

Bridging Digital Divides: Examining Data Mobility and System Compatibility Across Online Platforms

Dr. Elira M. Vastrin

Department of Computer Science and Information Systems, University of Amsterdam, Amsterdam, Netherlands

Dr. Tobias N. Krellan

Oxford Internet Institute, University of Oxford, Oxford, United Kingdom

VOLUME01 ISSUE01 (2024)

Published Date: 04 December 2024 // Page no.: - 1-9

ABSTRACT

The rapid expansion of digital platforms has profoundly reshaped our economies and daily lives, offering incredible ways to connect and simplify tasks. Yet, this growth also brings significant questions about how much control we, as users, have over our own data and how easily we can move it between different services. This article dives into the crucial topics of data portability and interoperability, exploring what they mean for competition, our well-being as consumers, and the rules governing digital spaces. We'll use established economic ideas about what makes it hard to switch services, how networks grow, and how markets compete to understand the challenges posed by today's dominant digital platforms. We'll discuss the real benefits of being able to move our data around more freely, like sparking new ideas and making markets more dynamic. We'll also look at the tricky parts of making different systems work together smoothly. Finally, we'll touch on how different parts of the world, especially the European Union, are trying to tackle these issues. Ultimately, making data truly portable and systems truly interoperable is vital for preventing unfair practices, empowering us as consumers, and ensuring a vibrant, healthy digital world for everyone.

Keywords: Data portability, interoperability, digital platforms, switching costs, network effects, competition law, consumer welfare, GDPR, market dominance, liability rules.

INTRODUCTION

Think about how much of our lives now happen online. From catching up with friends on social media to shopping, streaming, and working in the cloud, digital platforms have become fundamental to how we live and interact. These platforms aren't just convenient; they're also massive collectors of our personal information. This data, often called the "new oil," is incredibly valuable. It helps create smarter algorithms, personalize our experiences, and power targeted advertising [13]. The sheer size and rapid growth of the global data market, largely led by big tech companies, really drive home just how important these data assets have become.

But as these powerful digital middlemen have grown, so too have serious concerns. We're talking about worries over market power being too concentrated, whether we truly control our own information, and the potential for unfair business practices. At the heart of these discussions are two key ideas: data portability and interoperability. Data portability is all about your right to get your personal data from one service provider and send it to another. Imagine being able to easily move your photos, contacts, or purchase history from one app to a competitor, often in a format that's easy for other computers to read and use. Interoperability, on the other

hand, is the technical ability for different digital systems, products, or applications to talk to each other, share information, and work together seamlessly.

When data portability and interoperability are missing or difficult, it can really distort how markets function. Economic experts point to a few major factors at play:

- **Switching Costs:** Have you ever felt stuck with a service because it's just too much hassle to leave? That's switching costs in action. These aren't just about money; they include all the time, effort, and even emotional investment it takes to recreate your digital identity, transfer your content, rebuild your social connections, or learn a whole new way of doing things [9, 10]. These costs can create a powerful "lock-in" effect, making it incredibly hard for you to leave a platform, even if you're unhappy or a better option comes along.

- **Network Effects:** Many digital platforms become more valuable as more people use them [6]. Think about a messaging app: it's far more useful if all your friends are on it. This creates a powerful cycle: popular platforms attract even more users, making them even more valuable, and so on. This "chicken-and-egg" problem makes it incredibly tough for new companies to break into the market, even with innovative ideas, because they lack that

initial critical mass of users. This can lead to situations where a few dominant players capture almost the entire market.

- Market Inertia: The combined force of high switching costs and strong network effects can create significant "market inertia." This means that existing market shares are very resistant to change, even when new and exciting competitive offerings appear [2]. This reduces real competition and can slow down innovation, as the big, established companies face less pressure to improve their services or lower prices.

The consequences of these dynamics are far-reaching. Without the ability to easily move our data, we lose genuine choice and might be forced to accept less favorable terms or services that aren't quite what we want. For new businesses and startups, the inability to access or integrate with data from established platforms is a huge roadblock, stifling innovation and limiting the potential for truly disruptive competition [3]. What's more, concentrating so much data in the hands of a few powerful players raises serious concerns about our privacy, data security, and the potential for these companies to unfairly leverage their data advantage against competitors [14].

Recognizing these challenges, governments and regulators around the world have started looking for solutions. The European Union has been a leader here, especially with its General Data Protection Regulation (GDPR), which specifically gives us the right to data portability [4, 16]. Other countries are also considering or putting similar measures in place, showing a growing global agreement on how important data mobility is for a healthy digital economy.

