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ABSTRACT

This paper introduces a novel extremum seeking (ES) scheme specifically designed for identifying the first derivative of
an unknown nonlinear map, particularly in systems subject to constant transmission delays. Traditional approaches often
rely on predictor-based methods to compensate for delays, which can introduce significant complexity. In contrast, our
research focuses on enhancing the delay-robustness of the ES system by employing a recently developed time-delay
approach. This methodology transforms the original ES system into a nonlinear retarded-type plant, effectively
incorporating disturbances into the model. A critical aspect of our work involves the derivation of stability conditions,
which are presented in the form of linear matrix inequalities (LMIs). This provides a rigorous analytical framework for
ensuring system stability. Furthermore, the paper addresses scenarios where the precise bounds of the nonlinear map
are not explicitly known, offering a robust practical stability proof for such "black box" systems. More significantly, when
prior knowledge regarding the nonlinear map is accessible (i.e., a "grey box" scenario), our time-delay approach facilitates
quantitative calculations for crucial design parameters. These parameters include the maximum allowable delay, a
quantifiable upper bound for the dither period, and a precise estimation of the ultimate seeking error. The practical utility
and effectiveness of the proposed method are comprehensively validated through several numerical examples,
demonstrating its applicability in real-world control systems. This approach offers a significant advancement in ES
control by providing both qualitative and quantitative stability analyses, particularly for systems with inherent time
delays.
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1. Introduction

1.1. Broad Background and Historical Context of sampled-data ES has been crucial for implementing these

. . . algorithms in digital control systems, considering the
Extremum seeking (ES) is a powerful, feedback-adaptive .g 5 o y ) &
. discrete nature of data acquisition and control actions [5,6].
control strategy that enables dynamic plants to ) )
Furthermore, advanced mathematical tools, such as Lie-
autonomously locate and converge to the extrema of bracket mati h b loved t d
A . . . racket approximations, have been employed to provide
unknown objective functions. This technique has garnered . [?p . : p. y p. i
. L . . . . ... deeperinsightsinto the underlying dynamics and stability of
substantial attention in various engineering and scientific . L
. . . ES systems [7,8]. The extension of ES to distributed systems
disciplines due to its model-free nature, allowing for real- U :
. o . . .. has allowed for the optimization of interconnected and
time optimization without requiring explicit knowledge of p call led ; tworks. facilitating |
: . . namically coupled agents over networks, facilitating large-
the system's underlying mathematical model. The yl " y t'p il [9]. Crucially, the tgft'g
. . scale optimization problems [9]. Crucially, the impact of time
foundational analytical framework for ES schemes was P p . y P
. . . . . delays on ES systems has been a consistent area of research,
rigorously established in 2000, marking a pivotal moment

in the development of this field [1]. Since this seminal
work, the theoretical understanding and practical

with initial investigations addressing their effects on static
maps [10] and more recently, on systems with distributed
delays [11]. These theoretical advancements have paved the
way for a myriad of practical applications across diverse
domains, including but not limited to, anaerobic digestion
processes [12], energy management strategies for
hybridized electric vehicles [13], dual-axis solar trackers
[14], and harmonic mitigation in electrical grids of marine
vessels [15]. A comprehensive survey of the field over the
past century highlights the breadth and depth of ES research
and its enduring relevance [16].

applications of ES algorithms have undergone extensive
advancements.

The theoretical progress in ES has been multifaceted.
Researchers have explored aspects such as non-local
stability properties, delving into the global convergence
characteristics of ES systems beyond local optimality [2].
Stochastic ES has also emerged as a significant area,
addressing scenarios where system measurements or

