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ABSTRACT

The numerical simulation of incompressible fluid dynamics, governed by the Navier-Stokes equations (NSEs), presents
persistent challenges related to computational efficiency and numerical stability, especially for higher-order accurate
methods. This paper introduces and analyzes a new class of fully decoupled, higher-order consistent splitting schemes
for the incompressible Navier-Stokes equations. The core of our methodology is the formulation of schemes based on
Taylor series expansions at a future time point tn+{, where 21 is a selectable free parameter. This approach generalizes
the classical Backward Differentiation Formula (BDF) methods. The primary contribution of this work is a rigorous
stability and error analysis for these schemes. We demonstrate that by selecting appropriate values for the parameter
B—specifically, =3 for the second-order scheme, 3=6 for the third-order scheme, and =9 for the fourth-order scheme—
the resulting numerical solutions are uniformly bounded in a strong norm. This constitutes a proof of unconditional
stability. Furthermore, we establish optimal global-in-time convergence rates for these schemes in both two and three-
dimensional domains. To the best of our knowledge, these findings represent the first comprehensive stability and
convergence results for any fully decoupled scheme for the Navier-Stokes equations with an order of accuracy higher
than two. The theoretical analysis is substantiated by numerical experiments, which validate the unconditional stability
of the new third- and fourth-order schemes. In contrast, we show that schemes based on the conventional BDF approach
(i.e., B=1) are not unconditionally stable. The proposed schemes achieve their theoretically predicted orders of
convergence, offering a robust and efficient pathway for high-fidelity simulations of incompressible flows..

Keywords: Navier-Stokes Equations, Consistent Splitting Schemes, Higher-Order Methods, Stability Analysis, Error
Analysis, Computational Fluid Dynamics, Decoupled Methods.

1. Introduction phenomena can emerge.

1.1. Broad Background and Historical Context

The Navier-Stokes equations (NSEs) are the cornerstone of
fluid dynamics, providing a mathematical description of
the motion of viscous, incompressible fluids [11, 13, 15].
Their applications are vast and critical, spanning numerous
fields of science and engineering, from aerospace design
and weather forecasting to biomedical flows and industrial
processing [16]. The equations are a system of nonlinear
partial differential equations that couple the fluid velocity
u and pressure p. A key feature is the incompressibility
constraint, which mandates that the velocity field must
remain divergence-free at all points in the fluid domain
[29]. This constraint, along with the inherent nonlinearity
of the convective term, poses significant challenges for the
development of accurate and efficient numerical solution
strategies. Due to the immense practical importance of the
NSEs, an enormous body of research has been dedicated to
their numerical approximation [17]. The goal is to develop
only accurate but also
computationally efficient and robustly stable, particularly

schemes that are not

for long-time simulations or flows at low viscosity (high

Reynolds number), where complex, multi-scale

1.2. Critical Literature Revie

Numerical methods for the incompressible NSEs can be
broadly categorized into two families: coupled approaches
and decoupled approaches [9]. Coupled methods [2, 6, 7]
solve for the wvelocity and pressure unknowns
simultaneously within a large, monolithic system of
equations at each time step. While this approach can be very
robust and avoids certain types of splitting errors, it leads to
large, ill-conditioned linear systems that can be
computationally prohibitive to solve, especially for large-
scale, three-dimensional problems. Consequently,
decoupled approaches have gained widespread popularity
due to their superior computational efficiency [9]. These
methods, often termed splitting schemes, break down the
complex coupled problem into a sequence of smaller,
simpler sub-problems at each time step. This family includes
projection-type methods [4, 8, 10, 11, 12, 19, 23, 24, 25, 26,
30, 31] and consistent splitting methods [13, 18, 28, 32].

Projection methods, first introduced in the 1960s, are
perhaps the most widely used. However, a well-known
deficiency of most projection-type schemes is the
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introduction of a fundamental splitting error that arises
from the inconsistent treatment of the pressure gradient
and the viscous term. This error pollutes the pressure
approximation and prevents the velocity from achieving its
full order of accuracy in strong norms [19]. To address this
accuracy limitation, consistent splitting schemes were
developed [13, 18]. These schemes are carefully designed
to eliminate the leading-order splitting error, thereby
allowing for the possibility of full-order accuracy. The
gauge method is another related approach that also seeks
to improve accuracy and stability [5, 22].

