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ABSTRACT 

 
The numerical simulation of incompressible fluid dynamics, governed by the Navier-Stokes equations (NSEs), presents 
persistent challenges related to computational efficiency and numerical stability, especially for higher-order accurate 
methods. This paper introduces and analyzes a new class of fully decoupled, higher-order consistent splitting schemes 
for the incompressible Navier-Stokes equations. The core of our methodology is the formulation of schemes based on 
Taylor series expansions at a future time point tn+β, where β≥1 is a selectable free parameter. This approach generalizes 
the classical Backward Differentiation Formula (BDF) methods. The primary contribution of this work is a rigorous 
stability and error analysis for these schemes. We demonstrate that by selecting appropriate values for the parameter 
β—specifically, β=3 for the second-order scheme, β=6 for the third-order scheme, and β=9 for the fourth-order scheme—
the resulting numerical solutions are uniformly bounded in a strong norm. This constitutes a proof of unconditional 
stability. Furthermore, we establish optimal global-in-time convergence rates for these schemes in both two and three-
dimensional domains. To the best of our knowledge, these findings represent the first comprehensive stability and 
convergence results for any fully decoupled scheme for the Navier-Stokes equations with an order of accuracy higher 
than two. The theoretical analysis is substantiated by numerical experiments, which validate the unconditional stability 
of the new third- and fourth-order schemes. In contrast, we show that schemes based on the conventional BDF approach 
(i.e., β=1) are not unconditionally stable. The proposed schemes achieve their theoretically predicted orders of 
convergence, offering a robust and efficient pathway for high-fidelity simulations of incompressible flows.. 

Keywords: Navier-Stokes Equations, Consistent Splitting Schemes, Higher-Order Methods, Stability Analysis, Error 
Analysis, Computational Fluid Dynamics, Decoupled Methods. 

 

1. Introduction 

1.1. Broad Background and Historical Context 

The Navier-Stokes equations (NSEs) are the cornerstone of 

fluid dynamics, providing a mathematical description of 

the motion of viscous, incompressible fluids [11, 13, 15]. 

Their applications are vast and critical, spanning numerous 

fields of science and engineering, from aerospace design 

and weather forecasting to biomedical flows and industrial 

processing [16]. The equations are a system of nonlinear 

partial differential equations that couple the fluid velocity 

u and pressure p. A key feature is the incompressibility 

constraint, which mandates that the velocity field must 

remain divergence-free at all points in the fluid domain 

[29]. This constraint, along with the inherent nonlinearity 

of the convective term, poses significant challenges for the 

development of accurate and efficient numerical solution 

strategies. Due to the immense practical importance of the 

NSEs, an enormous body of research has been dedicated to 

their numerical approximation [17]. The goal is to develop 

schemes that are not only accurate but also 

computationally efficient and robustly stable, particularly 

for long-time simulations or flows at low viscosity (high 

Reynolds number), where complex, multi-scale 

phenomena can emerge. 

1.2. Critical Literature Revie 

Numerical methods for the incompressible NSEs can be 

broadly categorized into two families: coupled approaches 

and decoupled approaches [9]. Coupled methods [2, 6, 7] 

solve for the velocity and pressure unknowns 

simultaneously within a large, monolithic system of 

equations at each time step. While this approach can be very 

robust and avoids certain types of splitting errors, it leads to 

large, ill-conditioned linear systems that can be 

computationally prohibitive to solve, especially for large-

scale, three-dimensional problems. Consequently, 

decoupled approaches have gained widespread popularity 

due to their superior computational efficiency [9]. These 

methods, often termed splitting schemes, break down the 

complex coupled problem into a sequence of smaller, 

simpler sub-problems at each time step. This family includes 

projection-type methods [4, 8, 10, 11, 12, 19, 23, 24, 25, 26, 

30, 31] and consistent splitting methods [13, 18, 28, 32]. 

