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ABSTRACT 

 
The coupled interplay of mechanical, thermal, and magnetic fields presents a significant area of scientific inquiry, driven 
by its extensive applications in diverse fields such as geophysics, structural engineering, and aeronautics. This 
investigation introduces a novel and generalized thermoelastic model to elucidate the magneto-thermo-mechanical 
interactions instigated by laser heat input within an infinite half-space. The model uniquely incorporates the Moore-
Gibson-Thompson (MGT) approach, integrated with the concept of memory-dependent derivatives, to provide a more 
nuanced and physically realistic representation of thermoelastic phenomena. A specialized heat transfer equation, 
accounting for the influence of a magnetic field, is formulated based on Eringen's principles of nonlocal impact, thereby 
capturing size-dependent effects at the nanoscale. The governing equations are solved analytically in the Laplace 
transform domain to derive closed-form solutions for the primary physical fields. An advanced approximation algorithm 
is then employed to numerically invert the Laplace transforms, enabling a detailed analysis of the distributions of 
temperature, displacement, thermal stress, and strain in the physical domain. Through comprehensive computational 
simulations and graphical representations, this study meticulously examines the influence of key parameters, including 
non-singular kernel functions, time delay, and the nonlocal quantum, on the dynamic behavior of these field quantities. 
Furthermore, a comparative analysis is conducted to highlight the superior predictive capabilities of the proposed 
nonlocal MGT model over previously established nonlocal classical and generalized thermoelasticity models. The findings 
reveal that the MGTE-based model predicts more satisfactory and physically consistent behavior, characterized by 
reduced thermal stress and, consequently, lower energy dissipation. This suggests that the proposed framework offers a 
more robust and reliable basis for the design and analysis of solid structures, effectively mitigating the risk of material 
failure under intense thermal loading. 

Keywords: Kernel Function, Laser Pulse, MGTE Thermal Conductivity Model, Nonlocal Effect, Time Delay, Magneto-
Thermo-Mechanics, Memory-Dependent Derivative. 

 

1. Introduction 

1.1. Broad Background and Historical Context 

The study of the intricate interplay between magnetic, 

thermal, and mechanical fields, often referred to as 

magneto-thermo-mechanics, has emerged as a 

cornerstone of modern engineering and applied physics. 

The profound implications of these coupled interactions 

are evident across a vast spectrum of applications, ranging 

from the geophysical dynamics of planetary cores to the 

structural integrity of advanced aeronautical and 

electromechanical systems [1, 2, 3]. The scientific 

community has, for decades, pursued the development of 

progressively sophisticated mathematical models capable 

of accurately predicting the behavior of materials under 

the simultaneous influence of these fields [4]. This pursuit is 

driven by the fundamental need to design more resilient, 

efficient, and reliable structures and devices that operate in 

extreme environments. 

The historical trajectory of thermoelasticity theory provides 

a compelling narrative of scientific advancement. The 

foundational work in this domain was laid by Biot, who 

introduced the classical theory of thermoelasticity based on 

Fourier's law of heat conduction [24]. While 

groundbreaking, Biot's theory was predicated on the 

assumption of an infinite speed of thermal wave 

propagation, a proposition that was later found to be 

physically untenable for a wide range of transient thermal 

phenomena. This limitation spurred the development of 
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generalized thermoelasticity theories, which sought to 

resolve this "paradox of infinite speed." A pivotal moment 

in this evolution was the work of Lord and Shulman, who 

incorporated a single relaxation time into the heat 

conduction equation, thereby introducing the concept of a 

finite speed for thermal signals [25]. This innovation 

marked the dawn of hyperbolic thermoelasticity and 

opened new avenues for modeling high-rate thermal 

processes. Subsequently, Green and Naghdi proposed a 

series of alternative generalized thermoelasticity models, 

now famously known as GN-I, GN-II, and GN-III theories 

[26, 27, 28]. These models offered different perspectives 

on the nature of heat conduction in elastic solids, with the 

GN-II and GN-III models notably describing thermoelastic 

processes without energy dissipation. These theories have 

been extensively applied and compared in various 

contexts, including the study of magneto-thermoelastic 

wave propagation [29, 30]. Each of these classical and early 

generalized theories, while valuable, possesses inherent 

limitations, particularly when confronted with the 

complexities of ultra-fast thermal phenomena, such as 

those induced by pulsed laser heating, and the size-

dependent behavior of materials at the micro and nano 

scales. 