This article aims to give you an in-depth economic look at data portability and interoperability in the world of digital platform competition. We'll explore the core ideas behind them, examine how they affect competition, and discuss the complex relationship with data breach risks and who is responsible when things go wrong. By bringing together established economic models and recent regulatory developments, we hope to offer a clearer understanding of this vital policy area and what it means for us as consumers, for businesses, and for the future of our digital world.

Understanding the Digital Playing Field: Our Theoretical Framework

To really dig into how data portability and interoperability affect things, we're using a theoretical framework based on well-known economic models of competition. Specifically, we'll use a version of the Hotelling linear city model [5]. This model is great for showing how consumer preferences, the "cost" of traveling (or choosing something not quite right for you), and how products differ can all play out in digital markets. We've expanded this classic model to include two key features of digital platforms: the costs of

switching services and the benefits that come from more people using a network. Plus, we're adding the possibility of data breaches and looking at how different liability rules come into play.

The Hotelling Model with Digital Twists

Imagine a market with two digital platforms, let's call them Firm A and Firm B. They're located at opposite ends of a "linear city" that's one unit long (think of it as a spectrum from 0 to 1). Consumers are spread out evenly along this line, and their position ($x \in [0,1]$) represents their initial preference or "taste" for one platform over the other.

Our model plays out over two periods, $t=1,2$. This two-period structure is crucial because it helps us understand how being "locked in" to a service affects consumers over time, and how firms make strategic decisions that span both periods.

What Consumers Care About:

When you use a platform, you get value from two main things:

- Stand-alone Utility (v): This is the basic value you get from the platform's core service, regardless of how many other people use it. We assume this value is high enough that everyone in the market will use one of the platforms.
- Network Benefit (βz_i): This captures the positive effect that happens when more people join a platform. If z_i is the number of users on platform i , you get an extra βz_i in utility. The β (beta) value tells us how strong this network benefit is.

Besides the good stuff, consumers also face costs:

- Transportation Cost (τ): If you're located at x , it costs you τx to use Firm A and $\tau(1-x)$ to use Firm B. Think of τ (tau) as the "discomfort" or inconvenience of choosing a platform that isn't perfectly aligned with your preferences.
- Switching Costs (s): If you use one platform in the first period and then decide to switch to the other in the second period, you'll pay a switching cost s . This cost represents all the friction involved in moving your data, learning new ways of doing things, and rebuilding your digital life on a new service. We assume this cost is a fixed amount and the same for everyone.

Two Types of Consumers:

A unique part of our model, inspired by Klemperer (1987b) but with network effects added, is that we have two kinds of consumers in the second period:

- Persistent Consumers: These users keep their initial preferences (their "location") in the second period. Their tastes don't change.
- Whimsical Consumers: A certain percentage ($\alpha \in (0,1)$) of consumers are "whimsical." Their preferences are randomly reshuffled at the start of the second period.

EUROPEAN JOURNAL OF EMERGING ECONOMICS AND MANAGEMENT

This helps us model how some people's tastes might evolve, making them more open to switching. Neither you nor the platforms know beforehand if you'll be persistent or whimsical.

How Firms Behave:

Firms A and B compete by setting their prices at the same time in both periods (p_{1i}, p_{2i}). Their goal is to maximize their total profits over both periods, $\Pi_i = \pi_{1i} + \pi_{2i}$. For simplicity, we assume it costs them nothing to provide the service (zero marginal cost). They can't charge different prices to persistent versus whimsical consumers. We also assume that consumers are smart: they think ahead and form smart expectations about future network sizes and prices, understanding how their choice in the first period might "lock them in" later.

Two Worlds: With or Without Data Portability

Our analysis compares two very different scenarios:

1. Data Importability (No Regulation): In this basic scenario, platforms don't share your user data. What does this mean?

- Individual Network Effects: You only get the benefit of the network from other users who are on your specific platform. The network benefit (β_{zi}) is tied directly to that platform's user base.
- High Switching Costs: If you decide to switch platforms, you'll face the full switching cost s , because your old data isn't easily transferable.

2. Data Portability and Interoperability (Regulation): In this scenario, rules are in place that require data portability and interoperability. This changes things significantly:

- No Switching Costs: The effective switching cost becomes zero ($s=0$). You can move your data smoothly and effortlessly.
- Global Network Effects: Because platforms can talk to each other and share data, you benefit from the entire market (meaning all users across both platforms, $zA+zB=1$), no matter which platform you're currently using. This shows how data sharing and compatibility can create a much larger, shared network benefit.

The Risk of Data Breaches and Who's Responsible

A crucial addition to our model is the possibility of data breaches. We know that more data sharing can mean more risk. We assume that the chance of a data breach depends on how much data a platform handles and also on how much "care" (e_i) the platform takes to prevent breaches.