While first-order consistent splitting schemes are well-
established, developing stable higher-order versions has
proven to be exceptionally difficult. This leads to what has
been a long-standing open question in the field [20]: how
to construct unconditionally stable, fully decoupled
schemes of second-order or higher, complete with a
rigorous stability and error analysis. While many high-
order splitting methods have been proposed [19, 32], their
stability often relies on severe time-step restrictions, or
their stability has not been rigorously proven.

The stability analysis of higher-order multi-step methods,
such as the Backward Differentiation Formula (BDF)
schemes, has a rich history in the context of parabolic
equations. The seminal work by Nevanlinna and Odeh [21]
introduced powerful multiplier techniques, based on
Dahlquist's G-stability theory [3], to prove the stability of
BDF methods. This energy-based technique was later
extended to the six-step BDF method [1]. Our recent work
has built upon this foundation, creating a new class of
generalized BDF schemes for parabolic equations based on
Taylor expansions at a future time point, tn+f, and
establishing their stability properties [17]. We also
recently introduced a second-order consistent splitting
scheme for the NSEs and provided a rigorous stability and
error analysis [16]. This paper represents a significant
advancement over that work.

1.3. The Identified Research Gap

Despite decades of research, the literature lacks a rigorous
framework for constructing and analyzing unconditionally
stable, fully decoupled consistent splitting schemes for the
NSEs that are of third-order or higher accuracy [7, 20].
While such schemes can be formally constructed, their
stability analysis remains an unresolved major challenge.
The primary difficulty lies in controlling the error
introduced by the explicit treatment of the pressure term
in the momentum equation when using a higher-order
time-stepping formula. Standard high-order BDF schemes
(corresponding to 3=1 in our new framework) are known
to be unstable without stringent time-step constraints, as
our numerical results will confirm [8].

1.4. Study Rationale, Objectives, and Hypotheses

The central rationale of this study is to fill this critical gap by
developing a new class of high-order consistent splitting
schemes that are provably and unconditionally stable. We
aim to provide a comprehensive theoretical framework and
practical numerical methods that are both accurate and
efficient. The primary objectives of this paper are:

® To construct a new class of fully decoupled, consistent
splitting schemes for the Navier-Stokes equations,
achieving second-, third-, and fourth-order temporal
accuracy, based on a generalized BDF framework [5,
17].

® To perform arigorous and complete stability and error
analysis for these new schemes, proving that by
selecting specific values for the parameter § (namely
2=3,83=6,84=9), the schemes are unconditionally
stable.

® To establish global-in-time optimal error estimates for
the proposed schemes, demonstrating that they
achieve their formal order of accuracy in both 2D and
3D domains [6].

® To validate the theoretical findings through numerical
experiments, comparing the stability and accuracy of
the new schemes against their classical BDF
counterparts.

We hypothesize that the proposed schemes, with their
specific choices of 8, will be unconditionally stable, in stark
contrast to the conditional stability of schemes based on the
standard BDF formulation (f=1). Furthermore, we
hypothesize that the schemes will exhibit their respective
theoretical orders of convergence in numerical tests,
confirming the correctness of our error analysis.

2. Methods
2.1. Research Design

The research methodology employed in this study is a
combination of theoretical analysis
validation. The core of the work is the mathematical

and numerical

construction and rigorous analysis of a new family of
numerical schemes. The investigation proceeds in a
structured manner:

1. We
Differentiation Formula (BDF) consistent splitting
schemes of order k (where k=2,3,4) for the linear,
time-dependent Stokes equations.

first  construct  generalized  Backward

2. We then extend these schemes to the complete,
nonlinear Navier-Stokes equations using an implicit-
explicit (IMEX) treatment.

3. Arigorous error analysis is conducted for the schemes
applied to the full NSEs to prove optimal-order, global-
in-time convergence.
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4. Finally, a series of numerical experiments are
designed to validate the theoretical results.

2.2. Preliminaries and Governing Equations

The physical system under consideration is that of an
incompressible, viscous fluid within a bounded domain
QcR~Ad” (for d=2,3). The motion of this fluid is described
by the incompressible Navier-Stokes equations [11, 13]:

dtou+u-Vu-vAu+Vp=f(1.1a)V-u=0(1.1b)

Here, u(x,t) is the fluid velocity vector, p(xt) is the
kinematic pressure, v>0 is the constant kinematic viscosity,
and f(x,t) is an external body force. These equations are
supplemented with a suitable initial condition and a no-slip
boundary condition u=0 on the domain boundary 01).

