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ABSTRACT 
 

This study investigates a nonlinear viscoelastic wave equation subject to acoustic boundary conditions and a nonlinear 
distributed delay feedback acting on the boundary. The analysis of the asymptotic behavior of such systems is of 
paramount importance for both theoretical advancements in the field of partial differential equations and for practical 
applications in science and engineering. Viscoelastic materials, which exhibit both elastic and viscous properties, are 
modeled by equations that incorporate memory effects, often represented by integral terms. The inclusion of nonlinear 
distributed delay in the boundary feedback introduces additional complexity, reflecting more realistic physical scenarios 
where system responses are not instantaneous but occur over a range of times. Furthermore, the consideration of acoustic 
boundary conditions enhances the model's applicability to problems involving wave interactions at material interfaces. 
In this work, we establish a framework for analyzing the long-term behavior of solutions to this complex system. By 
employing the multiplier method and constructing a suitable Lyapunov functional, we derive general decay results for 
the energy of the system. The analysis is carried out under a general set of assumptions on the memory kernel and the 
nonlinear functions that characterize the boundary feedback and delay. We demonstrate that the energy of the system 
decays to zero as time tends to infinity, and we provide explicit decay rates that depend on the properties of the memory 
kernel and the nonlinearities in the system. Our findings contribute to the fundamental understanding of energy 
dissipation and stability in viscoelastic systems with time-delayed boundary controls. This research not only advances 
the mathematical theory but also provides valuable insights for the design and analysis of materials and structures where 
viscoelasticity, acoustic effects, and delayed feedback are significant factors. 

Keywords: Mathematical model; viscoelastic term; wave equation; asymptotic behaviour; acoustic boundary; nonlinear 
distributed delay. 

 

1. Introduction 

1.1. Broad Background and Historical Context 

The study of wave propagation in materials that exhibit 

both elastic and viscous characteristics has a long and rich 

history, with its roots in the classical theories of elasticity 

and fluid dynamics. Viscoelastic materials, which include a 

wide range of substances from polymers and biological 

tissues to amorphous solids and glasses, display a time-

dependent response to applied stresses, a phenomenon 

that cannot be adequately described by purely elastic or 

purely viscous models. The mathematical modeling of 

viscoelasticity dates back to the 19th century with the 

work of Boltzmann, who introduced the concept of a 

memory kernel to describe the influence of the material's 

past history on its current state. This led to the 

development of integral and differential models of linear 

viscoelasticity, with foundational contributions from 

researchers such as Coleman and Noll [29] and Bland [27]. 

The linear theory of viscoelasticity, while successful in 

describing the behavior of many materials under small 

deformations, often fails to capture the complex responses 

observed at larger strains. This has motivated the 

development of nonlinear theories of viscoelasticity, which 

incorporate nonlinear stress-strain relationships and more 

complex memory effects. The mathematical analysis of 

nonlinear viscoelastic wave equations is a challenging area 

of research, as these equations often involve nonlinearities 

in both the differential operator and the integral memory 

term. A crucial aspect of the study of viscoelastic wave 

equations is the understanding of their long-term or 
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asymptotic behavior. This involves investigating the 

stability of solutions and the decay of the system's energy 

over time. Energy decay is a manifestation of the 

dissipative nature of viscoelastic materials, where 

mechanical energy is converted into heat due to internal 

friction. The rate of energy decay is a key characteristic of 

a viscoelastic material and is of great practical importance 

in applications where vibration damping and energy 

absorption are desired. 

1.2. Critical Literature Review 

The study of the asymptotic behavior of viscoelastic wave 

equations has been a very active area of research in recent 

decades, with a particular focus on the effects of various 

types of damping mechanisms. Several studies have 

investigated the energy decay properties of viscoelastic 

systems with different boundary conditions and feedback 

mechanisms [1, 2, 9, 10, 11, 12, 13, 17, 21, 34]. Al-Mahdi 

and Al-Gharabli [9] analyzed a viscoelastic equation with 

past history and boundary feedback, providing conditions 

for stability. Their work highlighted the interplay 

between the memory term and the boundary damping in 

determining the energy decay rate. Messaoudi and Al-

Gharabli [10] established a general decay result for a 

similar model, demonstrating the significant influence of 

memory effects on energy dissipation. Further 

advancements were made by Al-Gharabli et al. [11], who 

examined a viscoelastic system with nonlinear boundary 

feedback and a logarithmic source term, deriving decay 

estimates under suitable conditions. In a related study, 

the same authors [12] obtained general and optimal decay 

results for a viscoelastic equation with nonlinear 

boundary feedback, refining existing stability criteria. 

