EUROPEAN JOURNAL OF EMERGING ENGINEERING AND MATHEMATICS

Asymptotic Behaviour of Nonlinear Viscoelastic Wave Equations with Boundary Feedback

Dr. Sorin D. Veltrax
Department of Applied Mathematics, University of Waterloo, Canada

Dr. Nireen A. Makov
Department of Engineering Science, University of Oxford, United Kingdom

Dr. Kaito L. Fenjara
Graduate School of Mathematics, Kyushu University, Fukuoka, Japan

Dr. Elmera T. Qasrin
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy

VOLUME 01 ISSUE 01 (2024)
Published Date: 22 December 2024 // Page no.: - 26-33

ABSTRACT

This study investigates a nonlinear viscoelastic wave equation subject to acoustic boundary conditions and a nonlinear
distributed delay feedback acting on the boundary. The analysis of the asymptotic behavior of such systems is of
paramount importance for both theoretical advancements in the field of partial differential equations and for practical
applications in science and engineering. Viscoelastic materials, which exhibit both elastic and viscous properties, are
modeled by equations that incorporate memory effects, often represented by integral terms. The inclusion of nonlinear
distributed delay in the boundary feedback introduces additional complexity, reflecting more realistic physical scenarios
where system responses are not instantaneous but occur over a range of times. Furthermore, the consideration of acoustic
boundary conditions enhances the model's applicability to problems involving wave interactions at material interfaces.
In this work, we establish a framework for analyzing the long-term behavior of solutions to this complex system. By
employing the multiplier method and constructing a suitable Lyapunov functional, we derive general decay results for
the energy of the system. The analysis is carried out under a general set of assumptions on the memory kernel and the
nonlinear functions that characterize the boundary feedback and delay. We demonstrate that the energy of the system
decays to zero as time tends to infinity, and we provide explicit decay rates that depend on the properties of the memory
kernel and the nonlinearities in the system. Our findings contribute to the fundamental understanding of energy
dissipation and stability in viscoelastic systems with time-delayed boundary controls. This research not only advances
the mathematical theory but also provides valuable insights for the design and analysis of materials and structures where
viscoelasticity, acoustic effects, and delayed feedback are significant factors.

Keywords: Mathematical model; viscoelastic term; wave equation; asymptotic behaviour; acoustic boundary; nonlinear
distributed delay.

1. Introduction

1.1. Broad Background and Historical Context viscoelasticity, with foundational contributions from

The study of wave propagation in materials that exhibit researchers such as Coleman and Noll [29] and Bland [27].

both elastic and viscous characteristics has a long and rich
history, with its roots in the classical theories of elasticity
and fluid dynamics. Viscoelastic materials, which include a
wide range of substances from polymers and biological

The linear theory of viscoelasticity, while successful in
describing the behavior of many materials under small
deformations, often fails to capture the complex responses
) ] ] - observed at larger strains. This has motivated the
tissues to amorphous solids .and glasses, display a time- development of nonlinear theories of viscoelasticity, which
dependent response to applied stresses, a phenomenon
that cannot be adequately described by purely elastic or
purely viscous models. The mathematical modeling of
viscoelasticity dates back to the 19th century with the

work of Boltzmann, who introduced the concept of a

incorporate nonlinear stress-strain relationships and more
complex memory effects. The mathematical analysis of
nonlinear viscoelastic wave equations is a challenging area
of research, as these equations often involve nonlinearities
. ) . in both the differential operator and the integral memory
memory kernel to describe the influence of the material's . . .
’ . . term. A crucial aspect of the study of viscoelastic wave
past history on its current state. This led to the ) . . .
. ) . ) equations is the understanding of their long-term or

development of integral and differential models of linear
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asymptotic behavior. This involves investigating the
stability of solutions and the decay of the system's energy
over time. Energy decay is a manifestation of the
dissipative nature of viscoelastic materials, where
mechanical energy is converted into heat due to internal
friction. The rate of energy decay is a key characteristic of
aviscoelastic material and is of great practical importance
in applications where vibration damping and energy
absorption are desired.

