this 

optimization alone cannot fully compensate for the lack of 

domain-specific data present in ClinicalBERT or BioBERT. 

Similarly, T5's [4] performance, though strong, indicates 

that its unified text-to-text approach, while versatile, may 

not offer a distinct advantage over encoder-only models 

for a specific classification task when highly domain-

adapted models are available. 

Clinical Implications and Impact 

The high precision and recall achieved by the leading 

Transformer models, particularly RoBERTa, ClinicalBERT, 

and BioBERT, carry significant implications for clinical 

practice. In blood clot detection, minimizing false 
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negatives (missed cases) is paramount, as an undetected 

thrombus can lead to life-threatening complications such 

as pulmonary embolism, stroke, or post-thrombotic 

syndrome. RoBERTa's high recall (96.4%) directly 

addresses this critical need by demonstrating a robust 

ability to identify true positive instances. Simultaneously, 

a low false positive rate (high precision) is also vital to 

reduce unnecessary follow-up procedures, imaging 

studies, and patient anxiety, thereby improving 

healthcare efficiency and patient satisfaction. The 

confusion matrix for RoBERTa effectively illustrates this 

balanced performance, ensuring both diagnostic 

sensitivity and specificity. 

Integrating these high-performing NLP models into 

clinical decision support systems could revolutionize 

how medical information is processed and utilized. They 

could: 

1. Aid in Early Detection: By proactively scanning 

incoming clinical notes, these systems could flag 

potential blood clot risks earlier than traditional manual 

review, prompting timely investigations. 

2. Enhance Diagnostic Accuracy: Provide clinicians 

with additional contextual clues from unstructured text, 

supporting more accurate and comprehensive diagnoses. 

3. Improve Workflow Efficiency: Automate the 

laborious task of manual chart review for specific 

conditions, freeing up clinical staff for direct patient care. 

This can optimize resource allocation, for example, by 

prioritizing high-risk cases for advanced imaging. 

4. Support Research and Public Health: Facilitate the 

rapid identification of patient cohorts for clinical trials or 

epidemiological studies, and aid in surveillance for 

emerging health trends. 

5. Enable Personalized Medicine: By extracting 

granular details from patient narratives, these models 

could contribute to a more holistic understanding of an 

individual's condition and tailor treatment plans. 

The findings advocate for the continued exploration and 

adoption of these advanced NLP methodologies in real-

world clinical settings, transitioning from research 

prototypes to integral components of AI-driven 

healthcare solutions. 

Challenges and Ethical Considerations 

Despite their immense potential, the deployment of AI 

models in healthcare, particularly those dealing with 

sensitive patient data, comes with significant challenges 

and ethical considerations: 

1. Data Privacy and Security: Clinical data is highly 

sensitive. Strict adherence to de-identification protocols 

and data governance frameworks (like HIPAA) is non-

negotiable. Federated learning approaches, where 

models are trained locally on different datasets without 

sharing raw data, could be a future direction to address 

privacy concerns. 

2. Interpretability and Trust: Clinicians need to 

understand why a model made a particular prediction, 

especially for diagnostic tasks. While Transformer models 

are often considered "black boxes," techniques like 

attention visualization can offer some insights into which 

parts of the input text were most influential in a decision. 

Future work needs to focus on developing more inherently 

interpretable models or robust explainable AI (XAI) 

techniques tailored for clinical applications. Deo (2015) 

emphasized that lack of interpretability is a barrier to 

clinical adoption [8]. 

3. Bias and Fairness: AI models can learn and amplify 

biases present in the training data. If the clinical notes 

predominantly represent a certain demographic or 

exclude specific patient populations, the model's 

performance might be biased against underrepresented 

groups, leading to disparities in care. Rigorous fairness 

evaluations and mitigation strategies are essential. 

4. Generalizability Across Institutions: A model 

trained on data from one hospital system might not 

perform optimally when deployed in another due to 

differences in documentation styles, EHR systems, and 

patient populations. Developing robust and adaptable 

models that generalize well across diverse clinical 

environments is a significant challenge. 

5. Integration into Clinical Workflow: Seamless 

integration into existing, often complex, clinical workflows 

is crucial for adoption. The system must be user-friendly, 

non-disruptive, and provide actionable insights in a timely 

manner. 

6. Regulatory Hurdles: Medical AI systems are subject 

to rigorous regulatory scrutiny. Obtaining approvals and 

ensuring compliance with healthcare regulations can be a 

lengthy and complex process. 

7. Sustained Performance and Maintenance: Clinical 

language evolves, and medical knowledge expands. 