- e_i : How much care Firm i takes per user to stop data breaches.
- $r(e_i)$: The probability of an accident, where $r'(e_i) < 0$ (more care means less chance of a breach) and $r''(e_i) > 0$ (the benefit of extra care starts to diminish).

- L : The financial loss a user experiences if a data breach happens.

Here's a tricky part: consumers can see prices, but they can't see how much care firms are actually taking. This creates an information gap. To handle this, we use a concept called weak Perfect Bayesian Equilibrium (wPBE). This basically means that everyone's beliefs about what others are doing (even if they can't see it directly) have to make sense given what's actually happening in the game.

We'll look at how three common legal rules for responsibility affect how much care firms take and the overall market:

1. No Liability Rule: The platform isn't responsible for any damages from data breaches; you, the consumer, bear the full loss.
2. Strict Liability Rule: The platform is always responsible for damages, no matter how much care it took.
3. Negligence Rule: The platform is only responsible if it failed to meet a specific "due care" standard (e^-).

And under the data portability and interoperability rules, where data might be shared, we also consider the joint and several liability rule [10, 14]. This is important because if a data breach happens involving shared data, any negligent party could be held responsible for the entire amount of damages, giving them a strong incentive to be careful.

Finally, we define the socially optimal care level (e^*) as the level that minimizes the total cost to society. This cost includes the money spent on care and the expected losses from accidents: $C(e) = e + r(e)L$. The best level of care is where the extra cost of taking more care is exactly equal to the extra benefit of reducing the expected accident loss ($1 + r'(e)L = 0$).

This detailed theoretical setup allows us to break down the complex trade-offs involved in regulating data portability and interoperability. It helps us move beyond simple assumptions to truly understand the economic consequences.

What We Found: Analyzing the Digital Landscape

Our analysis systematically compares what happens in the market under different rules and responsibilities, shedding light on the complex interplay between data portability, competition, consumer well-being, and the risks of data breaches.

The Basic Scenario: No Switching, No Breaches

To get a clear starting point, let's first imagine a simple world where there are no costs to switch services and no data breaches. This is like a perfectly competitive market where you can jump from one provider to another without any effort. In this situation, our two-period model effectively becomes a series of independent one-period competitions, because consumers don't have to worry about being "locked in" later.

EUROPEAN JOURNAL OF EMERGING ECONOMICS AND MANAGEMENT

The value you get as a consumer from using Platform A, if you're located at x , is $VA(x)=v-p0A-\tau x+\beta z0A$. For Platform B, it's $VB(x)=v-p0B-\tau(1-x)+\beta z0B$. Here, $z0A$ and $z0B$ are the sizes of the networks for Platforms A and B. Since everyone is smart and expects things to be rational, Platform A's market share ($x0$) will be equal to its network size ($z0A=x0$), and the same goes for Platform B ($z0B=1-x0$).

The "marginal consumer" ($x0$), who is perfectly indifferent between the two platforms, is found by making their net values equal:

$$p0A+\tau x0-\beta x0=p0B+\tau(1-x0)-\beta(1-x0)$$

If we solve for $x0$, we get:

$$x0=21+2(\tau-\beta)p0B-p0A$$

Firms try to maximize their profits for each period, for example, $\pi0A=p0Ax0$. In a balanced (symmetric Nash) equilibrium, prices end up being equal: $p0A=p0B=\tau-\beta$. This means profits are also equal: $\pi0A=\pi0B=2\tau-\beta$. This holds true as long as the basic utility (v) is high enough to cover the whole market ($v\geq23(\tau-\beta)$).

What This Tells Us: In this basic scenario, the price you pay is directly affected by how much it "costs" to move around (τ) and inversely by how much benefit you get from the network (β). If it's harder to move (higher τ), firms can charge more. But if the network benefit is really strong, it makes competition tougher, pushing prices down as firms fight to get more users and maximize those network effects. It's also important to note that the percentage of "whimsical" consumers (α) doesn't matter here, because there are no switching costs for them to affect. This really highlights how fundamental switching costs are in making firms think about long-term strategies.

Data Importability: The "Walled Garden" World

Now, let's look at the world without rules for data portability and interoperability. Here, platforms act like "walled gardens." Your data stays where you put it, leading to significant switching costs if you try to leave, and network benefits only apply to users within that specific platform. The two-period game becomes much more interesting, as firms actively use the "lock-in" effect to their advantage.

Second-Period Choices: Why You Might Stay

In the second period, your decision as a consumer is heavily influenced by what you chose in the first period and the potential cost of switching. We have three types of consumers:

- **Persistent Consumers:** These are the users who bought from Platform A in the first period and whose preferences haven't changed.
- **A-Whimsical Consumers:** These users bought from Platform A first, but their preferences have now

randomly shifted.