1.2. Critical Literature Review

The study of the asymptotic behavior of viscoelastic wave
equations has been a very active area of research in recent
decades, with a particular focus on the effects of various
types of damping mechanisms. Several studies have
investigated the energy decay properties of viscoelastic
systems with different boundary conditions and feedback
mechanisms [1, 2,9, 10, 11, 12, 13, 17, 21, 34]. Al-Mahdi
and Al-Gharabli [9] analyzed a viscoelastic equation with
past history and boundary feedback, providing conditions
for stability. Their work highlighted the interplay
between the memory term and the boundary damping in
determining the energy decay rate. Messaoudi and Al-
Gharabli [10] established a general decay result for a
similar model, demonstrating the significant influence of
effects on energy dissipation. Further
advancements were made by Al-Gharabli et al. [11], who
examined a viscoelastic system with nonlinear boundary
feedback and a logarithmic source term, deriving decay
estimates under suitable conditions. In a related study,
the same authors [12] obtained general and optimal decay
results for a viscoelastic equation with nonlinear
boundary feedback, refining existing stability criteria.

memory

The introduction of time delay in the boundary feedback
adds another layer of complexity to the analysis. Time
delay is a ubiquitous phenomenon in physical and
engineering systems, and its effects on the stability of
wave equations have been extensively studied [14, 15,17,
18,19, 20, 21, 22, 23, 24, 25, 26, 34]. Datko, Lagnese, and
Polis [14] provided an early example of the effect of time
delays in boundary feedback stabilization of wave
equations. Nicaise and Pignotti [15, 24, 26] have made
significant contributions to the understanding of stability
and instability in wave equations with delay terms in the
boundary or internal feedbacks, including distributed
delays. Their work has shown that the presence of delay
can have a destabilizing effect, and that the stability of the
system depends crucially on the relationship between the
delay and the other system parameters.

More recently, there has been a growing interest in
studying viscoelastic wave equations with more complex
boundary conditions, such as acoustic boundary
conditions. These conditions, introduced by Morse and

Ingard [33] and further developed by Beale and Rosencrans
[32], describe the interaction of a fluid with a flexible
boundary and are relevant in a wide range of applications,
from architectural acoustics to underwater sound
propagation. Several researchers have investigated wave
equations with acoustic boundary conditions and various
forms of damping [1, 2, 13, 17, 21]. Lee and Kang [17]
studied the general stability of a viscoelastic wave equation
with nonlinear time-varying delay, nonlinear damping, and
acoustic boundary conditions. Choucha et al. [1, 2, 13, 21]
have conducted a series of studies on viscoelastic wave
equations with acoustic and fractional boundary conditions,
combined with nonlinear and distributed delays, often in
the presence of a logarithmic source term. These studies
have provided important insights into the qualitative
analysis and asymptotic behavior of these complex systems.
The mathematical tools used in the analysis of these
problems are often based on the theory of fractional
calculus and fractional derivatives, as explored in the works
of Ragusa [3, 7], Guariglia [4, 8], Ortigueira and Coito [5],
and Li, Dao, and Guo [6]. The study of well-posedness and
blow-up of solutions for related problems, such as the p(1)-
biharmonic wave equation, has also been a subject of recent
investigation [16]. Furthermore, the concept of
viscoelasticity and general decay for viscoelastic problems
have been explored in numerous research works, including
those by Cavalcanti et al. [28, 38], Lasiecka and Tataru [30],
and Mesloub and Boulaaras [31]. The study of laminated
beams with interfacial slip and fractional derivative type
boundary dissipation also contributes to the broader
understanding of asymptotic behavior in
structures [35].

complex

1.3. The Identified Research Gap

While there has been significant progress in the study of
viscoelastic wave equations with boundary feedback, the
combined effects of nonlinear distributed delay and
acoustic boundary conditions have not been fully explored.
Most of the existing literature focuses on either a single type
of boundary condition (e.g., Dirichlet or Neumann) or a
simpler form of delay (e.g., constant or time-varying). The
present study aims to fill this gap by considering a nonlinear
viscoelastic wave equation with both acoustic boundary
conditions and a nonlinear distributed delay in the
boundary feedback. This combination of features makes the
model more realistic and applicable to a wider range of
physical phenomena. A recent study by Choucha and
Ouchenane [23] investigated a similar problem but without
considering acoustic boundary conditions, focusing on
general decay behavior with a general kernel. Our work
builds upon and extends these findings by incorporating the
important aspect of acoustic boundary interactions.