disturbances are inherently noisy [3,4]. The development . .
1.1. Broad Background and Historical Context
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The concept of extremum seeking, though formalized
relatively recently, has roots that can be traced back to
early attempts at automatic optimization. The fundamental
idea revolves around perturbing a system's input and
observing the resulting change in output to infer the
direction of the optimum. This iterative process allows the
system to "seek" the extremum without requiring a
mathematical model of the function being optimized. Early
practical implementations often involved simple dither
signals and demodulation techniques, paving the way for
more rigorous theoretical analysis. The groundbreaking
work by Krsti¢ and Wang in 2000 provided a rigorous
analytical framework for ES, establishing its stability
properties and opening new avenues for research [1]. This
foundational paper laid the groundwork for understanding
the local stability of ES feedback for general nonlinear
dynamic systems. Subsequent research expanded upon
this, investigating non-local stability properties and the
conditions under which ES control can achieve global
optimization [2]. The integration of stochastic analysis led
to the development of stochastic ES algorithms, which are
more robust to noise and disturbances commonly
encountered in real-world applications [3,4]. The evolution
of control systems towards digital implementations
necessitated the study of sampled-data ES, addressing the
unique challenges posed by discrete-time measurements
and control actions [5,6]. Furthermore, the application of
sophisticated mathematical tools, such as Lie bracket
approximations, has provided deeper theoretical insights
into the behavior of ES systems, linking them to geometric
control theory [7,8]. The increasing complexity of modern
systems has also driven research into distributed ES,
where multiple interconnected agents cooperatively seek
an extremum [9]. Throughout this historical progression,
the challenge of time delays has remained a persistent
prompting the
compensation strategies [10,11].

concern, development of various

1.2. Critical Literature Review

While the majority of existing literature on extremum
seeking primarily focuses on finding the extrema (i.e.,
maximum or minimum) of an unknown objective function,
a distinct and equally important line of research has
emerged concerning the seeking of derivatives,
particularly the first derivative or "slope" [19]. This
interest arises in applications where the desired operating
point is not necessarily an extremum but rather a point of
maximum sensitivity or a specific gradient. For instance, in
refrigeration systems, the optimal operating point might
correspond to the maximum slope of a performance curve
rather than its peak, particularly for objective functions
exhibiting sigmoid-like characteristics [17,18]. Vinther et
al. explored methods for evaporator superheat control
using a single temperature sensor, demonstrating the

utility of qualitative system knowledge and a novel
maximum slope-seeking method [17,18]. Further extending
this concept, Ariyur and Krsti¢ introduced a "slope seeking"
methodology, a generalization of extremum seeking, which
incorporates a slope reference signal into a perturbation-
based ES algorithm [19]. This marked a significant departure
from traditional ES by explicitly targeting derivative
information.

The pursuit of higher derivatives has also been a focal point.
Moase et al. developed a Newton-like ES system that
leverages estimates of the second derivative of the unknown
function, particularly for controlling thermoacoustic
instability [20]. Building upon these ideas, Mills and Krsti¢
generalized the selection of demodulation signals to enable
the estimation of a map's n-th derivatives on average [21,22].
They proposed a scalar Newton-based ES system designed to
maximize higher derivatives of unknown maps [23]. This
work was further extended to the realm of stochastic ES,
providing methodologies for maximizing higher derivatives
in the presence of noise and uncertainty [22]. The challenge
of time delays in higher-derivative seeking systems was
addressed by Rusiti et al., who proposed a Newton-based ES
scheme that incorporated a predictor to compensate for
known and constant delays [24]. Subsequent research by
Rusiti et al. further refined these Newton-based ES methods
for higher-derivative maps, specifically focusing on systems
with time-varying and uncertain delays, and analyzing their
robustness to delay mismatch [25,26].

Arelatively new and promising direction in ES research is the
"time-delay approach" to averaging. This approach, inspired
by the work of Fridman and Zhang on averaging of linear
systems with almost periodic coefficients [27], offers an
alternative to the classical averaging method commonly
employed in ES stability analysis. Zhu and Fridman were
instrumental in developing a constructive time-delay
approach for the stability analysis of gradient-based ES
control systems [28]. More recently, Pan et al. expanded the
applicability of this time-delay approach for ES schemes from
specific quadratic maps to more general nonlinear maps
[29]. A key advantage of the time-delay approach, when
compared to classical averaging methods, lies in its ability to
provide quantitative upper bounds on critical parameters,
such as the dither period [28,29]. This quantitative insight is
invaluable for the practical design and implementation of ES
systems, offering concrete guidance for parameter tuning
and performance prediction.