- **B-Whimsical Consumers:** These users bought from Platform B first, and their preferences have also randomly shifted.

A whimsical consumer who started with Platform A will only switch to Platform B if the value they get from switching (even with the switching cost s) is better than staying with Platform A. The same logic applies to B-whimsical consumers. The exact points where people decide to switch (yA^* and yB^*) depend on prices, network sizes, and that crucial switching cost s .

Proposition 1: If the switching cost s isn't too high (specifically, if $0 < yB^* < x^* < yA^* < 1$, where x^* is Platform A's first-period market share), then none of the persistent consumers will switch in the second period. This is because their initial preferences are strong enough to keep them loyal, even with price differences, once the switching cost is factored in. This means that the customers a firm gets in the first period form a stable base for the second period.

The size of Platform A's network in the second period ($z2A$) depends on its first-period customer base (x^*), the percentage of whimsical consumers (α), and the second-period prices ($p2A, p2B$). It's worth noting that if Platform A captured more than half the market in the first period ($x^* > 21$), then increasing the switching cost s helps Platform A disproportionately by locking in more of its initial users, boosting its market share in the second period.

Second-Period Pricing: Cashing In on Loyalty

Firms set their second-period prices ($p2A, p2B$) to maximize their profits in that period, given who they managed to attract in the first period (x^*). The way firms respond to each other's prices shows that if Platform A has more than half the market ($x^* > 21$), then increasing s allows Platform A to raise its second-period price, while Platform B has to lower its price. This is because Platform A has a larger group of "locked-in" customers, making them less sensitive to price changes, while Platform B faces a smaller, more price-conscious group.

In a balanced situation where both platforms have half the market ($x^* = 21$), the second-period prices are $p2A = p2B = \alpha\tau - \beta$.

Proposition 2: In a balanced market, the prices in the second period when there are switching costs ($p2i$) are higher than the prices in our basic scenario without switching costs ($p0i$). This is true for any percentage of whimsical consumers ($\alpha \in (0,1)$).

This is a direct result of being "locked in." Switching costs make consumers less sensitive to price in the second period, giving firms the power to charge higher prices to their captive audience. While network effects (β) still push prices down by making competition for market share more intense, the lock-in effect is strong enough to drive

EUROPEAN JOURNAL OF EMERGING ECONOMICS AND MANAGEMENT

prices above the level seen when switching is free. The α factor also plays a role: more whimsical consumers mean more people are affected by switching costs, which can either intensify or ease competition depending on how α and β balance out.

First-Period Pricing: The "Land Grab" Strategy

Firms are smart. They make their first-period pricing decisions (p_{1A}, p_{1B}) with their total two-period profits ($\Pi_i = \pi_{1i} + \pi_{2i}$) in mind. The number of customers a firm gets in the first period (x^*) directly creates its customer base for the second period, which then impacts second-period profits because of that lock-in effect. This creates a strong incentive for firms to compete very aggressively in the first period to grab as many initial customers as possible.

When a firm raises its first-period price, it directly increases its immediate revenue. However, it also reduces the number of customers it attracts in the first period (and thus its customer base for the second period). Since getting more customers in the first period always leads to higher second-period profits (because of the larger locked-in base), firms have a strong motivation to lower their first-period prices to attract more people, even if it means less immediate profit. This is often called a "land grab" strategy.

Proposition 3: In a balanced market, the first-period prices when there are switching costs (p_{1i}) are lower than the prices in our basic scenario without switching costs (p_{0i}). However, they are still lower than the second-period prices ($p_{1i} < p_{0i} < p_{2i}$), assuming $\tau > \alpha\beta$.

This proposition reveals a critical dynamic: firms engage in fierce price wars in the first period to build a large customer base. They know that these customers will then be "locked in" and generate higher profits in the second period. This pricing strategy, which spans across time, is a direct result of the switching costs that exist when data isn't portable. Consumers benefit from lower prices at first, but they effectively pay for it later through higher prices and fewer choices.

Data Portability and Interoperability: A Regulated, Open World

When rules are put in place that require data portability and interoperability, the market fundamentally changes. The key shifts are:

- **No More Switching Costs:** The effective switching cost ζ becomes zero. You can move your data effortlessly, meaning your decisions in the second period are no longer tied to what you chose in the first.
- **Global Network Effects:** Because platforms can now work together, you get the benefit of the entire network of users across all platforms (meaning $zA+zB=1$). This means the network benefit β is a constant for everyone, regardless of which specific platform they're using.

In this open scenario, your decisions as a consumer are based purely on the value you get in each period, as there's no future lock-in to worry about. The market essentially goes back to being a series of independent one-period competitions, similar to our basic scenario, but now with that added global network benefit. The "marginal consumer" is now simply $x^* = 21 + 2\tau pB - pA$.