1.2. Critical Literature Review 

The advent of advanced experimental techniques and the 

increasing demand for miniaturized technologies have 

necessitated further refinements to thermoelasticity 

theory. Problems involving high heat fluxes, such as those 

generated by instantaneous heat inputs or ultra-fast laser 

pulses, cannot be adequately modeled by conventional 

magneto-thermo-elastic frameworks. The classical local 

theory, for instance, proves insufficient for investigating 

the micro-nano-scale problems that are now prevalent in 

various engineering disciplines. This inadequacy led to the 

development of the nonlocal theory of thermoelasticity, 

which has largely superseded the local theory in such 

applications. The inclusion of a nonlocal factor introduces 

an internal length-scale parameter into the governing 

equations, thereby amplifying microscopic effects at the 

macroscopic level and providing a more accurate 

representation of size-dependent phenomena. Eringen's 

pioneering work in this area laid the groundwork for 

numerous subsequent investigations [54, 55, 56]. For 

instance, Yu et al. developed a size-dependent thermal 

conductivity equation using Eringen's nonlocal model 

approach [15], while Tzou and Guo studied the heat 

equation incorporating both phase lags and nonlocal 

effects [16]. Further research by Mukhopadhyay and 

others has explored nonlocal thermal conductivity models 

with multiple relaxation times [17, 20]. 

Simultaneously, the concept of the memory-dependent 

derivative (MDD) has emerged as a powerful tool for 

modeling materials with memory effects. Introduced by 

Wang and Li, the MDD offers a more flexible and physically 

intuitive alternative to fractional derivatives for describing 

the influence of past states on the current behavior of a 

system [5]. Unlike fractional derivatives, which are defined 

over a fixed interval, the MDD operates on a slipping time 

interval, making it particularly well-suited for capturing the 

recent history of a material's response. This concept has 

been successfully applied to a variety of problems, including 

bio-heat transfer, the analysis of thermal damage in skin 

tissue, and the study of piezoelectric and micromechanical 

systems [7, 8, 9, 10]. The versatility of the MDD lies in the 

ability to freely choose the kernel function, which represents 

the weighting of past events, to best match the specific 

characteristics of the problem at hand. 

More recently, the scientific community has turned its 

attention to the Moore-Gibson-Thompson (MGT) equation, a 

third-order-in-time differential equation that has shown 

great promise for modeling thermo-mechanical problems 

[31, 37]. Originally arising from fluid dynamics [39], the 

MGT equation has been adapted to the context of 

thermoelasticity by Quintanilla and others [32, 34]. This 

new theory, known as Moore-Gibson-Thompson 

thermoelasticity (MGTE), has been shown to be well-posed 

and capable of describing complex wave propagation 

phenomena with greater accuracy than previous models 

[35, 41, 42]. The MGTE model is particularly attractive 

because it can be seen as a unifying framework from which 

earlier thermoelasticity theories can be derived as special 

cases. For instance, the classical coupled theory (CTE), the 

Lord-Shulman (LS) theory, and the Green-Naghdi (GN-II and 

GN-III) theories can all be recovered by setting specific 

parameters in the MGTE equation to zero. Despite its 

potential, the application of MGTE theory, especially in 

conjunction with nonlocal effects and memory-dependent 

derivatives, remains a relatively new and unexplored area of 

research. 

1.3. The Identified Research Gap 

Despite the significant progress in the fields of nonlocal 

thermoelasticity, memory-dependent derivatives, and 

MGTE theory, a comprehensive model that synergistically 

integrates these three powerful concepts to study magneto-

thermo-mechanical interactions has been conspicuously 

absent from the literature. To the best of the author's 

knowledge, no prior research has investigated the magneto-

thermo-mechanical effects in an infinite half-space using a 

nonlocal Moore-Gibson-Thompson thermal conductivity 

model that also incorporates memory-based derivatives. 

This represents a critical gap in our understanding of how 

materials behave under the complex, coupled conditions 

often encountered in modern technological applications, 
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particularly those involving laser-based processing and 

nano-scale devices. The present investigation is therefore 

motivated by the need to bridge this gap by developing a 

new, more meticulous mathematical model that can 

provide deeper insights into these phenomena. 

1.4. Study Rationale, Objectives, and Hypotheses 

The primary rationale for this study is to formulate and 

apply a novel thermal conductivity model for an infinite 

half-space subjected to laser heat input. This model is 

constructed by combining the Moore-Gibson-Thompson 

approach with memory-based derivatives and nonlocal 

effects, thereby creating a more comprehensive and 

physically realistic framework for analyzing nano-scale 

systems. The central objective is to solve the governing 

equations of this new model to determine the distributions 

of key physical quantities—namely, temperature, 

displacement, thermal stress, and strain—and to analyze 

how these distributions are influenced by various critical 

parameters. 

The study hypothesizes that the inclusion of memory-

dependent derivatives and nonlocal effects within the 

MGTE framework will lead to significantly different 

predictions compared to older, more established 

thermoelasticity models. Specifically, it is hypothesized 

that: 

● The memory-dependent derivative, through its use of 

different kernel functions, will have a substantial 

impact on the magnitude and propagation of 

thermoelastic waves, with non-linear kernels 

potentially leading to reduced thermal stress and 

energy dissipation. 

● The nonlocal parameter will play a crucial role in 

modifying the behavior of the physical fields, 

particularly at the boundaries and in regions of high 

stress concentration, reflecting the importance of 

size-dependent effects in nano-scale systems. 