The presence of time delays, arising from various sources
like computation, measurement, and transmission, is a well-
recognized challenge in control systems, often leading to
instability [30,31]. In the context of real-time optimization
strategies like ES, the detrimental impact of time delays is
particularly pronounced. Current predictor-based methods,
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asseenin[10,24-26], attempt to mitigate delays by actively
compensating for them through predictors, theoretically
enabling them to handle arbitrarily large delays. However,
these methods introduce additional complexity to the
system. Furthermore, predictor-based methods typically
rely on classical averaging theory for stability proofs,
which primarily offer a qualitative analysis [33]. This
means they can assert practical stability if the dither
frequency is sufficiently high and the dither magnitude is
sufficiently small, but they do not provide precise
quantitative limits. This qualitative nature limits their
utility in practical design where specific bounds and
performance guarantees are often required.

1.3. The Identified Research Gap

Despite significant advancements in extremum seeking,
particularly in addressing systems with time delays and in
seeking higher derivatives, a notable research gap persists
concerning the quantitative analysis of delay-robustness
for extremum seeking of the first derivative of nonlinear
maps when subjected to constant time delays. While
predictor-based methods exist for handling delays in
higher-derivative ES [24-26], they often lead to increased
system complexity and primarily offer qualitative stability
guarantees. The classical averaging method, a cornerstone
of ES analysis, also provides qualitative insights, stating
that practical stability is achieved when dither frequency is
sufficiently high and amplitude is sufficiently low [33].
However, this qualitative understanding lacks the
precision needed for robust engineering design,
particularly in determining the maximum allowable delay,
optimal dither periods, and ultimate seeking errors.

The recently developed time-delay approach to averaging
[27-29] has shown promise in providing quantitative
bounds for ES systems, but its application to the specific
problem of seeking the first derivative of nonlinear maps
with constant delays remains underexplored. Previous
work considering the delay-free case [32] represents a
step, but a
incorporating constant delays within this quantitative

preliminary comprehensive analysis
framework is critically needed. Therefore, a methodology
that can transform the ES system into a form amenable to
the approach,
quantitative analysis of delay robustness without
introducing excessive complexity, constitutes a significant
research gap. Such a methodology would enable designers
to achieve a better balance between convergence rate and
delay handling capabilities, moving beyond the limitations
of qualitative stability analysis. This gap is particularly
relevant as robust and quantifiable solutions are crucial for
the practical implementation of ES in real-world systems
with unavoidable communication and computation

time-delay allowing for rigorous

latencies.

1.4. Study Rationale, Objectives, and Hypotheses

The rationale behind this study stems from the critical need
for robust and quantifiable extremum seeking solutions in
systems where time delays are inherent and the objective is
to optimize the first derivative of an unknown nonlinear
map. The limitations of existing qualitative analyses and the
complexity  introduced by predictor-based delay
compensation methods highlight a clear demand for
alternative approaches that offer precise quantitative
insights into system stability and performance.

The primary objective of this research is to develop and
analyze an extremum seeking (ES) scheme for the first
derivative of nonlinear maps with constant transmission
delays, leveraging the newly developed time-delay approach
for delay-robustness analysis. This overarching objective can
be broken down into several specific aims:

® Design a suitable demodulation signal: The first
objective is to meticulously design a demodulation
signal capable of accurately estimating the gradient of
the map's first derivative even in the presence of
constant delays. This involves selecting appropriate
dither and demodulation frequencies and amplitudes
to ensure proper signal extraction in delayed
environments.

® Transform the ES system using the time-delay
approach: The second objective is to rigorously
transform the original ES system (which is a high-
frequency perturbed system) into an equivalent time-
delay system by applying the time-delay approach to
averaging [28,29]. This transformed system will then
be further reformulated as a retarded-type model with
disturbances, facilitating a more tractable and accurate
stability analysis compared to classical averaging
methods that discard high-frequency terms.