Projection methods, first introduced in the 1960s, are 

perhaps the most widely used. However, a well-known 

deficiency of most projection-type schemes is the 
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introduction of a fundamental splitting error that arises 

from the inconsistent treatment of the pressure gradient 

and the viscous term. This error pollutes the pressure 

approximation and prevents the velocity from achieving its 

full order of accuracy in strong norms [19]. To address this 

accuracy limitation, consistent splitting schemes were 

developed [13, 18]. These schemes are carefully designed 

to eliminate the leading-order splitting error, thereby 

allowing for the possibility of full-order accuracy. The 

gauge method is another related approach that also seeks 

to improve accuracy and stability [5, 22]. 

While first-order consistent splitting schemes are well-

established, developing stable higher-order versions has 

proven to be exceptionally difficult. This leads to what has 

been a long-standing open question in the field [20]: how 

to construct unconditionally stable, fully decoupled 

schemes of second-order or higher, complete with a 

rigorous stability and error analysis. While many high-

order splitting methods have been proposed [19, 32], their 

stability often relies on severe time-step restrictions, or 

their stability has not been rigorously proven. 

The stability analysis of higher-order multi-step methods, 

such as the Backward Differentiation Formula (BDF) 

schemes, has a rich history in the context of parabolic 

equations. The seminal work by Nevanlinna and Odeh [21] 

introduced powerful multiplier techniques, based on 

Dahlquist's G-stability theory [3], to prove the stability of 

BDF methods. This energy-based technique was later 

extended to the six-step BDF method [1]. Our recent work 

has built upon this foundation, creating a new class of 

generalized BDF schemes for parabolic equations based on 

Taylor expansions at a future time point, tn+β, and 

establishing their stability properties [17]. We also 

recently introduced a second-order consistent splitting 

scheme for the NSEs and provided a rigorous stability and 

error analysis [16]. This paper represents a significant 

advancement over that work. 

1.3. The Identified Research Gap 

Despite decades of research, the literature lacks a rigorous 

framework for constructing and analyzing unconditionally 

stable, fully decoupled consistent splitting schemes for the 

NSEs that are of third-order or higher accuracy [7, 20]. 

While such schemes can be formally constructed, their 

stability analysis remains an unresolved major challenge. 

The primary difficulty lies in controlling the error 

introduced by the explicit treatment of the pressure term 

in the momentum equation when using a higher-order 

time-stepping formula. Standard high-order BDF schemes 

(corresponding to β=1 in our new framework) are known 

to be unstable without stringent time-step constraints, as 

our numerical results will confirm [8]. 

1.4. Study Rationale, Objectives, and Hypotheses 

The central rationale of this study is to fill this critical gap by 

developing a new class of high-order consistent splitting 

schemes that are provably and unconditionally stable. We 

aim to provide a comprehensive theoretical framework and 

practical numerical methods that are both accurate and 

efficient. The primary objectives of this paper are: 

● To construct a new class of fully decoupled, consistent 

splitting schemes for the Navier-Stokes equations, 

achieving second-, third-, and fourth-order temporal 

accuracy, based on a generalized BDF framework [5, 

17]. 

● To perform a rigorous and complete stability and error 

analysis for these new schemes, proving that by 

selecting specific values for the parameter β (namely 

β2=3,β3=6,β4=9), the schemes are unconditionally 

stable. 

● To establish global-in-time optimal error estimates for 

the proposed schemes, demonstrating that they 

achieve their formal order of accuracy in both 2D and 

3D domains [6]. 

● To validate the theoretical findings through numerical 

experiments, comparing the stability and accuracy of 

the new schemes against their classical BDF 

counterparts. 

We hypothesize that the proposed schemes, with their 

specific choices of β, will be unconditionally stable, in stark 

contrast to the conditional stability of schemes based on the 

standard BDF formulation (β=1). Furthermore, we 

hypothesize that the schemes will exhibit their respective 

theoretical orders of convergence in numerical tests, 

confirming the correctness of our error analysis. 