To facilitate the analysis, we introduce standard notations
for function spaces. Let L"p”(£1) and H*k”(Q) denote the
usual Lebesgue and Sobolev spaces. We define the
solenoidal (divergence-free) function space
V={veH_0_1(Q):V-v=0}. The trilinear form arising from the
convective term is defined as b(u,v,w)=_f_Q(u-V)v-wdx,
which satisfies various inequalities crucial for the analysis
[29]. Our analysis will also rely on the discrete version of
Gronwall's Lemma [14].

A cornerstone of our stability proof is the concept of the
Stokes pressure and a related commutator estimate
developed by Liu, Liu, and Pego [20]. For a vector field
ueH"27(Q), the Stokes pressure p_s_(u) is defined via:

Vps(u)=(AP-PA)u(2.3)

where P is the Leray-Helmholtz projection operator. It was
proven in [20] that this operator satisfies the critical
estimate for any € > 0:

JQI(AP-PA)ul25(21+€) [QlAuI2+C[QIVul2(2.5)

This result is valid under the condition that Q has a C*3#
boundary and is essential for controlling the explicit
pressure term in our decoupled scheme. Finally, our
stability analysis leverages the powerful G-stability theory
of Dahlquist [3]

2.3. Construction of the Generalized BDF Consistent
Splitting Schemes

Following our prior work on parabolic equations [17], we
construct generalized k-th order BDF-type schemes by
employing a Taylor series expansion of a function ¢(t)
around the future time point tn+p=(n+f)6t. This leads to
discrete operators which we denote as:

$$ﬁ'_{l{<}"{\beta} (\phi*{i})=\sum_{q=0}"{k}a_{k,q}(\beta)
phi”{i-
k+q}$$$$B_{k}*{\beta}(\phi*{i})=\sum_{q=0}"{k-
1}b_{k,q}(\beta)\phi*{i-
k+1+q}$$$$C_{k}M{\beta}(\phi*{i})=\sum_{q=0}"{k-

1}c_{k,q}(\beta)\phi*{i-k+1+q}$$
The coefficients—ak,q(3),bk,q(f3), ck,q(B)—are

uniquely determined by solving systems of linear equations
that enforce k-th order accuracy. Using these operators, the
proposed k-th order generalized BDF consistent splitting
scheme for the time-dependent Stokes equation is
formulated as a two-stage process at each time step n:

and

e Momentum Step: Solve for the velocity u*n+1”:6t1
AKkB(un+1)-vABKB(un+1)+VCkB(pn)=0(3.9a)

® Pressure-Correction Step: Solve for the pressure
p n+12:(Vpn+1,Vq)=-v(VxVxun+1,Vq),vqeH1(Q)(3.9
b)

For the full nonlinear Navier-Stokes equations, we introduce
a BDF-IMEX scheme where the nonlinear convective term is
treated explicitly:

e Momentum Step:5t1AkBKk(un+1)-vABKkBk
(un+1)+VCkBk(pn)+CkBk(un)-VCkBk(un)=fn+pk
(4.1a)

® Pressure-Correction
Step:(Vpn+1,Vq)=(fn+1-un+1-Vun+1-vVxVxun+1,Vq
),VqeEH1(Q)(4.1b)

2.4. Stability Analysis Protocol

The stability analysis is the technical core of this paper. Our
analysis shows that unconditional stability is not guaranteed
for arbitrary choices of . However, we have identified
specific values that do confer this property for schemes of
order two, three, and four:

2=3,83=6,$4=9(3.12)

A crucial and non-trivial step in the analysis is a delicate
splitting of the implicitly treated viscous term operator,
BkBk. We decompose it as:

BkBk(un+1)=nkCkBk(un+1)+Dkfk(un+1)+Fkpk
(un+1)(3.16)
Here, nk is a positive constant, and DkBk and Fkfk are new

linear operators. The parameter nk must be chosen such
that nk>22%0.7071; we use nk=0.71. The stability proof
relies on two pivotal lemmas (Lemma 3.1 and 3.2)
concerning the properties of polynomials whose coefficients
are derived from the operators AkBk,CkBk, and the newly
defined DkBk. These lemmas establish that specific ratios of
these polynomials satisfy the conditions of Dahlquist's G-
stability theory [3], a result adapted from multiplier
techniques [17, 21]. The overall proof strategy for
establishing unconditional stability (Theorem 3.3) for the
Stokes problem is as follows:

Take the L”2” inner product of the momentum
equation (3.9a) with the test function —~ACkBk(un+1).
Apply the viscous term splitting (3.16).