® Derive stability conditions Lyapunov
functional: A key objective is to derive rigorous

via

stability conditions for the transformed time-delay
system using a specially constructed Lyapunov
functional. This functional will incorporate the system
states and their delayed counterparts, allowing for the
derivation of conditions expressed as Linear Matrix
Inequalities (LMIs). These LMIs provide a convex
optimization problem that can be efficiently solved to
determine the stability margins.

® Provide practical stability analysis for unknown
maps: For scenarios where the nonlinear map's
bounds are unknown (a "black box" system), an
objective is to provide a comprehensive and rigorous
practical stability analysis. This involves demonstrating
that the system states remain bounded within a certain
neighborhood of the desired optimum, even without
precise knowledge of the map's characteristics, thereby
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ensuring robustness.

Quantify key parameters for known map bounds:
Crucially, for cases where prior knowledge about the
nonlinear map (i.e., its bounds) is available ("grey
box" system), an objective is to quantitatively
calculate critical design parameters: the maximum
allowable delay, the upper bound of the dither period,
and the ultimate seeking error. This quantitative
approach offers significant practical advantages for
system design and tuning, enabling engineers to
predict and guarantee performance.

Based on these objectives, we hypothesize the following:

Hypothesis 1: The proposed extremum seeking
scheme, incorporating a specifically tailored
demodulation signal and utilizing the time-delay
approach, will effectively estimate the first derivative
of nonlinear maps even in the presence of constant
delays, demonstrating superior performance
compared to conventional methods lacking explicit
delay handling in this context.

Hypothesis 2: The transformation of the original ES
system into a retarded-type model using the time-
delay approach will enable the derivation of
comprehensive stability conditions expressed as
LMIs, providing a robust analytical framework that
allows for the determination of delay-dependent
stability.

Hypothesis 3: The time-delay approach will facilitate
a rigorous practical stability proof for systems with
unknown nonlinear map bounds, providing
guarantees of boundedness and convergence to a
neighborhood of the optimum.

Hypothesis 4: For systems where nonlinear map
bounds are known, the time-delay approach will
enable precise quantitative determination of the
maximum allowable delay, dither period upper
bound, and ultimate seeking error, offering valuable
guidance for ES system design and parameter tuning
that is currently unavailable through qualitative
methods.

Hypothesis 5: The proposed approach will
demonstrate superior delay-robustness and provide
more practical design guidelines compared to
traditional predictor-based methods and classical
averaging techniques, particularly by offering
quantitative insights where others provide only
qualitative assessments, thereby bridging the gap
between theoretical and

analysis practical

implementation.

2. Methods

This

section  details the  research  design,

participant/sample considerations (though not directly

applicable to a theoretical control systems paper, this section
will discuss the nature of the systems under study), materials
and apparatus (referring to the mathematical models and
signals used), the experimental procedure/data collection
protocol (describing the analytical and simulation
methodologies), and the data analysis plan.

2.1. Research Design

The research design for this study is fundamentally
analytical and theoretical, complemented by numerical
simulations to validate the derived stability conditions and
quantitative calculations. The core of the approach involves
a rigorous mathematical framework, specifically adapting
and extending the time-delay approach to averaging for the
analysis of extremum seeking systems.

The design begins by defining the specific extremum seeking
system under consideration: one that aims to maximize the
first derivative of an unknown nonlinear map, subject to
constant transmission delays. This system's behavior is
modeled as a closed-loop control system, as depicted in a
typical extremum seeking block diagram. The system
incorporates a periodic perturbation (dither) signal and a
demodulation signal designed to extract gradient
information. A critical aspect of the design involves explicitly
accounting for both input and output delays, denoted as D_in
and D_out respectively, with the total system delay being
D=D_in+D out.