2. Methods 

2.1. Research Design 

The research methodology employed in this study is a 

combination of theoretical analysis and numerical 

validation. The core of the work is the mathematical 

construction and rigorous analysis of a new family of 

numerical schemes. The investigation proceeds in a 

structured manner: 

1. We first construct generalized Backward 

Differentiation Formula (BDF) consistent splitting 

schemes of order k (where k=2,3,4) for the linear, 

time-dependent Stokes equations. 

2. We then extend these schemes to the complete, 

nonlinear Navier-Stokes equations using an implicit-

explicit (IMEX) treatment. 

3. A rigorous error analysis is conducted for the schemes 

applied to the full NSEs to prove optimal-order, global-

in-time convergence. 
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4. Finally, a series of numerical experiments are 

designed to validate the theoretical results. 

2.2. Preliminaries and Governing Equations 

The physical system under consideration is that of an 

incompressible, viscous fluid within a bounded domain 

Ω⊂R^d^ (for d=2,3). The motion of this fluid is described 

by the incompressible Navier-Stokes equations [11, 13]: 

∂t∂u+u⋅∇u−νΔu+∇p=f(1.1a)∇⋅u=0(1.1b) 
Here, u(x,t) is the fluid velocity vector, p(x,t) is the 

kinematic pressure, ν>0 is the constant kinematic viscosity, 

and f(x,t) is an external body force. These equations are 

supplemented with a suitable initial condition and a no-slip 

boundary condition u=0 on the domain boundary ∂Ω. 

To facilitate the analysis, we introduce standard notations 

for function spaces. Let L^p^(Ω) and H^k^(Ω) denote the 

usual Lebesgue and Sobolev spaces. We define the 

solenoidal (divergence-free) function space 

V={v∈H_0_1(Ω):∇⋅v=0}. The trilinear form arising from the 

convective term is defined as b(u,v,w)=∫_Ω(u⋅∇)v⋅wdx, 

which satisfies various inequalities crucial for the analysis 

[29]. Our analysis will also rely on the discrete version of 

Gronwall's Lemma [14]. 

A cornerstone of our stability proof is the concept of the 

Stokes pressure and a related commutator estimate 

developed by Liu, Liu, and Pego [20]. For a vector field 

u∈H^2^(Ω), the Stokes pressure p_s_(u) is defined via: 

∇ps(u)=(ΔP−PΔ)u(2.3) 
where P is the Leray-Helmholtz projection operator. It was 

proven in [20] that this operator satisfies the critical 

estimate for any ε > 0: 

∫Ω∣(ΔP−PΔ)u∣2≤(21+ϵ)∫Ω∣Δu∣2+C∫Ω∣∇u∣2(2.5) 
This result is valid under the condition that Ω has a C^3^ 

boundary and is essential for controlling the explicit 

pressure term in our decoupled scheme. Finally, our 

stability analysis leverages the powerful G-stability theory 

of Dahlquist [3] 

2.3. Construction of the Generalized BDF Consistent 

Splitting Schemes 

Following our prior work on parabolic equations [17], we 

construct generalized k-th order BDF-type schemes by 

employing a Taylor series expansion of a function ϕ(t) 

around the future time point tn+β=(n+β)δt. This leads to 

discrete operators which we denote as: 

$$A_{k}^{\beta}(\phi^{i})=\sum_{q=0}^{k}a_{k,q}(\beta)
\phi^{i-
k+q}$$$$B_{k}^{\beta}(\phi^{i})=\sum_{q=0}^{k-
1}b_{k,q}(\beta)\phi^{i-
k+1+q}$$$$C_{k}^{\beta}(\phi^{i})=\sum_{q=0}^{k-

1}c_{k,q}(\beta)\phi^{i-k+1+q}$$ 
The coefficients—ak,q(β),bk,q(β), and ck,q(β)—are 

uniquely determined by solving systems of linear equations 

that enforce k-th order accuracy. Using these operators, the 

proposed k-th order generalized BDF consistent splitting 

scheme for the time-dependent Stokes equation is 

formulated as a two-stage process at each time step n: 