● The proposed nonlocal MGTE model will 

demonstrate superior performance compared to 

nonlocal classical (NCTE), nonlocal Lord-Shulman 

(NLS), and nonlocal Green-Naghdi (NGN) models, 

offering more physically plausible results and 

predicting lower levels of thermal stress, which is a 

key factor in preventing structural failure. 

● The time-delay parameter, an integral component of 

the memory-dependent derivative, will significantly 

influence the dynamic response of the material, 

providing an additional degree of freedom for tuning 

the model to specific experimental conditions. 

By systematically investigating these hypotheses, this 

study aims to not only advance our fundamental 

understanding of magneto-thermo-mechanical 

interactions but also to provide a more powerful and 

versatile tool for the design and analysis of advanced 

materials and structures. 

2. Methods 

2.1. Research Design 

The research design for this study is rooted in a theoretical 

and computational framework aimed at developing and 

solving a novel mathematical model for magneto-thermo-

mechanical interactions. The core of this design involves the 

formulation of a new generalized thermoelasticity theory 

that integrates three key concepts: the Moore-Gibson-

Thompson (MGT) equation, Eringen's nonlocal theory, and 

the concept of memory-dependent derivatives. This 

integrated model is then applied to a specific physical 

system: an infinite, homogeneous, and isotropic half-space 

subjected to a laser pulse heat source on its surface. The 

design can be broken down into the following key stages: 

● Model Formulation: The first step involves the 

rigorous mathematical formulation of the governing 

equations. This includes the development of a modified 

heat conduction equation based on the MGTE theory, 

incorporating a memory-dependent derivative to 

account for time-history effects. The constitutive 

relations and the equation of motion are also modified 

to include nonlocal effects, as per Eringen's theory, 

which introduces a length-scale parameter to capture 

size-dependent phenomena. The influence of an 

externally applied magnetic field is accounted for 

through the inclusion of the Lorentz force in the 

equation of motion. 

● Problem Specification: The formulated model is then 

applied to a one-dimensional problem, considering an 

infinite half-space where all physical quantities vary 

only in the direction perpendicular to the surface (the 

x-direction). The thermal loading is specified as a laser 

pulse with a non-Gaussian temporal profile, which is a 

common and realistic representation of laser heating 

in many applications. 

● Analytical Solution in Transformed Domain: To 

solve the system of coupled partial differential 

equations, the Laplace transform technique is 

employed. This method is chosen for its effectiveness 

in converting differential equations into algebraic 

equations, which are generally easier to solve. The 

application of the Laplace transform, along with the 

specified initial and boundary conditions, allows for 

the derivation of closed-form solutions for the physical 

fields (temperature, displacement, stress, and strain) 

in the Laplace transform domain. 

● Numerical Inversion to Physical Domain: The 

solutions obtained in the Laplace domain are complex 

and not directly interpretable in terms of physical 
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behavior over time. Therefore, a numerical inversion 

technique is required to transform these solutions 

back into the time domain. For this purpose, the 

Zakian method, a well-established and robust 

numerical algorithm for inverting Laplace 

transforms, is adopted. This method allows for the 

computation of the time-domain solutions at specific 

points in space and time. 

● Parametric Study and Comparative Analysis: The 

final stage of the research design involves a 

comprehensive parametric study to investigate the 

influence of various key parameters on the behavior 

of the physical fields. This includes analyzing the 

effects of different kernel functions in the memory-

dependent derivative, varying the nonlocal 

parameter, and exploring the impact of the time-

delay parameter. Furthermore, a comparative 

analysis is conducted to benchmark the performance 

of the proposed nonlocal MGTE model against 

existing nonlocal thermoelasticity models (NCTE, 

NLS, and NGN). 

This research design provides a systematic and rigorous 

approach to developing a new theoretical model, solving it 

for a relevant physical problem, and thoroughly analyzing 

the results to draw meaningful scientific conclusions. 

2.2. Participants/Sample 

The "sample" in this theoretical and computational study is 

the material of the infinite half-space. The material chosen 

for the numerical simulations and graphical analysis is 

Copper (Cu). Copper is selected due to its wide range of 

applications in engineering and electronics, and because its 

thermo-mechanical properties are well-documented in the 

scientific literature, providing a reliable basis for the 

numerical calculations. The specific thermo-mechanical 

properties of Copper used in this study are taken from 

established sources [29, 34] and are listed as follows: 

● Density (ρ): 8954 kg/m³ 

● Specific heat at constant strain (CE): 384.56 J/(kg·K) 

● Thermal conductivity (K): 386 W/(m·K) 

● Coefficient of linear thermal expansion (αT): 1.78 × 

10⁻⁵ K⁻¹ 

● Young's Modulus (E): 128 GPa 

● Initial reference temperature (T0): 293 K 

● Thermal relaxation parameter (τ0): 0.2 s 

● Magnetic permeability of free space (μ0): 4π × 10⁻⁷ 

H/m 

● Electrical conductivity (σ0): 10⁻⁹/(36π) F/m 

● Strength of the applied magnetic field (Hx): 

10⁻⁷/(4π) A/m 

This specific choice of material and its properties ensures 

that the numerical results are physically meaningful and 

relevant to real-world engineering applications. 