In a balanced market, prices in both periods become $pA = pB = \tau$, and profit is $\pi = 2\tau$. It's interesting to note that the global network benefit β doesn't directly show up in the equilibrium price here. That's because it's a benefit shared by everyone, so it doesn't influence your choice between one platform and another.

Comparing Profits and Overall Well-being:

We compare the total profits for firms and the overall social welfare (which includes both firm profits and consumer well-being) under the unregulated ("N" for No regulation) and regulated ("R" for Regulation) scenarios.

Proposition 4: In a balanced market, (i) total firm profits under regulation are higher than without regulation ($\Pi_R > \Pi_N$) if the percentage of whimsical consumers (α) is large enough (above a certain threshold α^*), and (ii) the overall social welfare under regulation is clearly higher than without regulation ($WR > WN$) if $\tau < 1$.

What Proposition 4 Means:

- **Firm Profits:** The impact on firm profits is a bit mixed. On one hand, data portability takes away the power to lock in customers and charge higher prices later (which tends to reduce profits). On the other hand, it also removes the intense price wars in the first period that firms engage in to grab those locked-in customers. If there are many whimsical consumers (α is high), meaning many people are likely to switch, then the competitive pressure in the first period under no regulation is incredibly strong, driving prices very low. In such a case, getting rid of switching costs through regulation might actually lead to higher overall profits for firms by ending this intense "land grab" competition. But if α is small, firms benefit more from lock-in, and regulation might indeed reduce their profits.

- **Social Welfare (Overall Well-being):** The regulation of data portability and interoperability clearly makes society better off. Here's why:

1. **No More Switching Costs:** We, as consumers, no longer waste time or effort when switching services.
2. **Maximized Network Benefits:** The global network effect ensures that everyone benefits from the full size of the market, maximizing the collective value from how people connect (2β with regulation versus just β without).
3. **Lower Travel Costs:** In a balanced market, the market is always split evenly, which naturally minimizes the total "transportation" costs for consumers.

A Key Policy Takeaway: Proposition 4 highlights a tricky

situation for policymakers. Even if data portability and interoperability are good for society as a whole ($WR > WN$), firms might not adopt them willingly, especially if only a small percentage of consumers are likely to switch ($\alpha < \alpha^*$). In these cases, firms gain more from keeping those high switching costs in place. This gives governments a strong economic reason to step in and make data portability and interoperability mandatory, ensuring that private business goals align with what's best for society.

Data Breaches: The Privacy Tightrope

Adding the risk of data breaches brings a crucial new layer to our analysis. It acknowledges that while more data sharing and interoperability offer great benefits, they also increase the potential for security incidents. More data moving between systems means more places where things could go wrong. This means we absolutely need strong legal and technical frameworks to ensure that the good things about data mobility aren't overshadowed by increased privacy risks.

The "Right" Amount of Care for Society

The ideal level of care (es) from a societal perspective is found by minimizing the total cost to society. This cost includes what firms spend on care (e) and the expected losses from accidents ($r(e)L$). The perfect balance is when the extra cost of taking more care is exactly equal to the extra benefit of reducing the expected harm from a breach ($1+r'(es)L=0$).

Data Importability (No Regulation) with Data Breaches

Under the "walled garden" system, firms don't share data, and network benefits stay within each platform. Consumers can't directly see how much care firms are taking.

- No Liability Rule: If firms aren't held responsible for data breaches, they have no reason to spend money preventing them. In this case, both firms will choose to take zero care ($ei=0$). Consumers, knowing this, will factor the expected loss ($r(0)L$) into how much they value the service. While this reduces what consumers get, it doesn't change how firms price their services or their market shares compared to a world without breaches, because firms aren't paying for the care or the damages. The entire cost of the accident falls on the consumers.

- Strict Liability Rule: If firms are strictly liable, they are fully responsible for damages no matter what. Each firm will choose its care level (ei) to minimize its total accident cost, which includes the care it takes and the expected loss ($CS(ei)=ei+r(ei)L$). This pushes firms to choose the socially optimal care level (es). This minimized accident cost (C^*) then acts as an extra cost for the firms. As a result, prices will be higher than under the no liability rule, as firms pass these expected liability costs on to consumers. However, the basic competitive dynamics and lock-in effects remain similar to the no-breach scenario, with prices simply being higher by C^* .

- Negligence Rule: Under the negligence rule, firms are only responsible if they fail to meet a specific "due care" standard (e^-). If this standard is set at the socially optimal care level (es), firms have a strong incentive to meet it to avoid being held liable. So, firms will choose $ei=es$. In this case, firms pay for the care (es) but aren't responsible for the accident loss (L) if they meet the standard. The accident cost for firms is es , which is lower than C^* under strict liability. This leads to prices that are higher than under no liability but lower than under strict liability.