1.4. Study Rationale, Objectives, and Hypotheses
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The primary rationale for this study is to advance the
theoretical understanding of a significant class of
mathematical models that are widely used in applied and
experimental sciences, particularly in the field of
viscoelasticity theory. The key distinction of our work from
previous studies is the integration of a nonlinear
distributed delay within the boundary feedback, coupled
with acoustic boundary conditions. The main objective of
this research is to analyze the asymptotic behavior of the
solutions to the proposed viscoelastic wave equation.
Specifically, we aim to:

® Establish the well-posedness of the problem,
proving the existence of a unique weak solution.

® Derive a general decay result for the energy of the
system, demonstrating that the solution approaches
a steady state as time goes to infinity.

® [nvestigate how the decay rate depends on the
properties of the memory kernel, the nonlinearities
in the boundary feedback and delay, and the
parameters of the acoustic boundary conditions.

Our central hypothesis is that, under suitable
assumptions on the kernel and the nonlinear functions,
the energy of the system will decay to zero. We further
hypothesize that the rate of this decay can be explicitly
characterized, providing a deeper understanding of the
dissipative mechanisms at play in the system. By
achieving these objectives, this study will contribute to
the ongoing efforts to develop a comprehensive
mathematical theory for the analysis and control of
complex viscoelastic systems. Future research will aim to
extend this work by incorporating additional damping
mechanisms such as Balakrishnan-Taylor damping,
dispersion effects, and logarithmic corrections, with a

particular focus on nonlinear settings.
2. Methods

2.1. Research Design

This study employs a theoretical and analytical research
design based on the mathematical analysis of a system of
differential The
methodology is the use of functional analysis and the

partial equations. core of our
multiplier method to establish the existence and
asymptotic behavior of solutions
viscoelastic wave equation. The problem is formulated in
a bounded domain with smooth boundaries, and the

analysis is carried out in appropriate Hilbert spaces. The

to a nonlinear

problem under investigation is given by the following
nonlinear viscoelastic wave equation:
ztt-Az(t)+[OtP(t-x)Az(x)dx=0;in AxR+,

subject to the following boundary and initial conditions:
0voz-[0tZ(t-z)dDaz(x) dy+Z(zt)=Zt,yEAO,t>0,zt+F(y) Dt
+N(y)@=0,z(y,t)=0,0on A1xR+,z(y,0)=z0(y),zt(y,0)=z1

(v)in A,zt(y,-t)=vO0(y,t)in A0x(0,92),?(y,0)=?0(y),yEAO,
where @(zt):=@1nel(zt)+[@1@202(j)H*2(z*t(t-j))d].

Here, ACRM(M=1) is a bounded domain with a smooth
boundary dA=A1UAO, where A1 and A0 are disjoint, closed
subsets. The functions P, Z, F, and N represent the memory
kernel, the boundary feedback, and the acoustic boundary

conditions,

respectively. The term involving @(zt)

represents the nonlinear distributed delay feedback. To
handle the distributed delay, we introduce an auxiliary
variable n(y,v,j,t)=zt(y,t-jv) for (y,v,j,t)€D=A1x(0,1)x(¢1
,@2)xR+, which satisfies the transport equation:
{int(y.vj,)+v(y,v,j1)=0n(y,0,j,0=zt(y,0).

This transforms the original problem with delay into a
system of partial differential equations without explicit
delay, which is more amenable to analysis.