2.3. Materials and Apparatus 

As this is a purely theoretical and computational study, there 

are no physical materials or experimental apparatus in the 

traditional sense. The "materials and apparatus" of this 

investigation are the mathematical constructs, equations, 

and computational tools used to model and analyze the 

problem. These can be categorized as follows: 

1. Mathematical Model and Governing Equations: 

○ Moore-Gibson-Thompson Thermoelasticity 

(MGTE) Equation: The core of the model is the 

generalized heat conduction equation based on 

the MGTE theory, which is a third-order-in-time 

partial differential equation. This equation forms 

the basis for describing the thermal behavior of 

the material. 

○ Memory-Dependent Derivative (MDD): The 

MGTE heat equation is further modified by 

incorporating the MDD, which introduces an 

integral term to account for the material's 

memory of past thermal states. Different forms of 

kernel functions (K₁,K₂,K₃) are used within the 

MDD to represent different types of memory 

effects (non-linear, linear, and no memory). 

○ Eringen's Nonlocal Theory: The constitutive 

relations and the equation of motion are 

formulated within the framework of Eringen's 

nonlocal elasticity theory. This is achieved by 

introducing a nonlocal parameter, ξ, and a 

differential operator, (1−ξ2∇2), which modifies 

the classical stress-strain relationship to account 

for long-range interatomic forces. 

○ Maxwell's Equations and Lorentz Force: The 

influence of the magnetic field is incorporated 

through Maxwell's electromagnetic field 

equations, which are used to derive the 

expression for the Lorentz force, F=J×H. This force 

term is then included in the nonlocal equation of 

motion. 

2. Physical System Configuration: 

○ Geometry: The system is defined as a one-

dimensional, infinite, homogeneous, and isotropic 

half-space. This idealized geometry allows for a 

focused analysis of the wave propagation 

phenomena in the direction of the applied 

thermal load. 

○ Thermal Loading: The thermal load is modeled 

as a laser pulse with a non-Gaussian temporal 

profile, as described by the equation L(t)=tp2I0t

exp(−tpt). This provides a realistic representation 

of the energy deposition from a pulsed laser 
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source. The laser intensity (I0), characteristic 

time (tp), surface reflectivity (Ra), and 

absorption depth (b) are key parameters of this 

loading. 

3. Computational Tools and Methods: 

○ Laplace Transform: This integral transform is 

the primary analytical tool used to solve the 

system of governing partial differential 

equations. 

○ Zakian's Method for Numerical Laplace 

Inversion: This numerical algorithm is the 

"apparatus" used to convert the analytical 

solutions from the Laplace domain back into the 

physical time domain, enabling the generation of 

graphical results. The method involves a specific 

summation with predefined complex constants. 

○ Software: Although not explicitly named in the 

source document, the generation of the 

graphical results would necessitate the use of 

scientific computing and plotting software such 

as MATLAB, Mathematica, or Python with 

libraries like NumPy and Matplotlib. This 

software acts as the virtual laboratory for 

conducting the numerical experiments. 

2.4. Experimental Procedure/Data Collection Protocol 

In this theoretical study, the "experimental procedure" and 

"data collection protocol" refer to the systematic process of 

setting up the computational model, solving it, and 

generating the data for analysis. This process is analogous 

to conducting a physical experiment, but it is performed 

entirely through mathematical and computational means. 

The procedure can be outlined as follows: 

1. Nondimensionalization of Governing Equations: 

To simplify the governing equations and reduce the 

number of independent parameters, a set of non-

dimensional quantities is introduced. This is a 

standard practice in theoretical mechanics that 

makes the solutions more general and easier to 

analyze. The original equations are transformed into 

their non-dimensional counterparts. 

2. Application of Laplace Transform: The Laplace 

transform is applied to the non-dimensional 

governing equations with respect to the time 

variable, t. This procedure, combined with the 

prescribed initial conditions, converts the system of 

partial differential equations into a system of 

ordinary differential equations in the Laplace 

domain. 

3. Derivation of the General Solution: The system of 

ordinary differential equations in the Laplace domain 

is solved analytically. By eliminating the temperature 

and other variables, a single fourth-order ordinary 

differential equation for the displacement is 

obtained. The general solution to this equation is then 

found, which consists of a homogeneous part (with 

exponential terms) and a particular part 

corresponding to the laser heat source. This solution 

contains undetermined constants. 

4. Application of Boundary Conditions: The boundary 

conditions of the problem are applied to the general 

solutions in the Laplace domain. These conditions, 

which typically involve specifying the stress and 

temperature at the surface of the half-space (x=0) and 

requiring the fields to vanish at infinity (as x→∞), are 

used to determine the values of the unknown 

constants. This step yields the final, closed-form 

solutions for the transformed physical quantities. 