The introduction of time delay in the boundary feedback 

adds another layer of complexity to the analysis. Time 

delay is a ubiquitous phenomenon in physical and 

engineering systems, and its effects on the stability of 

wave equations have been extensively studied [14, 15, 17, 

18, 19, 20, 21, 22, 23, 24, 25, 26, 34]. Datko, Lagnese, and 

Polis [14] provided an early example of the effect of time 

delays in boundary feedback stabilization of wave 

equations. Nicaise and Pignotti [15, 24, 26] have made 

significant contributions to the understanding of stability 

and instability in wave equations with delay terms in the 

boundary or internal feedbacks, including distributed 

delays. Their work has shown that the presence of delay 

can have a destabilizing effect, and that the stability of the 

system depends crucially on the relationship between the 

delay and the other system parameters. 

More recently, there has been a growing interest in 

studying viscoelastic wave equations with more complex 

boundary conditions, such as acoustic boundary 

conditions. These conditions, introduced by Morse and 

Ingard [33] and further developed by Beale and Rosencrans 

[32], describe the interaction of a fluid with a flexible 

boundary and are relevant in a wide range of applications, 

from architectural acoustics to underwater sound 

propagation. Several researchers have investigated wave 

equations with acoustic boundary conditions and various 

forms of damping [1, 2, 13, 17, 21]. Lee and Kang [17] 

studied the general stability of a viscoelastic wave equation 

with nonlinear time-varying delay, nonlinear damping, and 

acoustic boundary conditions. Choucha et al. [1, 2, 13, 21] 

have conducted a series of studies on viscoelastic wave 

equations with acoustic and fractional boundary conditions, 

combined with nonlinear and distributed delays, often in 

the presence of a logarithmic source term. These studies 

have provided important insights into the qualitative 

analysis and asymptotic behavior of these complex systems. 

The mathematical tools used in the analysis of these 

problems are often based on the theory of fractional 

calculus and fractional derivatives, as explored in the works 

of Ragusa [3, 7], Guariglia [4, 8], Ortigueira and Coito [5], 

and Li, Dao, and Guo [6]. The study of well-posedness and 

blow-up of solutions for related problems, such as the p(l)-

biharmonic wave equation, has also been a subject of recent 

investigation [16]. Furthermore, the concept of 

viscoelasticity and general decay for viscoelastic problems 

have been explored in numerous research works, including 

those by Cavalcanti et al. [28, 38], Lasiecka and Tataru [30], 

and Mesloub and Boulaaras [31]. The study of laminated 

beams with interfacial slip and fractional derivative type 

boundary dissipation also contributes to the broader 

understanding of asymptotic behavior in complex 

structures [35]. 

1.3. The Identified Research Gap 

While there has been significant progress in the study of 

viscoelastic wave equations with boundary feedback, the 

combined effects of nonlinear distributed delay and 

acoustic boundary conditions have not been fully explored. 

Most of the existing literature focuses on either a single type 

of boundary condition (e.g., Dirichlet or Neumann) or a 

simpler form of delay (e.g., constant or time-varying). The 

present study aims to fill this gap by considering a nonlinear 

viscoelastic wave equation with both acoustic boundary 

conditions and a nonlinear distributed delay in the 

boundary feedback. This combination of features makes the 

model more realistic and applicable to a wider range of 

physical phenomena. A recent study by Choucha and 

Ouchenane [23] investigated a similar problem but without 

considering acoustic boundary conditions, focusing on 

general decay behavior with a general kernel. Our work 

builds upon and extends these findings by incorporating the 

important aspect of acoustic boundary interactions. 