The analytical approach follows several key steps:

1. System Modeling: The system dynamics
formulated based on the interaction between the
unknown nonlinear map y(t)=f(theta(cdot)), the dither
signal, and the feedback loop, including the effects of
delays. The control input to the map is given by
theta(t)=hattheta(t)+asin(omegat), where hattheta(t)
is the adapted parameter, a is the dither amplitude, and
omega is the dither frequency. The output of the map,
after being subject to output delay D_out, is fed back to
the ES controller. The ES controller then updates
hattheta(t) based on the demodulated signal.

2. Demodulation Signal Design: A  specific
demodulation signal, typically acos(omega(t-D)), is
designed to estimate the gradient of the map's first
derivative in the presence of constant delays. The
effectiveness of this demodulation relies on the
fundamental principles of ES, where the product of the
output and the demodulation signal, after low-pass
filtering, provides an estimate of the desired derivative.

are

3. Time-Delay Approach Application: The central
element of the research design is the application of the
time-delay approach to averaging. This involves
transforming the original extremum seeking system
(which is a high-frequency perturbed system, difficult
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to analyze directly due to the fast oscillations) into an
equivalent time-delay system. This transformation is
critical as it avoids the classical averaging
approximation that often neglects high-frequency
terms entirely. Instead, the time-delay approach
explicitly retains the effect of these high-frequency
components by converting them into delayed terms,
leading to a more accurate model for stability
analysis, especially in the presence of delays. The
transformation involves a change of variables to
isolate the slow and fast dynamics, followed by the
application of integral transformations to derive a
retarded-type delay differential equation.

Stability Analysis via Lyapunov Functional: The
stability of the transformed time-delay system is then
rigorously analyzed using a specially constructed
Lyapunov functional. This functional, which depends
on the current and past states of the system (due to
the delays), allows for the derivation of stability
conditions expressed as Linear Matrix Inequalities
(LMlIs). LMIs are powerful tools in control theory
because they represent convex optimization
problems, enabling efficient computation of stability
regions and maximum allowable delays. The
derivation involves calculating the time derivative of
the Lyapunov functional and imposing conditions for
its negative definiteness.

Quantitative Parameter Calculation: For scenarios
where bounds on the nonlinear map are available
("grey box" systems), the research design includes a
methodology for quantitatively calculating critical
design parameters: the maximum allowable delay
(D_max), the upper bound of the dither period
(T_dither,max), and the ultimate seeking error
(E_ult). These calculations are derived directly from
the LMI conditions and the properties of the
Lyapunov functional, providing concrete values
rather than vague qualitative statements.

Practical Stability Proof for Unknown Bounds: In
cases where the map's bounds are unknown ("black
box" systems), a rigorous proof of practical stability
is provided. This proof demonstrates that the system
states (specifically the estimation error) remain
bounded within a certain neighborhood of the
desired optimum. While not providing exact
this the
robustness and operational stability of the ES scheme

quantitative values, proof ensures
even with limited prior knowledge.

Numerical Validation: The theoretical findings are
substantiated through numerical examples. These
simulations demonstrate the effectiveness and
practical applicability of the proposed method under
various operating conditions and delay magnitudes.
The simulations are designed to illustrate the

convergence of the ES algorithm, the impact of
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delays, and the accuracy of the quantitative predictions.
This involves implementing the derived ES algorithm in
a simulation environment (e.g., MATLAB/Simulink)
and observing the system's behavior.

The design emphasizes a contrast with classical averaging
methods, highlighting how the time-delay approach offers
quantitative design guidance, which is often lacking in
traditional qualitative analyses, thereby providing a more
practical and robust framework for ES system design in the
presence of delays.

2.2. Participants/Sample

In the context of this theoretical control systems research,
"participants” or "sample" refers to the specific classes of
nonlinear maps and system configurations investigated.
There are no human or biological participants involved. The
study focuses on a scalar steady-state nonlinear map defined
as y(t)=f(theta(cdot)), where y(t)inmathbbR is the
measurable output and thetainmathbbR is the scalar input.
The function f(theta) is assumed to be an unknown nonlinear
function whose first derivative, f(1)(theta), is to be
extremum-sought. The objective is to maximize this first
derivative, implying that the optimal operating point thetax*
is where f(2)(theta*)=0 and $f*{(3)}(\\theta”\*) \< 0.