● Momentum Step: Solve for the velocity u^n+1^:δt1

Akβ(un+1)−νΔBkβ(un+1)+∇Ckβ(pn)=0(3.9a) 

● Pressure-Correction Step: Solve for the pressure 

p^n+1^:(∇pn+1,∇q)=−ν(∇×∇×un+1,∇q),∀q∈H1(Ω)(3.9

b) 

For the full nonlinear Navier-Stokes equations, we introduce 

a BDF-IMEX scheme where the nonlinear convective term is 

treated explicitly: 

● Momentum Step:δt1Akβk(un+1)−νΔBkβk

(un+1)+∇Ckβk(pn)+Ckβk(un)⋅∇Ckβk(un)=fn+βk

(4.1a) 

● Pressure-Correction 

Step:(∇pn+1,∇q)=(fn+1−un+1⋅∇un+1−ν∇×∇×un+1,∇q

),∀q∈H1(Ω)(4.1b) 

2.4. Stability Analysis Protocol 

The stability analysis is the technical core of this paper. Our 

analysis shows that unconditional stability is not guaranteed 

for arbitrary choices of β. However, we have identified 

specific values that do confer this property for schemes of 

order two, three, and four: 

β2=3,β3=6,β4=9(3.12) 
A crucial and non-trivial step in the analysis is a delicate 

splitting of the implicitly treated viscous term operator, 

Bkβk. We decompose it as: 

Bkβk(un+1)=ηkCkβk(un+1)+Dkβk(un+1)+Fkβk
(un+1)(3.16) 
Here, ηk is a positive constant, and Dkβk and Fkβk are new 

linear operators. The parameter ηk must be chosen such 

that ηk>22≈0.7071; we use ηk=0.71. The stability proof 

relies on two pivotal lemmas (Lemma 3.1 and 3.2) 

concerning the properties of polynomials whose coefficients 

are derived from the operators Akβk,Ckβk, and the newly 

defined Dkβk. These lemmas establish that specific ratios of 

these polynomials satisfy the conditions of Dahlquist's G-

stability theory [3], a result adapted from multiplier 

techniques [17, 21]. The overall proof strategy for 

establishing unconditional stability (Theorem 3.3) for the 

Stokes problem is as follows: 

1. Take the L^2^ inner product of the momentum 

equation (3.9a) with the test function −ΔCkβk(un+1). 

2. Apply the viscous term splitting (3.16). 

3. Bound the explicit pressure term, (∇Ckβk(pn),−ΔCkβk

(un+1)), using the Cauchy-Schwarz inequality and the 
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crucial Stokes pressure commutator estimate from 

[20]. 

4. Combining these estimates and summing over time 

steps yields a uniform energy bound, proving 

unconditional stability. 

2.5. Error Analysis Plan 

The error analysis for the full nonlinear scheme (Theorem 

4.1) is performed via a mathematical induction argument. 

We assume that a uniform bound on the solution's 

gradient, ∣∣∇ui∣∣≤C0, holds for all time steps up to i=n, and 

then prove it must also hold for step n+1. The proof 

proceeds in three main steps: 

1. Uniform Bound on Numerical Solution: First, we 

establish an a priori bound on the 

L^∞^(H^1^)∩L^2^(H^2^) norm of the numerical 

solution un, assuming the induction hypothesis. 

2. Velocity Error Estimate: We derive the error 

equation which governs the evolution of the error 

en=un−u(tn):Akβk(ei+1)−δtΔBkβk(ei+1)+δt∇Ckβk

(epi)+⋯=δtPki+δtQki+Rki+δtSki(4.24) 

The right-hand side consists of truncation and 

consistency errors. We then perform an energy 

analysis on this error equation, similar to the stability 

proof. The nonlinear error terms are carefully 

estimated using the induction hypothesis and 

Sobolev inequalities from [29]. Applying the discrete 

Gronwall lemma [14] yields the desired optimal-

order error bound. 