1.4. Study Rationale, Objectives, and Hypotheses 
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The primary rationale for this study is to advance the 

theoretical understanding of a significant class of 

mathematical models that are widely used in applied and 

experimental sciences, particularly in the field of 

viscoelasticity theory. The key distinction of our work from 

previous studies is the integration of a nonlinear 

distributed delay within the boundary feedback, coupled 

with acoustic boundary conditions. The main objective of 

this research is to analyze the asymptotic behavior of the 

solutions to the proposed viscoelastic wave equation. 

Specifically, we aim to: 

● Establish the well-posedness of the problem, 

proving the existence of a unique weak solution. 

● Derive a general decay result for the energy of the 

system, demonstrating that the solution approaches 

a steady state as time goes to infinity. 

● Investigate how the decay rate depends on the 

properties of the memory kernel, the nonlinearities 

in the boundary feedback and delay, and the 

parameters of the acoustic boundary conditions. 

Our central hypothesis is that, under suitable 

assumptions on the kernel and the nonlinear functions, 

the energy of the system will decay to zero. We further 

hypothesize that the rate of this decay can be explicitly 

characterized, providing a deeper understanding of the 

dissipative mechanisms at play in the system. By 

achieving these objectives, this study will contribute to 

the ongoing efforts to develop a comprehensive 

mathematical theory for the analysis and control of 

complex viscoelastic systems. Future research will aim to 

extend this work by incorporating additional damping 

mechanisms such as Balakrishnan-Taylor damping, 

dispersion effects, and logarithmic corrections, with a 

particular focus on nonlinear settings. 

2. Methods 

2.1. Research Design 

This study employs a theoretical and analytical research 

design based on the mathematical analysis of a system of 

partial differential equations. The core of our 

methodology is the use of functional analysis and the 

multiplier method to establish the existence and 

asymptotic behavior of solutions to a nonlinear 

viscoelastic wave equation. The problem is formulated in 

a bounded domain with smooth boundaries, and the 

analysis is carried out in appropriate Hilbert spaces. The 

problem under investigation is given by the following 

nonlinear viscoelastic wave equation: 

ztt−Δz(t)+∫0tP(t−χ)Δz(χ)dχ=0;in A×R+, 

subject to the following boundary and initial conditions: 

∂v∂z−∫0tZ(t−z)∂D∂z(χ)dχ+Z(zt)=Zt,y∈Λ0,t>0,zt+F(y)⊘t

+N(y)⊘=0,z(y,t)=0,on Λ1×R+,z(y,0)=z0(y),zt(y,0)=z1

(y)in A,zt(y,−t)=v0(y,t)in Λ0×(0,φ2),?(y,0)=?0(y),y∈Λ0, 

where ∅(zt):=∅1ne1(zt)+∫φ1φ2∅2(j)H∗2(z∗t(t−j))dj. 

Here, A⊂RM(M≥1) is a bounded domain with a smooth 

boundary ∂A=Λ1∪Λ0, where Λ1 and Λ0 are disjoint, closed 

subsets. The functions P, Z, F, and N represent the memory 

kernel, the boundary feedback, and the acoustic boundary 

conditions, respectively. The term involving ∅(zt) 

represents the nonlinear distributed delay feedback. To 

handle the distributed delay, we introduce an auxiliary 

variable η(y,ν,j,t)=zt(y,t−jv) for (y,ν,j,t)∈D=Λ1×(0,1)×(φ1

,φ2)×R+, which satisfies the transport equation: 

{jηt(y,ν,j,t)+ηv(y,ν,j,t)=0,η(y,0,j,t)=zt(y,t). 

This transforms the original problem with delay into a 

system of partial differential equations without explicit 

delay, which is more amenable to analysis. 

 

2.2. Participants/Sample 

This study is purely theoretical and does not involve human 

or animal participants. The "participants" or "samples" in 

this context are the mathematical objects of study, namely 

the solutions to the system of partial differential equations. 

The initial data for the problem, z0,z1,v0, and ∅0, are 

assumed to belong to appropriate function spaces that 

ensure the existence of a weak solution. Specifically, we 

assume that z0,z1∈PΛ01(A)∩B2(Γ), v0∈B2(Λ0×(0,1)×(φ1

,φ2)), and ∅0∈B2(Λ0). 

2.3. Materials and Apparatus 

The materials and apparatus for this research are the 

mathematical tools and techniques of modern analysis. 