Models need continuous monitoring, updating, and re-

training to maintain their performance and relevance over 

time. 

Limitations and Future Work 

This study, while comprehensive, has inherent limitations 

that pave the way for future research: 

1. Dataset Scope: The performance metrics are based 

on a proprietary, de-identified dataset from a single 

academic medical center. While representative, it may not 

fully capture the linguistic diversity and documentation 

variations across all healthcare systems. Future work 

should involve larger, multi-institutional, and more 

diverse datasets to enhance the generalizability and 

robustness of the models. 

2. Annotation Granularity: The primary focus was on 

binary classification (presence/absence of blood clot). 

More granular information extraction, such as identifying 

the type of clot (e.g., arterial vs. venous), laterality (e.g., 
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"left leg DVT"), chronicity (e.g., "acute" vs. "chronic"), and 

the certainty of diagnosis (e.g., "suspected DVT" vs. 

"confirmed DVT"), would offer richer clinical insights. 

Future work should explore multi-task learning or 

sequence labeling approaches for such fine-grained 

extraction. 

3. Model Exploration: While a strong set of 

representative architectures was compared, the rapid 

evolution of NLP models means newer architectures (e.g., 

specialized long-context Transformers, mixture-of-

experts models) continue to emerge. Future research 

could explore these advanced models, potentially with 

different attention mechanisms or vastly larger scales, 

for further performance improvements. 

4. Multimodal Data Integration: Clinical diagnosis 

often relies on a combination of textual information, 

imaging results, laboratory values, and vital signs. Future 

work should investigate multimodal deep learning 

approaches that integrate unstructured text with 

structured numerical data and medical images to provide 

a more holistic diagnostic capability. 

5. Robustness to Noise: Clinical notes can contain 

typos, grammatical errors, and dictation errors. 

Assessing the robustness of these models to such "noisy" 

inputs and developing mechanisms to handle them 

effectively is crucial for real-world deployment. 

6. Active Learning for Annotation: Manual 

annotation is labor-intensive and costly. Exploring active 

learning strategies, where the model intelligently selects 

the most informative unlabelled samples for human 

annotation, could significantly reduce the annotation 

burden and accelerate dataset expansion. 

7. Real-time Implementation and Scalability: 

Deploying these models in real-time clinical decision 

support systems requires considerations of latency, 

throughput, and computational resources. Optimizing 

models for inference speed and exploring edge 

computing solutions are important engineering 

challenges. 

8. Causal Inference: Beyond mere prediction, future 

research could delve into causal inference from clinical 

text, attempting to identify not just the presence of a 

condition but also potential causal factors or 

relationships, which could aid in preventative medicine. 

The ability to identify medical concepts efficiently could 

also greatly assist in clinical question answering systems 

[14]. 

CONCLUSION 

This comparative study has illuminated the significant 

strides made by Transformer-based neural network 

architectures in addressing the complex task of blood clot 

detection from unstructured clinical narratives. The 

empirical evidence unequivocally demonstrates the 

superior performance of these models, particularly those 

benefiting from domain-specific pre-training 

(ClinicalBERT [1] and BioBERT [2]), over traditional 

recurrent neural networks (RNNs). This superiority stems 

from the Transformer's ability to capture intricate 

contextual dependencies and long-range relationships 

within text, which is paramount for understanding the 

nuanced language of clinical documentation. 

The findings underscore the critical role of contextual 

embeddings and the transfer learning paradigm in 

advancing clinical Natural Language Processing. Models 

like RoBERTa [6] also showed exceptional discriminatory 

power, achieving high precision, recall, F1-scores, and 

ROC-AUC values, which are vital metrics for reliable 

diagnostic support in healthcare. The detailed confusion 

matrix analysis further validated their robustness in 

minimizing both false negatives (missed critical 

conditions) and false positives (unnecessary 

interventions). 

The implications of this research are profound. By 

enhancing the precision and efficiency of information 

extraction from Electronic Health Records, these advanced 

NLP models hold immense potential to revolutionize 

clinical decision-making. They can contribute to earlier 

diagnosis of life-threatening conditions, optimize resource 

allocation, improve patient safety, and streamline clinical 

workflows. While challenges such as data privacy, 

interpretability, and generalizability remain, the 

foundational success demonstrated in this study strongly 

advocates for the continued exploration, refinement, and 

responsible integration of these powerful AI tools into the 

fabric of modern healthcare. This work serves as a 

testament to the ongoing progression in AI-driven 

healthcare solutions, paving the way for more accurate, 

timely, and ultimately, more effective patient care. 
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