5. Numerical Data Generation (Data Collection): This 

is the core of the "data collection" phase. The analytical 

solutions in the Laplace domain are numerically 

evaluated for a range of values of the spatial 

coordinate, x. For each point x, the time-domain 

solution is computed using Zakian's numerical Laplace 

inversion method. This process is repeated under 

different sets of parameter values to simulate various 

physical scenarios. The data "collected" are the 

numerical values of temperature, displacement, stress, 

and strain at different positions and for different 

controlling parameters. 

This protocol is systematically followed for four distinct 

"experiments": 

● Experiment 1: Effect of Kernel Functions: Data are 

generated for three different kernel functions (K₁, K₂, 

K₃) while keeping other parameters constant to 

investigate the role of memory effects. 

● Experiment 2: Effect of Nonlocal Parameter: Data 

are generated for several values of the nonlocal 

parameter, ξ (including ξ=0 for the local case), to study 

the influence of size effects. 

● Experiment 3: Comparison of Thermoelastic 

Models: Data are generated for the proposed NMGTE 

model and compared with data generated from the 

NCTE, NLS, and NGN models to assess its relative 

performance. 

● Experiment 4: Effect of Time Delay: Data are 

generated for different values of the time-delay 

parameter, ω, to analyze its impact on the system's 

response. 

6. Graphical Representation: The numerical data 

generated in the previous step are then plotted to 

create the figures for the analysis and discussion. 

2.5. Data Analysis Plan 

The data analysis in this study is primarily qualitative and 

comparative, based on the graphical representation of the 

computationally generated results. The plan is to 
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systematically interpret the plots to understand the 

physical phenomena and to validate the hypotheses of the 

study. The analysis is structured into four main parts, 

corresponding to the four computational experiments. 

1. Analysis of Kernel Function Effects: 

○ Objective: To understand the significance of 

using memory-dependent derivatives compared 

to the traditional MGTE model. 

○ Method: The plots for temperature (θ), 

displacement (u), thermal stress (τxx), and 

strain (e) will be analyzed by comparing the 

curves corresponding to the non-linear kernel 

(K₁), linear kernel (K₂), and constant kernel (K₃). 

○ Metrics for Comparison: The analysis will 

focus on the overall shape and pattern of the 

curves, the peak magnitudes, the location of 

these peaks, the values at the boundary (x=0), 

and the rate of decay. 

○ Expected Outcome: To demonstrate that 

memory effects lead to different, and potentially 

more physically realistic, results than the 

classical case, particularly in terms of reducing 

temperature and stress magnitudes. 

2. Analysis of Nonlocal Parameter Effects: 

○ Objective: To determine the influence of 

nonlocal effects on the thermo-mechanical 

response. 

○ Method: The graphs will be analyzed by 

comparing the curves for different values of the 

nonlocal parameter, ξ (where ξ=0 represents the 

local theory). 

○ Metrics for Comparison: The analysis will 

examine changes in the qualitative behavior of 

the curves, the effect on peak values, and the 

smoothness of the wave propagation profiles. 

○ Expected Outcome: To show that the nonlocal 

parameter significantly affects the field 

distributions, highlighting the importance of 

nonlocal theory for nano-scale problems. 

3. Comparative Analysis of Thermoelastic Models: 

○ Objective: To establish the advantages of the 

proposed nonlocal MGTE (NMGTE) model over 

other established nonlocal thermoelastic 

models. 

○ Method: The results for the NMGTE model will 

be plotted alongside the results obtained from 

the nonlocal coupled thermoelasticity (NCTE), 

nonlocal Lord-Shulman (NLS), and nonlocal 

Green-Naghdi (NGN-II and NGN-III) models. 

○ Metrics for Comparison: The primary focus 

will be on comparing the magnitudes of the 

physical fields predicted by each model. 

○ Expected Outcome: To demonstrate that the 

NMGTE model predicts the lowest magnitudes for 

temperature and stress, suggesting it is a more 

suitable model for predicting material behavior 

with lower energy dissipation. 

4. Analysis of Time-Delay Parameter Effects: 

○ Objective: To investigate the role of the time-

delay parameter, ω, which is a key component of 

the memory-dependent derivative. 

○ Method: The curves for the physical fields will be 

compared for different values of ω. 

○ Metrics for Comparison: The analysis will focus 

on how variations in ω affect the magnitudes of 

the fields. 

○ Expected Outcome: To show that the time-delay 

parameter has a noticeable influence on the 

thermo-mechanical response, providing a tunable 

parameter that enhances the model's versatility. 

3. Results 

3.1. Preliminary Analyse 

Before delving into the main findings, a preliminary analysis 

of the model's behavior confirms the fundamental tenets of 

generalized thermoelasticity. Across all simulations and for 

all parameter variations, the computed physical fields—

temperature, displacement, thermal stress, and strain—

consistently demonstrate a finite domain of influence. That 

is, the thermal and mechanical disturbances propagate as 

waves with finite speed, and their effects vanish at a certain 

distance from the boundary of the half-space. This behavior 

stands in stark contrast to the predictions of classical 

thermoelasticity based on Fourier's law, which would imply 

an instantaneous propagation of thermal signals to infinity. 