These include: 

● Functional Analysis: The theory of Hilbert spaces, 

Sobolev spaces, and the properties of linear and 

nonlinear operators. 

● Partial Differential Equations: The theory of 

existence, uniqueness, and regularity of solutions to 

hyperbolic and parabolic equations. 

● The Multiplier Method: A powerful technique for 

obtaining energy estimates for solutions to partial 

differential equations. This involves multiplying the 

equation by a suitable function (the "multiplier") and 

integrating by parts. 

● Lyapunov's Direct Method: A method for proving the 

stability of dynamical systems by constructing a scalar 

function (a "Lyapunov function") whose properties 

can be used to infer the stability of the system. 

● Convex Analysis: The properties of convex functions 

and their conjugates, including Jensen's inequality and 

Young's inequality, are used to handle the nonlinear 

terms in the system. 

2.4. Experimental Procedure/Data Collection Protocol 
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The "experimental procedure" in this theoretical study 

consists of a rigorous mathematical proof. The steps are 

as follows: 

1. Problem Formulation: The physical problem is 

translated into a well-defined mathematical model, 

as described in Section 2.1. 

2. Well-Posedness: The existence of a unique weak 

solution is established using the Faedo-Galerkin 

method, combined with results from previous 

studies [37, 38, 39]. This ensures that the problem is 

mathematically sound and has a solution to be 

analyzed. 

3. Energy Functional: An energy functional for the 

system is defined. This functional represents the 

total energy of the system, including the kinetic 

energy, potential energy, and energy stored in the 

viscoelastic material and at the boundary. 

4. Energy Decay Analysis: The time derivative of the 

energy functional is computed, and it is shown that 

the energy is a non-increasing function of time. This 

is a crucial step in proving the stability of the system. 

5. Construction of a Lyapunov Functional: A more 

general Lyapunov functional is constructed by 

adding carefully chosen perturbation terms to the 

energy functional. These perturbation terms are 

designed to capture the dissipative effects of the 

memory kernel and the boundary feedback. 

6. Derivation of a Differential Inequality: The time 

derivative of the Lyapunov functional is estimated, 

leading to a differential inequality that relates the 

Lyapunov functional to its derivative. 

7. Asymptotic Analysis: The differential inequality is 

solved to obtain the asymptotic behavior of the 

Lyapunov functional, and hence the energy 

functional, as time tends to infinity. This provides 

the desired decay rate for the energy of the system. 

2.5. Data Analysis Plan 

The "data" in this study are the mathematical expressions 

and inequalities obtained during the proof. The analysis 

of this data involves a series of logical deductions and 

mathematical manipulations to arrive at the final 

conclusions. The key steps in the data analysis are: 

● Estimation of Terms: The various terms in the time 

derivative of the Lyapunov functional are carefully 

estimated using a combination of Hölder's 

inequality, Young's inequality, Poincaré's inequality, 

and the specific assumptions on the functions in the 

model. 

● Choice of Parameters: The analysis involves the 

introduction of several positive constants that need 

to be chosen appropriately to ensure that the 

desired inequalities hold. This often involves a 

multi-step process of choosing some constants to be 

sufficiently small and others to be sufficiently large. 

● Case Analysis: The analysis of the decay rate is 

divided into two cases, depending on whether the 

nonlinear function in the boundary feedback is linear 

or nonlinear in a neighborhood of the origin. This is 

necessary because the properties of the function in 

these two cases lead to different types of decay 

estimates. 

● Use of Convexity: Jensen's inequality for convex 

functions is used to handle the nonlinear term in the 

boundary feedback when the function is nonlinear. 

This is a key step in obtaining a general decay result 

that is not limited to specific forms of nonlinearity. 

● Integration of the Differential Inequality: The final 

step in the analysis is to integrate the differential 

inequality for the Lyapunov functional. This 

integration yields the explicit decay rate for the energy 

of the system. 

3. Results 

3.1. Preliminary Analyses 

The foundation of our analysis is the establishment of the 

well-posedness of the problem and the behavior of the 

energy functional. A crucial first step is to define a suitable 

energy functional for the system. 