Bound the explicit pressure term, (VCkBk(pn),-ACkBk
(un+1)), using the Cauchy-Schwarz inequality and the

w N
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crucial Stokes pressure commutator estimate from
[20].

4. Combining these estimates and summing over time
steps yields a uniform energy bound, proving
unconditional stability.

2.5. Error Analysis Plan

The error analysis for the full nonlinear scheme (Theorem
4.1) is performed via a mathematical induction argument.
We assume that a uniform bound on the solution's
gradient, ||Vuil|<CO, holds for all time steps up to i=n, and
then prove it must also hold for step n+1. The proof
proceeds in three main steps:

1. Uniform Bound on Numerical Solution: First, we
establish an a priori bound on the
LAooA(HMMNLA2A(H”2”) norm of the numerical
solution un, assuming the induction hypothesis.

2. Velocity Error Estimate: We derive the error

equation which governs the evolution of the error
en=un-u(tn):AkBk(ei+1)-6tABkBk(ei+1)+6tVCkpk
(epi)+---=86tPki+6tQki+Rki+6tSki(4.24)
The right-hand side consists of truncation and
consistency errors. We then perform an energy
analysis on this error equation, similar to the stability
proof. The nonlinear error terms are carefully
estimated using the induction hypothesis and
Sobolev inequalities from [29]. Applying the discrete
Gronwall lemma [14] yields the desired optimal-
order error bound.

3. Pressure Error Estimate: Finally, an error bound
for the pressure is derived by analyzing the error
equation for the pressure-correction step, again
using the Stokes pressure properties [20] and the
previously established velocity error bounds.

3. Results

This section presents the main theoretical achievements of
this study concerning the stability and convergence of the
new schemes, followed by a summary of the numerical
experiments conducted to validate these theories.

3.1. Theoretical Results: Stability and Convergence

The analytical investigation yielded two main theorems
that establish the favorable properties of the proposed
class of schemes.

® Theorem 3.3 (Unconditional Stability for Stokes
Equations): For the time-dependent Stokes problem,
the k-th order consistent splitting scheme (3.9), with
the parameter  chosen as Bke&{3,6,9} for k=2,3,4
respectively, is unconditionally stable. Specifically,
the solution is uniformly bounded in the
LrooA(HM1M)NLA2A(H”27) norm for any time step
size 8t>0. This result is significant as it provides the
first proof of unconditional stability for any fully

decoupled scheme for the time-dependent Stokes
equations with an order of accuracy of three or higher.
® Theorem 4.1 (Optimal Error Estimates for Navier-
Stokes Equations): Let the solution of the Navier-
Stokes equations (1.1) be sufficiently smooth. Then the
solution of the k-th order BDF-IMEX scheme (4.1) with
Bke{3,6,9} for k=2,3,4 converges to the exact solution
with an optimal global-in-time error estimate. For a
sufficiently small time step 6t, the following bound
holds for all n+1<T/&t:
[IVen+1[|2+8ti=0Yn+1(l|Aeil|2+]|Vepil|2)<CSt2k(4.3)

where en and epn are the errors in velocity and
pressure, respectively, and the constant C is
independent of &t. This theorem establishes that the
schemes achieve their formal order of accuracy, k, and
represents the first such convergence result for any
fully decoupled, higher-than-second-order scheme for
the full Navier-Stokes equations.

3.2. Numerical Validation 1: Stability Comparison

To test the theoretical stability claims, we implemented the
third- and fourth-order schemes to solve the full Navier-
Stokes equations with a small viscosity v=0.005. We
compared the performance of our new schemes (with 3=6
and 4=9) against the corresponding standard BDF3 and
BDF4 schemes ($=1). The results were unequivocal. The
standard third- and fourth-order BDF schemes proved to be
unstable for even moderately small time steps. In stark
contrast, our new schemes were perfectly stable and
produced accurate energy evolution profiles for a much
larger time step of &t=0.05, demonstrating their
unconditional stability in practice.