The finite propagation speed observed in our results is a key 

characteristic of the generalized thermoelasticity theories, 

including the MGTE model employed here, and validates the 

fundamental soundness of the chosen theoretical 

framework. The results consistently show that the 

disturbances are largely contained within a non-

dimensional distance of approximately x=0.6 to x=3.0, 

confirming the wave-like nature of the heat transfer process 

3.2. Main Findings 

The main findings of this investigation are organized into 

four subsections, each corresponding to a specific 

parametric study designed to elucidate the roles of the 

kernel function, the nonlocal parameter, the choice of 

thermoelastic model, and the time-delay parameter. 

3.2.1. Effects of Kernel Functions 

The choice of kernel function within the memory-dependent 

derivative has a profound impact on the distribution of the 

physical fields. The three kernels considered—K₁ (non-

linear), K₂ (linear), and K₃ (constant, representing the 
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absence of memory)—yield quantitatively distinct results, 

even though the overall qualitative behavior of the curves 

remains similar. 

● Temperature (θ): The temperature profiles for all 

kernels start at a maximum value at the boundary 

(x=0) due to the laser heating and decay rapidly with 

distance. A significant finding is that the constant 

kernel function (K₃) consistently predicts the highest 

temperature values, while the non-linear kernel 

function (K₁) predicts the lowest. The linear kernel 

(K₂) yields intermediate values. This demonstrates 

that incorporating memory effects serves to dampen 

the thermal response of the material. 

● Displacement (u): The displacement field shows a 

similar trend. The displacement is zero at the 

boundary, decreases to a negative peak, and then 

returns to zero. The magnitude of this peak 

displacement is greatest for the constant kernel (K₃) 

and smallest for the non-linear kernel (K₁). 

● Thermal Stress (τxx): The thermal stress profiles 

are particularly revealing. The stress begins at a 

positive (tensile) value at the boundary, decreases to 

a negative (compressive) peak, and then approaches 

zero. The magnitude of both the initial tensile stress 

and the subsequent compressive stress is highest for 

the constant kernel and lowest for the non-linear 

kernel. This directly implies that the memory-

dependent derivative approach, especially with a 

non-linear kernel, predicts a state of lower overall 

stress. 

● Strain (e): The strain profiles mirror these findings, 

with the highest strain magnitudes occurring for the 

constant kernel at the boundary of the half-space. 

Collectively, these results strongly suggest that the 

inclusion of memory-dependent derivatives leads to a 

more controlled and less extreme thermo-mechanical 

response. The non-linear kernel, in particular, consistently 

predicts the lowest levels of temperature, displacement, 

stress, and strain, indicating a state of reduced energy 

dissipation. 

3.2.2. Effects of Nonlocal Parameter ξ 

The influence of the nonlocal parameter, ξ, which captures 

the size-dependent effects in the material, is significant. 

The analysis compares the local theory (ξ=0) with the 

nonlocal theory for ξ=0.1 and ξ=0.3. 

● Temperature (θ): The nonlocal parameter has a 

dramatic effect on the temperature profile near the 

boundary. For the local case (ξ=0), the temperature 

starts at a lower value and rises to a peak before 

decaying. In contrast, for the nonlocal cases (ξ>0), the 

temperature is maximum at the boundary itself and 

then decays monotonically. 

● Displacement (u): The effect of the nonlocal 

parameter on displacement is less dramatic in terms of 

the overall shape of the curve. However, the magnitude 

of the peak displacement is influenced by ξ, with larger 

values of the nonlocal parameter generally leading to a 

smaller peak displacement. 

● Thermal Stress (τxx): The most significant impact of 

nonlocality is observed in the thermal stress profiles. 

The local theory (ξ=0) predicts a negative 

(compressive) stress at the boundary. However, the 

nonlocal theory (ξ>0) predicts a positive (tensile) 

stress at the boundary. The stress curve for the local 

case exhibits more oscillations before decaying, 

whereas the nonlocal cases show smoother 

propagation. Crucially, higher values of the nonlocal 

parameter result in lower peak stress magnitudes, 

indicating that nonlocal effects contribute to stress 

relaxation. 

● Strain (e): The strain also exhibits a strong 

dependence on the nonlocal parameter at the 

boundary, with the nonlocal cases predicting much 

higher initial strain values than the local case. 

These findings underscore the critical importance of 

incorporating nonlocal effects when modeling nano-scale 

systems. The nonlocal parameter not only quantitatively 

alters the results but also qualitatively changes the physical 

behavior. 