Lemma 2.1: Energy Functional 

The energy functional E(t) for the system is given by: 

E(t)=21∣∣zt∣∣22+21(1−∫0tZ(z)dz)∣∣∇z(t)∣∣22+21∫Λ0

N(y)Z2dΛ+21(Z∘∇z)(t)+∫Λ0∫01∫φ1φ2j∣φ2j∣φ2

(j)∣Z(η(y,ν,j,t))djdνdΛ 

The time derivative of this energy functional, E′(t), satisfies 

the inequality: 

E′(t)≤−ϕ1∫Λ0zt//1(zt)dΛ+21(Z′∘∇z)(t)−∫Λ0F(y)Zt2dΛ−21

Z(t)∣∣∇z(t)∣∣22−ϕ2∫Λ0∫φ1φ2∣%2(j)∣η(y,1,j,t) =2

(η(y,1,j,t))djdΛ≤0 

This inequality demonstrates that the energy of the system 

is non-increasing over time, which is a fundamental 

property of a dissipative system. Furthermore, we establish 

the existence of a weak solution to the problem. 

Theorem 2.2: Existence of a Weak Solution 

Under the assumptions (6)-(11) in the original work, there 

exists a weak solution (z, eta, emptyset) to the problem (14) 

for any initial data z0,z1∈PΛ01(A)∩B2(Γ), v0∈B2(Λ0

×(0,1)×(φ1,φ2)), and ∅0∈B2(Λ0), with appropriate 

regularity properties. This theorem is proven using the 

Faedo-Galerkin approach, drawing on established results 

from the literature [37, 38, 39]. 

 

3.2. Main Findings 

The central result of this study is the general decay of the 

energy of the system. To establish this, we introduce a 
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Lyapunov functional W(t) defined as: 

W(t):=ME(t)+Ω(t)+PE(t)+Υ(t) 

where M and P are positive constants to be determined, 

and Ω(t), Ξ(t), and Υ(t) are auxiliary functionals designed 

to capture the dissipative effects of the system: 

Ω(t):=∫Az(t)zt(t)dy+∫Λ0z⊙dΛ+21∫Λ0.∀(y)⊘2dΛ 

Ξ(t):=−∫Rzt∫0tZ(t−z)(z(t)−z(z))dzdy 

Υ(t):=∫Λ1∫01∫q1φ2je−νj∣Z2(j)∣.Z(η(y,ν,j,t))djdνdΛ 

Through a series of technical lemmas (Lemmas 3.1, 3.2, 

and 3.3), we derive estimates for the time derivatives of 

these functionals. This culminates in the key result 

concerning the Lyapunov functional W(t). 

Lemma 3.4: Properties of the Lyapunov Functional 

There exist positive constants Cj (J=1,...,5) and a time t00 

such that the Lyapunov functional W(t) satisfies the 

following inequalities for all t≥t0: 

W′(t)≤−C1E(t)+C2∫Λ0F12(zt)dΛ+C3(Z∘∇z)(t) 

and 

C4E(t)≤W(t)≤C5E(t) 

The second inequality shows that the Lyapunov 

functional is equivalent to the energy functional, which is 

essential for relating the decay of W(t) to the decay of the 

energy. Building on these preliminary results, we present 

the main theorem on the general decay of the energy. 

Theorem 3.5: General Decay of Energy 

Let the assumptions (6)-(11) hold. Then there exist 

positive constants λ1, λ2, a time t0, and ω0∈(0,ω] such 

that the energy of the system satisfies: 

E(t)≤λ1P−1{λ2(1+∫t0tϑ(ζ)dζ)},∀t≥t0 

where P(t):=∫t1H(ρ)1dρ, and H(t) is a function that 

depends on whether the function P (related to the 

nonlinearity) is linear or nonlinear on the interval [0,ω]. 

The function ϑ(t) is related to the memory kernel and 

satisfies certain properties ensuring its decay over time. 

This theorem provides a general decay rate for the energy 

of the system. The specific form of the decay depends on 

the properties of the memory kernel (through the 

function ϑ) and the nonlinearity in the boundary feedback 

(through the function P). 

 

3.3. Secondary or Exploratory Findings 

The proof of the main theorem reveals important insights 

into the dissipative mechanisms of the system. In 

particular, the analysis is divided into two cases based on 

the behavior of the nonlinearity g_1 near the origin. 