Data Portability and Interoperability (Regulation) with Data Breaches

When data portability and interoperability are mandated, a new layer of complexity arises with data breaches, as data is now shared across platforms. This increases the overall risk of breaches but also brings up questions of shared responsibility.

- Higher Accident Probability: When data is shared by multiple parties, the overall chance of a data breach is naturally higher than when it's held by just one company. Our model captures this by assuming that the accident probability $r(eA,eB)$ increases with more parties sharing data, and that the care levels of different firms can substitute for each other (meaning $rij > 0$ for $j \neq i$).
- Social Optimum with Shared Data: The overall well-being of society must now account for the combined cost of care and the shared risk of data breaches. The best care levels for society (esA,esB) are determined by minimizing the total social cost, considering how the firms' care efforts interact.
- No Liability Rule (under DPI): Similar to the "walled garden" case, if no one is liable, firms have no incentive to take care, and both will choose $eA=eB=0$. The market goes back to the no-breach, no-switching-cost scenario, but consumers bear the full cost of any data breaches.
- Strict Liability Rule (under DPI) with Joint and Several Liability: Under this system, firms are fully responsible for damages, and crucially, the joint and several liability rule applies when data is shared [4]. This means any negligent party can be held responsible for the entire amount of damages.
 - Firms will still try to minimize their individual accident costs. However, because each firm is only partially responsible for the total damage (since another party might also be liable), they might take less than the socially optimal level of care [11]. This is because each firm only gets a fraction of the total benefit from its own care efforts (i.e., the reduction in the total expected loss).
 - Interestingly, under data portability and interoperability, the accident cost for each firm ($CS(eA,eB)$) becomes a fixed cost rather than a cost that changes with each additional user. This is because the total market demand is fixed (everyone is covered), and the

total amount of data is constant. As a result, even under strict liability, firms might not pass on their increased costs to prices, potentially leading to better consumer well-being compared to the unregulated scenario. However, since firms take less than optimal care, strict liability alone doesn't achieve the best outcome for society.

- Negligence Rule (under DPI) with Joint and Several Liability: This is the most important finding when it comes to data breaches.

Lemma 2 (Landes and Posner, 1980): When the joint and several liability rule is applied with negligence standards set at the socially optimal level ($e^* = es$), each firm takes the socially efficient level of care, no matter how their individual liability is shared.

Proposition 5: Requiring data portability and interoperability leads to the best outcome for society when combined with the joint and several liability rules under negligence standards.

What Proposition 5 Means: This is the core conclusion of our analysis regarding data breaches. It provides a strong economic reason for regulations like the GDPR, specifically Article 20 (data portability and interoperability) and Article 82(2,4) (joint and several liability). The idea is powerful:

1. **Lower Switching Costs and Better Networks:** Data portability and interoperability inherently improve overall well-being by removing consumer lock-in and maximizing the positive effects of network connections across the entire market.
2. **Optimal Accident Prevention:** While sharing data increases the risk of breaches, the joint and several liability rule, combined with a negligence standard set at the ideal level for society, gives firms strong reasons to invest wisely in preventing accidents. Each firm knows that if any party is careless, they could be held fully responsible. This encourages all parties to ensure they meet the required standard of care, even if others might also be liable. This effectively makes firms bear the true cost of data breaches, leading to the best possible care levels for society.
3. **No Price Distortion:** Under this specific liability system, the cost of care becomes a fixed cost for firms, and it doesn't mess with their pricing decisions for individual users. This allows the market to achieve efficient prices, just like in the no-switching-cost scenario, while also ensuring top-notch data security.

So, combining mandatory data portability and interoperability with a smart liability framework (joint and several liability under negligence standards) can give us the best of both worlds: it encourages competition and maximizes network benefits, while also effectively managing the increased risk of data breaches through efficient prevention.

What This Means for Everyone: Broader Implications and Policy Ideas

The findings from our analysis have big implications for the ongoing discussions about how to regulate digital platforms. The insights from our model highlight that data portability and interoperability are complex issues that can truly reshape how markets work, empower us as consumers, and introduce new challenges related to data security.

Reshaping How Markets Compete

Our central finding – that data portability and interoperability can significantly reduce switching costs and turn individual network benefits into broader, global ones – is vital for competition policy. Dominant platforms often use their huge user bases and the difficulty of moving data to hold onto their market power, creating what we might call "data moats." By getting rid of these moats, regulation can:

- **Make Markets More Open:** Lowering the barriers to entry makes it easier for new companies to challenge the big players. Startups can attract users by offering better services without the huge challenge of building a network from scratch or forcing users to abandon their existing data. This can lead to a more dynamic and innovative digital world.
- **Boost Consumer Choice and Well-being:** When switching is easy, we're no longer stuck with services we don't like. We can easily move to platforms that offer better prices, more exciting features, or stronger privacy protections. This increased power for consumers can push platforms to compete harder on quality and price.
- **Reduce Unfair Practices:** Being able to move data around makes certain anti-competitive strategies less effective, like forcing users to buy one service just because they use another. If we can easily move our data, a platform's control over that data becomes less of a competitive advantage.