3.2.3. Comparison of Nonlocal Thermoelastic Models 

To demonstrate the advantages of the proposed nonlocal 

MGTE (NMGTE) model, its predictions are compared with 

those of other established nonlocal models: NCTE, NLS, and 

NGN-II/III. All results are generated using the non-linear 

kernel function (K₁) for a consistent comparison. 

● Temperature (θ): The analysis provides a clear 

hierarchy of the models based on their temperature 

predictions. The NCTE model, based on the classical 

Fourier law, predicts the highest temperature 

distribution. The generalized models (NLS, NGN) 

predict lower temperatures, and the NMGTE model 

predicts the lowest temperature profile of all. 

● Displacement, Stress, and Strain: This hierarchical 

pattern is consistently replicated across the other 

physical fields. The NCTE model consistently predicts 

the largest magnitudes for displacement, stress, and 

strain, while the NMGTE model predicts the smallest 

magnitudes. The NLS and NGN models fall in between. 

This comparative analysis provides strong evidence for the 

superior performance of the NMGTE model. By predicting 

lower levels of temperature and stress, the NMGTE model 

suggests a state of lower energy dissipation and a higher 
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threshold for thermal damage or failure. 

3.3. Secondary or Exploratory Findings 

3.3.1. Effects of Time-Delay Parameter ω 

The final set of results explores the effect of the time-delay 

parameter, ω, a key component of the memory-dependent 

derivative. The analysis is performed for ω=0.001, 0.01, 

and 0.1. The results indicate that while the time-delay 

parameter does not alter the fundamental shape of the 

distribution curves for the physical fields, it does have a 

noticeable quantitative effect on their magnitudes. A clear 

trend is observed across all fields: increasing the time-

delay parameter, ω, leads to a decrease in the magnitude of 

the response. For example, the temperature at the 

boundary is highest for the smallest time delay (ω=0.001) 

and lowest for the largest time delay (ω=0.1). This same 

trend holds for the peak values of displacement, stress, and 

strain. 

This finding is important because it highlights the role of 

the time-delay parameter as a tunable factor within the 

model. The ability to adjust ω provides flexibility, allowing 

the model to be calibrated to better match specific 

experimental data or the known response characteristics 

of different materials. The influence of ω is most prominent 

at the boundary and at the peak values of the fields, 

indicating that it plays a crucial role in the initial and most 

intense phases of the thermo-mechanical response. 

4. Discussion 

4.1. Interpretation of Key Findings 

The results of this study offer a multi-faceted narrative 

about the dynamics of magneto-thermo-mechanical 

interactions under laser heating. The findings can be 

interpreted as a strong endorsement for adopting more 

sophisticated theoretical frameworks for analyzing 

modern materials. 

The first major finding—that memory-dependent 

derivatives significantly dampen the thermo-mechanical 

response—has profound implications. The traditional 

approach, which neglects memory effects (represented by 

the constant kernel, K₃), consistently overestimates the 

temperature, stress, and strain. This overestimation 

represents a fundamental mischaracterization of the 

material's behavior. The observed reduction in stress is 

particularly critical from an engineering standpoint. High 

thermal stresses are a primary cause of material 

degradation and failure. By predicting a less severe stress 

state, the memory-dependent model suggests that 

materials may be more resilient to thermal shocks than 

classical models would predict, which could lead to more 

efficient designs. 

The second key finding relates to the indispensable role of 

Eringen's nonlocal theory. The stark difference in the 

predicted stress state at the boundary between the local and 

nonlocal theories—compressive for the former, tensile for 

the latter—is a clear indication that local models are 

inadequate for capturing physics at the nano-scale. The fact 

that increasing the nonlocal parameter leads to smoother 

stress profiles and lower peak stresses suggests that 

nonlocal interactions have a stabilizing effect. This aligns 

with a growing body of literature emphasizing the necessity 

of nonlocal approaches for modeling nanostructures [19, 57, 

58, 59]. 

The third, and perhaps most significant, finding is the 

demonstrated superiority of the NMGTE model over other 

established nonlocal thermoelasticity theories. The 

consistent hierarchy observed in the results, with NCTE 

predicting the most extreme response and NMGTE 

predicting the most moderate, is a powerful argument for its 

adoption. The fact that it predicts the lowest energy 

dissipation makes it not only a more accurate model but also 

a more optimistic one from a design perspective. 

Finally, the influence of the time-delay parameter, ω, 

highlights the adaptability of the memory-dependent 

derivative concept. This tunable aspect of the model is 

invaluable, as it allows for calibration of the theoretical 

framework to match experimental observations, enhancing 

the model's practical utility. 

4.2. Comparison with Previous Literature 

The findings of this investigation are situated within an 

evolving body of literature on generalized thermoelasticity. 

The work builds directly upon the foundational concepts of 

nonlocal elasticity by Eringen [54, 55, 56], the memory-

dependent derivative by Wang and Li [5], and Moore-

Gibson-Thompson thermoelasticity by Quintanilla [32]. 