3.3. Numerical Validation 2: Convergence Rates

To verify the accuracy and convergence rates predicted by
Theorem 4.1, we conducted a second set of experiments
using a problem with a known analytical solution. We tested
the second-order scheme with 32=3, the third-order scheme
with $3=6, and the fourth-order scheme with $4=9. The
results showed that the slopes of the error decay on a log-
log plot were approximately 2, 3, and 4 for the respective
schemes. This confirms that the new schemes achieve their
expected theoretical orders of convergence in practice,
validating the error analysis of Theorem 4.1.

4. Discussion
4.1. Interpretation of Key Findings

The central achievement of this research is the successful
development and rigorous analysis of a new class of high-
order, fully decoupled, and unconditionally stable schemes
for the incompressible Navier-Stokes equations [7]. This
work effectively resolves a long-standing open problem in
computational fluid dynamics [20]. The success of our
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approach hinges on a synergistic combination of three key
ideas: the generalization of BDF methods via a Taylor
expansion around a future time point tn+f3; the judicious
selection of specific B values; and the novel splitting of the
implicit viscous term (3.16). This framework successfully
tames the instability that typically arises from the explicit
treatment of the pressure term [18]. The explicit pressure
is ultimately controlled by leveraging the sophisticated
Stokes commutator estimate developed by Liu, Liu, and
Pego [20].

4.2. Comparison with Previous Literature

The contributions of this paper should be viewed in the
context of decades of research on numerical methods for
the NSEs.

® Versus Projection Methods: Our work offers a
significant advantage over commonly used projection
methods [4, 9, 25]. As "consistent splitting" schemes
[13], our methods are designed to be free from the
leading-order splitting error that fundamentally
limits the accuracy of standard projection schemes
[19].

® Versus Other High-Order Schemes: While
numerous high-order methods for the NSEs have
been proposed [19, 32], they often are either coupled
schemes that lead to computationally expensive
linear systems [6, 7], or they are decoupled schemes
that lack a rigorous proof of unconditional stability.
Our work provides this missing piece.

® Versus Standard BDF Schemes: The numerical

presented herein provide a stark

demonstration of the superiority of our approach
over methods based on the standard high-order BDF
formulas ($=1). The instability of the BDF3 and BDF4
schemes shown in our tests is a well-known practical

results

issue.

® Relation to Prior Work: This paper is a direct and
highly non-trivial extension of our own previous
research. It improves upon the second-order scheme
presented in [16] and applies the general theoretical
framework we developed for parabolic-type
equations in [17] to the much more intricate Navier-
Stokes system. The successful adaptation of G-
stability theory [3] and multiplier methods [21] to
this new context is a core technical contribution.

4.3. Strengths and Limitations of the Study

The primary strength of this work lies in its novelty and
rigor, providing the first-of-their-kind stability and
convergence proofs for fully decoupled, consistent splitting
schemes for the NSEs with an order of accuracy higher than
two [7]. However, the study also has several limitations
that point toward avenues for future research. The analysis
presented is for semi-discrete schemes, where only time is

discretized. The stability proof for the pressure term
formally requires the fluid domain Q to have a smooth
boundary of class C"3”. While our numerical results
demonstrate excellent performance on a simple square
domain, extending the rigorous proof to polygonal domains
is an open question. The chosen values of {3 are sufficient for
stability, but they may not be the smallest possible values.
The analysis is currently limited to schemes up to the fourth
order.

4.4. Implications for Theory and Practice
The implications of this research are twofold.

® For Theory: This work resolves a long-standing open
question regarding the existence of provably stable,
high-order, decoupled numerical schemes for the NSEs
[20]. The analytical technique we have developed
provides a new paradigm for the stability analysis of
complex fluid dynamics problems.

® For Practice: Our results provide computational
scientists and engineers with a new class of powerful
tools for simulating incompressible flows [16]. Their
proven high order of accuracy allows for the resolution
of fine-scale flow features with fewer degrees of
freedom, and their unconditional stability can lead to
dramatic computational long-time
simulations.

savings in

4.5. Conclusion and Future Research Directions

In conclusion, this paper has introduced a new class of
higher-order consistent splitting schemes for the
incompressible Navier-Stokes equations. By constructing
the schemes from a Taylor expansion at a future time point
tn+f and making specific choices for the parameter (3, we
have developed the first fully decoupled schemes of third-
and fourth-order that are provably unconditionally stable.
This work opens up several promising avenues for future
investigation, including the extension to even higher orders
(fifth and sixth); a comprehensive stability and error
analysis of fully discretized schemes; extension of the theory
to domains with less regularity; and application of the
methodology to coupled multi-physics systems involving
the NSEs.
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