3. Pressure Error Estimate: Finally, an error bound 

for the pressure is derived by analyzing the error 

equation for the pressure-correction step, again 

using the Stokes pressure properties [20] and the 

previously established velocity error bounds. 

3. Results 

This section presents the main theoretical achievements of 

this study concerning the stability and convergence of the 

new schemes, followed by a summary of the numerical 

experiments conducted to validate these theories. 

3.1. Theoretical Results: Stability and Convergence 

The analytical investigation yielded two main theorems 

that establish the favorable properties of the proposed 

class of schemes. 

● Theorem 3.3 (Unconditional Stability for Stokes 

Equations): For the time-dependent Stokes problem, 

the k-th order consistent splitting scheme (3.9), with 

the parameter β chosen as βk∈{3,6,9} for k=2,3,4 

respectively, is unconditionally stable. Specifically, 

the solution is uniformly bounded in the 

L^∞^(H^1^)∩L^2^(H^2^) norm for any time step 

size δt>0. This result is significant as it provides the 

first proof of unconditional stability for any fully 

decoupled scheme for the time-dependent Stokes 

equations with an order of accuracy of three or higher. 

● Theorem 4.1 (Optimal Error Estimates for Navier-

Stokes Equations): Let the solution of the Navier-

Stokes equations (1.1) be sufficiently smooth. Then the 

solution of the k-th order BDF-IMEX scheme (4.1) with 

βk∈{3,6,9} for k=2,3,4 converges to the exact solution 

with an optimal global-in-time error estimate. For a 

sufficiently small time step δt, the following bound 

holds for all n+1≤T/δt: 

∣∣∇en+1∣∣2+δti=0∑n+1(∣∣Δei∣∣2+∣∣∇epi∣∣2)≤Cδt2k(4.3) 

 

where en and epn are the errors in velocity and 

pressure, respectively, and the constant C is 

independent of δt. This theorem establishes that the 

schemes achieve their formal order of accuracy, k, and 

represents the first such convergence result for any 

fully decoupled, higher-than-second-order scheme for 

the full Navier-Stokes equations. 

3.2. Numerical Validation 1: Stability Comparison 

To test the theoretical stability claims, we implemented the 

third- and fourth-order schemes to solve the full Navier-

Stokes equations with a small viscosity ν=0.005. We 

compared the performance of our new schemes (with β3=6 

and β4=9) against the corresponding standard BDF3 and 

BDF4 schemes (β=1). The results were unequivocal. The 

standard third- and fourth-order BDF schemes proved to be 

unstable for even moderately small time steps. In stark 

contrast, our new schemes were perfectly stable and 

produced accurate energy evolution profiles for a much 

larger time step of δt=0.05, demonstrating their 

unconditional stability in practice. 

3.3. Numerical Validation 2: Convergence Rates 

To verify the accuracy and convergence rates predicted by 

Theorem 4.1, we conducted a second set of experiments 

using a problem with a known analytical solution. We tested 

the second-order scheme with β2=3, the third-order scheme 

with β3=6, and the fourth-order scheme with β4=9. The 

results showed that the slopes of the error decay on a log-

log plot were approximately 2, 3, and 4 for the respective 

schemes. This confirms that the new schemes achieve their 

expected theoretical orders of convergence in practice, 

validating the error analysis of Theorem 4.1. 

4. Discussion 

4.1. Interpretation of Key Findings 

The central achievement of this research is the successful 

development and rigorous analysis of a new class of high-

order, fully decoupled, and unconditionally stable schemes 

for the incompressible Navier-Stokes equations [7]. This 

work effectively resolves a long-standing open problem in 

computational fluid dynamics [20]. The success of our 
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approach hinges on a synergistic combination of three key 

ideas: the generalization of BDF methods via a Taylor 

expansion around a future time point tn+β; the judicious 

selection of specific β values; and the novel splitting of the 

implicit viscous term (3.16). This framework successfully 

tames the instability that typically arises from the explicit 

treatment of the pressure term [18]. The explicit pressure 

is ultimately controlled by leveraging the sophisticated 

Stokes commutator estimate developed by Liu, Liu, and 

Pego [20]. 