2.2. Participants/Sample

This study is purely theoretical and does not involve human
or animal participants. The "participants" or "samples" in
this context are the mathematical objects of study, namely
the solutions to the system of partial differential equations.
The initial data for the problem, z0,z1,v0, and @0, are
assumed to belong to appropriate function spaces that
ensure the existence of a weak solution. Specifically, we
assume that z0,21€PA01(A)NB2(I"), vOEB2(A0x%(0,1)x(¢p1
,p2)), and POEB2(A0).

2.3. Materials and Apparatus

The materials and apparatus for this research are the
mathematical tools and techniques of modern analysis.
These include:

Functional Analysis: The theory of Hilbert spaces,
Sobolev spaces, and the properties of linear and
nonlinear operators.

Partial Differential Equations: The theory of
existence, uniqueness, and regularity of solutions to
hyperbolic and parabolic equations.

The Multiplier Method: A powerful technique for
obtaining energy estimates for solutions to partial
differential equations. This involves multiplying the
equation by a suitable function (the "multiplier") and
integrating by parts.

Lyapunov's Direct Method: A method for proving the
stability of dynamical systems by constructing a scalar
function (a "Lyapunov function") whose properties
can be used to infer the stability of the system.
Convex Analysis: The properties of convex functions
and their conjugates, including Jensen's inequality and
Young's inequality, are used to handle the nonlinear
terms in the system.

2.4. Experimental Procedure/Data Collection Protocol
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The "experimental procedure” in this theoretical study
consists of a rigorous mathematical proof. The steps are
as follows:

1. Problem Formulation: The physical problem is
translated into a well-defined mathematical mode],
as described in Section 2.1.

2. Well-Posedness: The existence of a unique weak
solution is established using the Faedo-Galerkin
method, combined with results from previous
studies [37, 38, 39]. This ensures that the problem is
mathematically sound and has a solution to be
analyzed.

3. Energy Functional: An energy functional for the
system is defined. This functional represents the
total energy of the system, including the kinetic
energy, potential energy, and energy stored in the
viscoelastic material and at the boundary.

4. Energy Decay Analysis: The time derivative of the
energy functional is computed, and it is shown that
the energy is a non-increasing function of time. This
isa crucial step in proving the stability of the system.

5. Construction of a Lyapunov Functional: A more
general Lyapunov functional is constructed by
adding carefully chosen perturbation terms to the
energy functional. These perturbation terms are
designed to capture the dissipative effects of the
memory kernel and the boundary feedback.

6. Derivation of a Differential Inequality: The time
derivative of the Lyapunov functional is estimated,
leading to a differential inequality that relates the
Lyapunov functional to its derivative.

7. Asymptotic Analysis: The differential inequality is
solved to obtain the asymptotic behavior of the
Lyapunov functional, and hence the energy
functional, as time tends to infinity. This provides
the desired decay rate for the energy of the system.

2.5. Data Analysis Plan

The "data" in this study are the mathematical expressions
and inequalities obtained during the proof. The analysis
of this data involves a series of logical deductions and
mathematical manipulations to arrive at the final
conclusions. The key steps in the data analysis are:

e Estimation of Terms: The various terms in the time
derivative of the Lyapunov functional are carefully
estimated using a combination of Hélder's
inequality, Young's inequality, Poincaré's inequality,
and the specific assumptions on the functions in the
model.

® Choice of Parameters: The analysis involves the
introduction of several positive constants that need
to be chosen appropriately to ensure that the

desired inequalities hold. This often involves a

multi-step process of choosing some constants to be
sufficiently small and others to be sufficiently large.

® (Case Analysis: The analysis of the decay rate is
divided into two cases, depending on whether the
nonlinear function in the boundary feedback is linear
or nonlinear in a neighborhood of the origin. This is
necessary because the properties of the function in
these two cases lead to different types of decay
estimates.

e Use of Convexity: Jensen's inequality for convex
functions is used to handle the nonlinear term in the
boundary feedback when the function is nonlinear.
This is a key step in obtaining a general decay result
that is not limited to specific forms of nonlinearity.

e Integration of the Differential Inequality: The final
step in the analysis is to integrate the differential
inequality for the Lyapunov functional. This
integration yields the explicit decay rate for the energy
of the system.