However, it's also important to remember that the impact on firm profits isn't always straightforward. While the intense "land grab" competition in the first period might ease up, losing the power to lock in customers could still hurt the profitability of established firms, especially if they've relied heavily on capturing and keeping users through high switching costs. This potential for reduced profits for the big players is often why they resist these kinds of regulations.

The Privacy and Security Connection

Our look at data breaches highlights a critical balancing act: data portability and interoperability offer great benefits for competition, but they also inherently increase the chances of data security problems. More data moving between systems means more potential weak spots. This means we absolutely need strong legal and technical rules to ensure that the good things about data mobility aren't

outweighed by increased privacy risks.

Our finding that joint and several liability with negligence standards can lead to the best care levels for society is particularly important. It suggests that simply requiring data sharing isn't enough; it must be paired with a system of responsibility that encourages all parties involved in data transfer to invest enough in security. This shifts the burden of risk from individual consumers, who usually aren't equipped to understand and manage complex data security risks, to the platforms themselves, which are in a much better position to prevent problems.

Policymakers need to think carefully about:

- Defining "Due Care": For a negligence standard to work, the "due care" requirements need to be clearly defined and enforceable. These standards must also be flexible enough to adapt as technology and threats evolve.
- Technical Standards for Secure Portability: Beyond legal requirements, creating and adopting secure, interoperable technical standards is crucial. These standards should make data transfer easy while minimizing security risks. Projects like the Data Transfer Project (DTP) are good examples, aiming to create open-source tools for data portability.
- How to Enforce the Rules: Effective enforcement is vital to make sure everyone follows both the data portability rules and the liability standards. Regulators need the resources and expertise to check for compliance and impose meaningful penalties when rules are broken.

The Global Regulatory Picture and Working Together

The European Union, with its GDPR and more recently the Digital Markets Act (DMA), has been a leader in making data portability and interoperability mandatory. The GDPR's Article 20 gives a general right, while the DMA puts specific interoperability obligations on powerful "gatekeeper" platforms. Other regions are also exploring similar paths:

- United States: While the U.S. doesn't have one big federal privacy law like the GDPR, proposed laws like the American Data Privacy and Protection Act (ADPPA) have included data portability provisions. Rules in specific sectors, like healthcare (e.g., ONC Cures Act Final Rule), also promote data exchange. The Consumer Financial Protection Bureau (CFPB) is actively working on rules to enable personal financial data portability.
- United Kingdom: After Brexit, the UK mostly kept the GDPR's principles but is also developing its own data protection framework, which continues to emphasize data portability.
- Asia-Pacific: Countries like Japan, South Korea, and Australia are also developing or strengthening their data rules, often including elements of data portability, especially in areas like financial services and telecommunications. China's Personal Information

Protection Law (PIPL) also includes a right to data portability under certain conditions.

Since digital platforms operate globally, having different rules in different places can create headaches for companies and potentially limit the full benefits of data mobility. Harmonizing standards and increasing international cooperation among regulators will be essential to ensure data flows smoothly across borders while keeping privacy and security strong. This means talking about common technical specifications, data formats, and liability frameworks.

The Road Ahead: Challenges and What's Next

Despite the clear advantages, making data portability and interoperability truly comprehensive faces several practical and conceptual hurdles:

- What Data Counts?: Deciding exactly what "personal data" needs to be portable can be tricky, especially when you consider data that's created by algorithms, inferred about you, or tightly linked to a platform's secret technologies.
- Making It Technically Possible: Achieving truly seamless interoperability across many different and often proprietary systems is a huge technical challenge. It requires collaboration across the industry, open standards, and potentially significant investment from platforms.
- Data Quality and Meaning: Simply moving raw data might not be enough. The context, relationships, and quality of data are often crucial for it to be useful. Making sure that transferred data remains meaningful and usable in a new environment is a complex problem.
- Security and Privacy Risks: As we discussed, more data flow naturally increases security risks. Strong encryption, ways to verify identity, and strict access controls are essential. There's also the risk of "data dumping," where users might accidentally send their data to less secure or privacy-friendly platforms.
- How Businesses Need to Change: Platforms that have built their business models on keeping data exclusive and locking in users will need to adapt. This might mean focusing more on unique service features, innovation, or finding new ways to make money.