4.2. Comparison with Previous Literature 

The contributions of this paper should be viewed in the 

context of decades of research on numerical methods for 

the NSEs. 

● Versus Projection Methods: Our work offers a 

significant advantage over commonly used projection 

methods [4, 9, 25]. As "consistent splitting" schemes 

[13], our methods are designed to be free from the 

leading-order splitting error that fundamentally 

limits the accuracy of standard projection schemes 

[19]. 

● Versus Other High-Order Schemes: While 

numerous high-order methods for the NSEs have 

been proposed [19, 32], they often are either coupled 

schemes that lead to computationally expensive 

linear systems [6, 7], or they are decoupled schemes 

that lack a rigorous proof of unconditional stability. 

Our work provides this missing piece. 

● Versus Standard BDF Schemes: The numerical 

results presented herein provide a stark 

demonstration of the superiority of our approach 

over methods based on the standard high-order BDF 

formulas (β=1). The instability of the BDF3 and BDF4 

schemes shown in our tests is a well-known practical 

issue. 

● Relation to Prior Work: This paper is a direct and 

highly non-trivial extension of our own previous 

research. It improves upon the second-order scheme 

presented in [16] and applies the general theoretical 

framework we developed for parabolic-type 

equations in [17] to the much more intricate Navier-

Stokes system. The successful adaptation of G-

stability theory [3] and multiplier methods [21] to 

this new context is a core technical contribution. 

4.3. Strengths and Limitations of the Study 

The primary strength of this work lies in its novelty and 

rigor, providing the first-of-their-kind stability and 

convergence proofs for fully decoupled, consistent splitting 

schemes for the NSEs with an order of accuracy higher than 

two [7]. However, the study also has several limitations 

that point toward avenues for future research. The analysis 

presented is for semi-discrete schemes, where only time is 

discretized. The stability proof for the pressure term 

formally requires the fluid domain Ω to have a smooth 

boundary of class C^3^. While our numerical results 

demonstrate excellent performance on a simple square 

domain, extending the rigorous proof to polygonal domains 

is an open question. The chosen values of β are sufficient for 

stability, but they may not be the smallest possible values. 

The analysis is currently limited to schemes up to the fourth 

order. 

4.4. Implications for Theory and Practice 

The implications of this research are twofold. 

● For Theory: This work resolves a long-standing open 

question regarding the existence of provably stable, 

high-order, decoupled numerical schemes for the NSEs 

[20]. The analytical technique we have developed 

provides a new paradigm for the stability analysis of 

complex fluid dynamics problems. 

● For Practice: Our results provide computational 

scientists and engineers with a new class of powerful 

tools for simulating incompressible flows [16]. Their 

proven high order of accuracy allows for the resolution 

of fine-scale flow features with fewer degrees of 

freedom, and their unconditional stability can lead to 

dramatic computational savings in long-time 

simulations. 

4.5. Conclusion and Future Research Directions 

In conclusion, this paper has introduced a new class of 

higher-order consistent splitting schemes for the 

incompressible Navier-Stokes equations. By constructing 

the schemes from a Taylor expansion at a future time point 

tn+β and making specific choices for the parameter β, we 

have developed the first fully decoupled schemes of third- 

and fourth-order that are provably unconditionally stable. 

This work opens up several promising avenues for future 

investigation, including the extension to even higher orders 

(fifth and sixth); a comprehensive stability and error 

analysis of fully discretized schemes; extension of the theory 

to domains with less regularity; and application of the 

methodology to coupled multi-physics systems involving 

the NSEs. 
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