● Case 1: P is linear on [0,ω] In this case, the decay 

rate is determined by the properties of the memory 

kernel, as captured by the function ϑ(t). The analysis 

shows that the energy decays at a rate related to the 

integral of ϑ(t). 

● Case 2: P is nonlinear on (0,ω] When the 

nonlinearity is more complex, the decay rate is also 

influenced by the function P, which characterizes the 

nonlinearity. The use of Jensen's inequality is crucial 

in this case to handle the nonlinear term and obtain a 

general decay result. The resulting decay rate is given 

in terms of the inverse of the function P, which 

highlights the role of the nonlinearity in the energy 

dissipation process. 

These findings demonstrate that the asymptotic behavior of 

the system is a result of a complex interplay between the 

viscoelastic damping in the bulk of the material, the acoustic 

properties of the boundary, and the nonlinear, delayed 

feedback at the boundary. 

4. Discussion 

4.1. Interpretation of Key Findings 

The results presented in this study provide a 

comprehensive analysis of the asymptotic behavior of a 

nonlinear viscoelastic wave equation with acoustic 

boundary conditions and a nonlinear distributed delay in 

the boundary feedback. The main finding, encapsulated in 

Theorem 3.5, is that the energy of the system decays to zero 

as time goes to infinity, and that the rate of this decay can be 

characterized in terms of the properties of the memory 

kernel and the nonlinearities in the system. This result is 

significant for several reasons. First, it confirms the intuitive 

physical expectation that the combination of viscoelastic 

damping and boundary feedback should lead to the 

dissipation of energy in the system. Second, it provides a 

rigorous mathematical proof of this expectation for a 

complex and realistic model that incorporates several 

important physical effects. The general nature of the decay 

result, which does not assume a specific form for the 

memory kernel or the nonlinearities, makes it applicable to 

a wide range of materials and physical scenarios. 

The dependence of the decay rate on the function ϑ(t), 

which is related to the memory kernel, highlights the crucial 

role of the material's memory in the dissipation process. A 

faster decaying memory kernel (corresponding to a faster 

decaying ϑ(t)) will lead to a slower decay of the energy, as 

the material "forgets" its past deformations more quickly, 

reducing the effectiveness of the viscoelastic damping. The 

influence of the nonlinearity in the boundary feedback, 

characterized by the function P, is also clearly 

demonstrated. The distinction between the linear and 

nonlinear cases shows that the behavior of the feedback at 

small amplitudes can have a significant impact on the long-

term behavior of the system. This is a common feature in the 

analysis of nonlinear systems, where the local behavior near 

an equilibrium point often determines the global stability 

properties. 
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4.2. Comparison with Previous Literature 

The findings of this study are consistent with and extend 

the results of previous research in the field. Our work can 

be seen as a generalization of several earlier studies that 

considered simpler models. For instance, our results are 

in line with the work of Al-Mahdi and Al-Gharabli [9] and 

Messaoudi and Al-Gharabli [10], who studied viscoelastic 

equations with boundary feedback and demonstrated the 

importance of memory effects in energy dissipation. Our 

analysis extends their work by considering a more 

general form of nonlinearity, a distributed delay, and 

acoustic boundary conditions. The inclusion of a 

distributed delay in our model connects our work to the 

extensive literature on the stability of wave equations 

with delay [14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 

34]. While many of these studies have shown that delay 

can have a destabilizing effect, our results demonstrate 

that under appropriate conditions, stability can still be 

achieved in the presence of a distributed delay. This is 

consistent with the findings of Nicaise and Pignotti [24] 

for the wave equation with internal or boundary 

distributed delay. 

Our study also builds upon recent work on viscoelastic 

wave equations with acoustic boundary conditions [1, 2, 

13, 17, 21]. The work of Lee and Kang [17], in particular, 

considered a similar problem with a time-varying delay. 

Our analysis provides a more general decay result by 

considering a distributed delay and a more general class 

of memory kernels. The incorporation of acoustic 

boundary conditions, following the foundational work of 

Morse and Ingard [33] and Beale and Rosencrans [32], 

makes our model more physically relevant for a variety of 

applications. Compared to the study by Choucha and 

Ouchenane [23], which investigated a viscoelastic wave 

equation with distributed delay but without acoustic 

boundary conditions, our work provides a more complete 

picture by including the effects of acoustic interactions at 

the boundary. This is a non-trivial extension, as the 

acoustic boundary conditions introduce additional terms 

in the energy functional and require a more careful 

analysis of the boundary terms. 