Future research should really dig into these practical challenges. This could involve:

- Real-World Studies: Doing actual research to measure the impact of data portability rules on competition, innovation, and how consumers behave in real markets.
- Dynamic Models: Creating more advanced models that can show how platform strategies, new technologies, and regulatory responses change over time.
- Multi-Sided Market Analysis: Expanding our analysis to specifically include the complexities of

platforms that serve multiple groups (e.g., users, advertisers, developers).

- Connecting Tech and Law: Detailed studies on how specific technical standards for interoperability can be designed to meet legal requirements for privacy and security.
- Consumer Behavior: Investigating how we, as consumers, actually use our data portability rights, what makes us decide to switch, and how to teach us about these rights and the risks involved.

Wrapping Up: The Future of Our Digital World

Our digital economy is at a crucial turning point. We're grappling with the power held by a few big players and the urgent need to empower individuals in the online world. Data portability and interoperability are key tools here, offering a path to more competition, more innovation, and better experiences for us all.

Our economic analysis, based on a solid model that includes switching costs, network effects, and the risk of data breaches, strongly supports the need for regulation. We've shown that without rules, platforms use switching costs to trap consumers, leading to intense price wars at first, followed by higher prices and fewer choices later. This unregulated environment, while potentially good for firms by creating captive audiences, ultimately leads to a less healthy society due to inefficiencies and stifled innovation.

Crucially, our findings clearly show that making data portability and interoperability mandatory can undeniably improve overall societal well-being. It does this by getting rid of switching costs and turning individual network benefits into broader, shared network effects. While this shift might initially reduce profits for some established firms, it promotes a more dynamic and competitive market for everyone.

What's more, the introduction of data breach risks highlights a vital balancing act. However, our analysis makes a strong case that this risk can be effectively managed with a well-designed system of responsibility. Specifically, combining data portability and interoperability with a joint and several liability rule under negligence standards can encourage platforms to take the best possible care, thereby reducing the increased risk of data breaches without messing up market efficiency. This provides a strong economic foundation for regulations like those we see in the European Union's GDPR.

The journey towards a truly open and competitive digital world is complex, full of technical, legal, and economic challenges. But the theoretical insights we've shared here emphasize the huge benefits of making data mobility and system compatibility a priority. Future efforts must focus on turning these theoretical advantages into real-world solutions through collaborative development of open standards, strong enforcement, and constantly adapting

our rules to the evolving digital landscape. By giving us, the users, control over our data and making systems work together seamlessly, we can unlock the full potential of the digital economy, ensuring it serves everyone, not just a select few.

REFERENCES

Bagwell, K. 1995. "Commitment and Observability in Games." *Games and Economic Behavior* 8: 271–280.

Farrell, J. 1986. "A Note on Inertia in Market Share." *Economics Letters* 21: 73–75.

Farrell, J., and G. Saloner. 1992. "Converters, Compatibility, and the Control of Interfaces." *Journal of Industrial Economics* 40: 9–35.

Gal, M., and O. Aviv. 2020. "The Competitive Effects of the GDPR." *Journal of Competition Law and Economics* 16: 349–391.

Hotelling, H. 1929. "Stability in Competition Harold Hotelling." *Economic Journal* 39: 41–57.

Katz, M., and C. Shapiro. 1985. "Network Externalities, Competition, and Compatibility." *American Economic Review* 75: 424–440.

Kim, D., and J.-Y. Kim. 2024. "On the Invariance Result of Liability Rules in Oligopoly." *Review of Law and Economics* 20: 439–455.

Klemperer, P. 1987a. "Markets With Consumer Switching Costs." *Quarterly Journal of Economics* 102: 375–394.

Klemperer, P. 1987b. "The Competitiveness of Markets With Switching Costs." *Rand Journal of Economics* 18: 138–150.

Landes, W. M., and R. A. Posner. 1980. "Joint and Multiple Tortfeasors: An Economic Analysis." *Journal of Legal Studies* 9: 517–555.

Polinsky, M. 1980. "Strict Liability vs. Negligence in a Market Setting." *American Economic Review* 70: 363–367.

Rubinfeld, D. 2023. "Data Portability and Interoperability: An E.U.-U.S. Comparison." *European Journal of Law and Economics* 57: 163–179.

Rubinfeld, D., and M. Gal. 2017. "Access Barriers to Big Data." *Arizona Law Review* 59: 339–381.

Shavell, S. 1980. "Strict Liability Versus Negligence." *Journal of Legal Studies* 9: 1–25.

Shavell, S. 1987. *Economic Analysis of Accident Law*. Harvard University Press.

Wohlfarth, M. 2019. "Data Portability on the Internet." *Business and Information Systems Engineering* 61: 551–574.