The observed importance of nonlocal effects is consistent 

with recent studies that have applied Eringen's theory to 

micro- and nano-scale problems [15, 19, 20]. Our finding 

that nonlocal effects can change the stress distribution at 

boundaries aligns with the principle that classical 

continuum mechanics breaks down at small scales. 

The efficacy of the memory-dependent derivative concept 

has also been corroborated by previous research [6, 12, 13, 

14]. Our results, showing that MDD reduces thermal 

stresses, are in conceptual agreement with studies on skin 

tissue and piezoelectric materials where memory effects 

were significant [8, 9]. The present work extends these 

studies by being the first to integrate the MDD concept with 

the more advanced MGTE thermal conductivity model. 

The central contribution is the application and validation of 
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MGTE theory in a nonlocal, magneto-thermo-mechanical 

context. While recent papers have explored the properties 

of the MGTE equation [33, 34, 40, 45, 46, 47, 48], this 

investigation is unique in its comprehensive comparison of 

the nonlocal MGTE model against other nonlocal theories 

under laser heating. Our conclusion that the NMGTE model 

is the "most suitable" provides strong support for the 

continued development of this theory. This finding is 

significant in light of work that highlighted the potential for 

ill-posedness in some problems [31] and subsequent 

efforts to establish the well-posedness of the MGT equation 

[35, 37]. Our physically consistent results contribute to the 

growing confidence in the MGTE framework. 

4.3. Strengths and Limitations of the Study 

The primary strength of this investigation lies in its novel 

and comprehensive theoretical framework. By integrating 

the Moore-Gibson-Thompson theory, Eringen's nonlocal 

model, and memory-dependent derivatives, this study 

presents a state-of-the-art mathematical model. This 

approach allows for the simultaneous consideration of 

finite thermal wave speed, material memory, and micro-

structural size effects. The systematic parametric study 

and direct comparison against four other models provide a 

robust validation of the framework's advantages. 

However, the study is not without its limitations. As a 

purely theoretical and computational investigation, it lacks 

direct experimental validation. Future experimental work 

would be invaluable for corroborating the model's 

predictions. Another limitation is the idealized one-

dimensional geometry of the infinite half-space. Real-

world components have finite dimensions and complex 

three-dimensional geometries. The extension to two or 

three dimensions would be an important next step. 

Additionally, the model assumes the material to be 

homogeneous and isotropic, while many advanced 

materials are anisotropic and heterogeneous. Finally, the 

study considers a linear elastic model; non-linear effects 

could become significant for very high-intensity laser 

pulses. 

4.4. Implications for Theory and Practice 

Despite its limitations, this study has significant 

implications for both continuum mechanics theory and 

engineering practice. Theoretically, it establishes the 

nonlocal MGTE model with memory-dependent 

derivatives as a new and powerful tool. It encourages a 

shift away from older thermoelasticity models, particularly 

for problems involving high-rate thermal loading and 

nano-scale structures. 

Practically, the findings have direct relevance for engineers 

designing devices subjected to intense thermal and 

magnetic fields. This includes applications in: 

● Laser Materials Processing: The model can be used 

to better predict and control thermal stresses during 

laser cutting, welding, and surface hardening [21, 22]. 

● Micro- and Nano-Electronics: The design of MEMS 

and NEMS can benefit from the more accurate 

predictions of the nonlocal model [10, 19]. 

● Aerospace and Nuclear Engineering: The model can 

provide a more reliable basis for assessing the 

structural integrity of components in jet engines and 

nuclear reactors. 

● Geophysics and Seismology: The advanced models 

developed here could offer new insights into coupled 

magneto-thermo-elastic effects in the Earth's mantle 

and core. 

The key practical takeaway is that by using a more 

sophisticated model like the NMGTE, engineers can 

potentially design more robust structures, as the model 

predicts a lower propensity for thermal stress-induced 

failure. 

4.5. Conclusion and Future Research Directions 

In conclusion, this investigation has successfully developed 

and analyzed a new mathematical model for studying laser-

instigated magneto-thermo-mechanical interactions. By 

uniquely combining the Moore-Gibson-Thompson theory 

with memory-dependent derivatives and nonlocal effects, 

the proposed model offers a more comprehensive and 

accurate description than previously available. 

The key conclusions are: 

● The finite speed of wave propagation, a hallmark of 

generalized thermoelasticity, is consistently observed. 

● The memory-dependent derivative approach is a 

crucial tool for realistically modeling material 

behavior, leading to lower predicted stress levels. 

● Nonlocal effects are indispensable for modeling nano-

scale systems, as they significantly alter the 

distribution of all physical fields. 

● The nonlocal MGTE model with memory effects 

represents the most promising framework for this 

class of problems, predicting the lowest energy 

dissipation compared to earlier theories. 

The findings of this study are advantageous for scientists 

and engineers working on the design of micro- and nano-

structures subjected to thermal loadings. Future research 

should be directed towards the experimental validation of 

the model's predictions. Further theoretical work should 

focus on extending the model to two and three dimensions, 

incorporating material anisotropy, and including non-linear 

effects. 
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