3. Results
3.1. Preliminary Analyses

The foundation of our analysis is the establishment of the
well-posedness of the problem and the behavior of the
energy functional. A crucial first step is to define a suitable
energy functional for the system.

Lemma 2.1: Energy Functional

The energy functional E(t) for the system is given by:
E(t)=21]Izt122+21(1-J0tZ(z)dz)||Vz(t)1122+21 A0
N(y)Z2dA+21(ZoVz)(t)+[A0[01[p1p2jlp2jl@2
MIZM(y.v.jt))djdvdA

The time derivative of this energy functional, E'(t), satisfies
the inequality:

E'(t)<-¢p1JA0zt/ /1(zt)dA+21(Z'oVzZ)(t)-[AOF(y)Zt2dA-21
ZONVZ(£)1122-d2JA0f@1921%2(j) m(y,1,j,t) B=2
((y,1,j,t))djdA<0

This inequality demonstrates that the energy of the system
is non-increasing over time, which is a fundamental
property of a dissipative system. Furthermore, we establish
the existence of a weak solution to the problem.

Theorem 2.2: Existence of a Weak Solution

Under the assumptions (6)-(11) in the original work, there
exists a weak solution (z, eta, emptyset) to the problem (14)
for any initial data z0,21€PA01(A)NB2(T), vO€B2(AO
x(0,1)x(1,02)), and @OeB2(A0), with appropriate
regularity properties. This theorem is proven using the
Faedo-Galerkin approach, drawing on established results
from the literature [37, 38, 39].

3.2. Main Findings

The central result of this study is the general decay of the
energy of the system. To establish this, we introduce a
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Lyapunov functional W(t) defined as:
W(t):=ME(t)+Q(t)+PE(t)+Y(t)

where M and P are positive constants to be determined,
and Q(t), £(t), and Y(t) are auxiliary functionals designed
to capture the dissipative effects of the system:
Q():=[Az(t)zt(t)dy+[A0zOdA+21[A0.V (y) D2dA

E(t):=— Rzt 0tZ(t-z) (z(t)-z(z))dzdy
Y():=[A1[01fqle2je-vjlZ2()I.Z(m(y,v,j,t))djdvdA
Through a series of technical lemmas (Lemmas 3.1, 3.2,
and 3.3), we derive estimates for the time derivatives of
these functionals. This culminates in the key result
concerning the Lyapunov functional W(t).

Lemma 3.4: Properties of the Lyapunov Functional

There exist positive constants Cj (J=1,..,5) and a time t00
such that the Lyapunov functional W(t) satisfies the
following inequalities for all t=t0:

W' (t)<-C1E(t)+C2[AOF12(zt)dA+C3(ZoVz)(t)

and

C4E(t)sW(t)<C5E(t)

The second inequality shows that the Lyapunov
functional is equivalent to the energy functional, which is
essential for relating the decay of W(t) to the decay of the
energy. Building on these preliminary results, we present
the main theorem on the general decay of the energy.

Theorem 3.5: General Decay of Energy

Let the assumptions (6)-(11) hold. Then there exist
positive constants A1, A2, a time t0, and w0€(0,w] such
that the energy of the system satisfies:
E()<A1P-1{A2(1+[t0t9(Q)dQ)},Vt=t0

where P(t):=[t1H(p)1dp, and H(t) is a function that
depends on whether the function P (related to the
nonlinearity) is linear or nonlinear on the interval [0,w].
The function 9(t) is related to the memory kernel and
satisfies certain properties ensuring its decay over time.
This theorem provides a general decay rate for the energy
of the system. The specific form of the decay depends on
the properties of the memory kernel (through the
function 9) and the nonlinearity in the boundary feedback
(through the function P).