4.3. Strengths and Limitations of the Study 

The main strength of this study is its generality. We have 

considered a complex and realistic model that 

incorporates several important physical effects, and we 

have derived a general decay result under a broad set of 

assumptions. The use of the multiplier method and the 

construction of a suitable Lyapunov functional are 

powerful techniques that can be adapted to analyze other 

related problems. 

However, the study also has some limitations. The 

analysis is carried out for a weak solution, and we do not 

investigate the regularity of the solution beyond what is 

necessary to prove the energy decay. A more detailed 

analysis of the regularity of the solution would be a valuable 

extension of this work. Another limitation is that the decay 

rate obtained is not always explicit. The decay rate is given 

in terms of the inverse of a function that depends on the 

memory kernel and the nonlinearity, which may not be easy 

to compute in practice. Obtaining more explicit decay rates 

for specific classes of memory kernels and nonlinearities 

would be a useful direction for future research. Finally, the 

study is purely theoretical, and it would be interesting to 

compare our results with experimental data or numerical 

simulations. This would provide a valuable validation of the 

mathematical model and the theoretical predictions. 

4.4. Implications for Theory and Practice 

The results of this study have several important 

implications for both the theory of partial differential 

equations and for practical applications in science and 

engineering. From a theoretical perspective, this work 

contributes to the development of a general framework for 

the analysis of nonlinear viscoelastic wave equations with 

complex boundary conditions. The techniques used in this 

study can be applied to a wide range of related problems, 

including those with different types of nonlinearities, more 

general memory kernels, or other forms of boundary 

feedback. 

From a practical perspective, the results of this study 

provide valuable insights into the behavior of viscoelastic 

materials and structures. The understanding of energy 

dissipation and stability is crucial for the design of materials 

and devices with specific damping properties. For example, 

in civil engineering, viscoelastic materials are used to 

dampen vibrations in buildings and bridges. In the 

automotive industry, they are used to reduce noise and 

vibration in vehicles. In all of these applications, a detailed 

understanding of the material's behavior under dynamic 

loading is essential. The inclusion of acoustic boundary 

conditions makes our model particularly relevant for 

applications involving sound and vibration. For example, in 

the design of acoustic insulation materials, it is important to 

understand how sound waves interact with the material 

and how energy is dissipated at the boundaries. Our results 

provide a theoretical foundation for the analysis and 

optimization of such materials. 

4.5. Conclusion and Future Research Directions 

In this study, we have investigated the asymptotic behavior 

of a nonlinear viscoelastic wave equation with acoustic 

boundary conditions and a nonlinear distributed delay in 

the boundary feedback. We have established a general 

decay result for the energy of the system, demonstrating 



EUROPEAN JOURNAL OF EMERGING ENGINEERING AND MATHEMATICS 
 

 
pg. 32  

that the combination of viscoelastic damping and 

boundary feedback leads to the stabilization of the 

system. Our work provides a rigorous mathematical 

foundation for the analysis of a complex and realistic 

model of viscoelasticity. The results of this study have 

important implications for the understanding of energy 

dissipation and stability in a wide range of physical 

systems. 

There are several promising directions for future 

research. One direction is to extend the analysis to more 

general classes of materials and boundary conditions. For 

example, it would be interesting to consider materials 

with more complex constitutive laws, such as those with 

fractional order derivatives, as suggested by the works of 

Ragusa [3, 7], Guariglia [4, 8], Ortigueira and Coito [5], and 

Li, Dao, and Guo [6]. Another direction is to investigate the 

effects of other types of damping mechanisms, such as 

Balakrishnan-Taylor damping. It would also be 

interesting to consider the effects of a logarithmic source 

term, which has been studied in other contexts [11, 21]. 

Finally, it would be valuable to develop numerical 

methods for solving the system of equations and to 

compare the numerical results with the theoretical 

predictions. This would provide a deeper understanding 

of the dynamics of the system and would help to validate 

the mathematical model. 
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