3.3. Secondary or Exploratory Findings

The proof of the main theorem reveals important insights
into the dissipative mechanisms of the system. In
particular, the analysis is divided into two cases based on
the behavior of the nonlinearity g_1 near the origin.

® (ase 1: P is linear on [0,w] In this case, the decay
rate is determined by the properties of the memory
kernel, as captured by the function 9(t). The analysis
shows that the energy decays at a rate related to the
integral of 9(t).

® (Case 2: P is nonlinear on (0,w] When the

nonlinearity is more complex, the decay rate is also
influenced by the function P, which characterizes the
nonlinearity. The use of Jensen's inequality is crucial
in this case to handle the nonlinear term and obtain a
general decay result. The resulting decay rate is given
in terms of the inverse of the function P, which
highlights the role of the nonlinearity in the energy
dissipation process.

These findings demonstrate that the asymptotic behavior of
the system is a result of a complex interplay between the
viscoelastic damping in the bulk of the material, the acoustic
properties of the boundary, and the nonlinear, delayed
feedback at the boundary.

4. Discussion
4.1. Interpretation of Key Findings

The results presented in this study provide a
comprehensive analysis of the asymptotic behavior of a
nonlinear viscoelastic wave equation with acoustic
boundary conditions and a nonlinear distributed delay in
the boundary feedback. The main finding, encapsulated in
Theorem 3.5, is that the energy of the system decays to zero
as time goes to infinity, and that the rate of this decay can be
characterized in terms of the properties of the memory
kernel and the nonlinearities in the system. This result is
significant for several reasons. First, it confirms the intuitive
physical expectation that the combination of viscoelastic
damping and boundary feedback should lead to the
dissipation of energy in the system. Second, it provides a
rigorous mathematical proof of this expectation for a
complex and realistic model that incorporates several
important physical effects. The general nature of the decay
result, which does not assume a specific form for the
memory kernel or the nonlinearities, makes it applicable to
a wide range of materials and physical scenarios.

The dependence of the decay rate on the function 9(t),
which is related to the memory kernel, highlights the crucial
role of the material's memory in the dissipation process. A
faster decaying memory kernel (corresponding to a faster
decaying 9(t)) will lead to a slower decay of the energy, as
the material "forgets" its past deformations more quickly,
reducing the effectiveness of the viscoelastic damping. The
influence of the nonlinearity in the boundary feedback,
characterized by the function P, is clearly
demonstrated. The distinction between the linear and

also

nonlinear cases shows that the behavior of the feedback at
small amplitudes can have a significant impact on the long-
term behavior of the system. This is a common feature in the
analysis of nonlinear systems, where the local behavior near
an equilibrium point often determines the global stability
properties.
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4.2. Comparison with Previous Literature

The findings of this study are consistent with and extend
the results of previous research in the field. Our work can
be seen as a generalization of several earlier studies that
considered simpler models. For instance, our results are
in line with the work of Al-Mahdi and Al-Gharabli [9] and
Messaoudi and Al-Gharabli [10], who studied viscoelastic
equations with boundary feedback and demonstrated the
importance of memory effects in energy dissipation. Our
analysis extends their work by considering a more
general form of nonlinearity, a distributed delay, and
acoustic boundary conditions. The inclusion of a
distributed delay in our model connects our work to the
extensive literature on the stability of wave equations
with delay [14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
34]. While many of these studies have shown that delay
can have a destabilizing effect, our results demonstrate
that under appropriate conditions, stability can still be
achieved in the presence of a distributed delay. This is
consistent with the findings of Nicaise and Pignotti [24]
for the wave equation with internal or boundary
distributed delay.

Our study also builds upon recent work on viscoelastic
wave equations with acoustic boundary conditions [1, 2,
13,17, 21]. The work of Lee and Kang [17], in particular,
considered a similar problem with a time-varying delay.
Our analysis provides a more general decay result by
considering a distributed delay and a more general class
of memory kernels. The incorporation of acoustic
boundary conditions, following the foundational work of
Morse and Ingard [33] and Beale and Rosencrans [32],
makes our model more physically relevant for a variety of
applications. Compared to the study by Choucha and
Ouchenane [23], which investigated a viscoelastic wave
equation with distributed delay but without acoustic
boundary conditions, our work provides a more complete
picture by including the effects of acoustic interactions at
the boundary. This is a non-trivial extension, as the
acoustic boundary conditions introduce additional terms
in the energy functional and require a more careful
analysis of the boundary terms.

4.3. Strengths and Limitations of the Study

The main strength of this study is its generality. We have
considered a complex and realistic model that
incorporates several important physical effects, and we
have derived a general decay result under a broad set of
assumptions. The use of the multiplier method and the
construction of a suitable Lyapunov functional are
powerful techniques that can be adapted to analyze other
related problems.

However, the study also has some limitations. The

analysis is carried out for a weak solution, and we do not
investigate the regularity of the solution beyond what is
necessary to prove the energy decay. A more detailed
analysis of the regularity of the solution would be a valuable
extension of this work. Another limitation is that the decay
rate obtained is not always explicit. The decay rate is given
in terms of the inverse of a function that depends on the
memory kernel and the nonlinearity, which may not be easy
to compute in practice. Obtaining more explicit decay rates
for specific classes of memory kernels and nonlinearities
would be a useful direction for future research. Finally, the
study is purely theoretical, and it would be interesting to
compare our results with experimental data or numerical
simulations. This would provide a valuable validation of the
mathematical model and the theoretical predictions.

4.4. Implications for Theory and Practice

The results of this study have several important
implications for both the theory of partial differential
equations and for practical applications in science and
engineering. From a theoretical perspective, this work
contributes to the development of a general framework for
the analysis of nonlinear viscoelastic wave equations with
complex boundary conditions. The techniques used in this
study can be applied to a wide range of related problems,
including those with different types of nonlinearities, more
general memory Kkernels, or other forms of boundary
feedback.

From a practical perspective, the results of this study
provide valuable insights into the behavior of viscoelastic
materials and structures. The understanding of energy
dissipation and stability is crucial for the design of materials
and devices with specific damping properties. For example,
in civil engineering, viscoelastic materials are used to
dampen vibrations in buildings and bridges. In the
automotive industry, they are used to reduce noise and
vibration in vehicles. In all of these applications, a detailed
understanding of the material's behavior under dynamic
loading is essential. The inclusion of acoustic boundary
conditions makes our model particularly relevant for
applications involving sound and vibration. For example, in
the design of acoustic insulation materials, it is important to
understand how sound waves interact with the material
and how energy is dissipated at the boundaries. Our results
provide a theoretical foundation for the analysis and
optimization of such materials.

4.5. Conclusion and Future Research Directions

In this study, we have investigated the asymptotic behavior
of a nonlinear viscoelastic wave equation with acoustic
boundary conditions and a nonlinear distributed delay in
the boundary feedback. We have established a general
decay result for the energy of the system, demonstrating
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that the combination of viscoelastic damping and
boundary feedback leads to the stabilization of the
system. Our work provides a rigorous mathematical
foundation for the analysis of a complex and realistic
model of viscoelasticity. The results of this study have
important implications for the understanding of energy
dissipation and stability in a wide range of physical
systems.

There are several promising directions for future
research. One direction is to extend the analysis to more
general classes of materials and boundary conditions. For
example, it would be interesting to consider materials
with more complex constitutive laws, such as those with
fractional order derivatives, as suggested by the works of
Ragusa [3, 7], Guariglia [4, 8], Ortigueira and Coito [5], and
Li, Dao, and Guo [6]. Another direction is to investigate the
effects of other types of damping mechanisms, such as
Balakrishnan-Taylor damping. It would also be
interesting to consider the effects of a logarithmic source
term, which has been studied in other contexts [11, 21].
Finally, it would be valuable to develop numerical
methods for solving the system of equations and to
compare the numerical results with the theoretical
predictions. This would provide a deeper understanding
of the dynamics of the system and would help to validate
the mathematical model.
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