The "sample" of nonlinear maps considered adheres to
specific assumptions crucial for the analytical framework:

® Assumption 1: There exists an optimal point
$\\theta®\* \\in \\mathbb{R}$, a positive constant
sigma0, and a small dither amplitude a0 such that the
function f(theta) is three times continuously
differentiable (C3) within the interval $(\\theta™\* -
\\sigma - a, \\theta\* + \\sigma + a)$. This
assumption is fundamental for the Taylor series
expansions utilized in the analysis of the system's
dynamics around the optimum. Furthermore, it is
assumed that the collection of maxima where
f(1)(theta) is locally concave, denoted as
$\\theta\_{max} = {\\theta | f*{(2)}(\\theta) = 0,
fA{(3)}(\\theta) \< 0}$, is non-empty and contains
thetax. A key inequality $f*{(2)}(\\theta®* +
\\Delta)\\cdot\\Delta \\le -
\\mu(\\sigma)\\cdot\\Delta?2 \< 0% for small
$\\Delta = \\theta - \\theta®\*$ and a positive
constant mu(sigma) is also assumed, ensuring the
concavity property around the desired maximum of the
first derivative. This concavity is crucial for the
convergence of the ES algorithm.

e Assumption 2: For any $|\\Delta| \< \\sigma$ and the
defined 'a’ from Assumption 1, and for
overlinezetain[-1,1], the absolute values of
$f(\\theta”\* + \\Delta)$ and its first, second, and third
derivatives (f(1),f(2),f(3)) are bounded by known
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positive constants f_0(sigma), f_1(sigma), f_2(sigma),
f 3(sigma), and f 3(sigma,a) respectively.
Specifically, $|fA{(k)}(\\theta*\* + \\Delta +
a\\overline{\\zeta}\\sin(\\omega t))| \\le
f\_k(\\sigma)$ for k=0,1,2, and $|f*{(3)}(\\theta”\*
+ \\Delta + a\\overline{\\zeta}\\sin(\\omega t))|
\\le A\_3(\\sigma, a)$. Additionally, a Lipschitz-like
condition on the second derivative,
$If2{(2)}(\\theta**+\\Delta) - f*{(2)}(\\theta™*)| \ <
L|\\Delta|$, is assumed with a known positive
constant L. These bounds are particularly important
for the quantitative analysis provided by the time-
delay approach, as they allow for explicit calculation
of the ultimate seeking error and other design
parameters.

The study implicitly considers a range of system
parameters for simulations, including:

Adaptation gain kO, which dictates the speed of
convergence of the ES algorithm.

Amplitude a and frequency omega of the dither signal
S(t)=acdotsin(omegat). These parameters are critical
for excitation and proper demodulation.

Input and output delays D_in and D_out, which are
known positive constants, contributing to the total
delay D=D_in+D_out. The analysis is specifically
focused on the impact of these constant delays.
Initial conditions for the estimation error
$\\hat{\\theta}(t) \\in [\\theta®\* - \\sigma\_0,
\\theta”\* + \\sigma\_ 0]$ for tin[0,D], with
$\\sigma\_0 \< \\sigma$. This ensures that the
system starts within the region where the
assumptions on the map hold.

The choice of these assumptions and parameters ensures
that the analytical framework is applicable to a broad class
of relevant nonlinear systems encountered in control
engineering, allowing for both general theoretical insights
and specific quantitative predictions where system
characteristics are partially known.

2.3. Materials and Apparatus

In the context of this theoretical and computational study,
"materials and apparatus” refer to the mathematical
models, equations, algorithms, and computational tools
utilized. There are no physical materials or laboratory
equipment involved.

The primary "apparatus" for this research is the
mathematical framework of control theory, specifically:

Nonlinear System Dynamics: The core "material” is
the scalar steady-state nonlinear map y=f(theta),
which represents the unknown system whose first
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derivative is to be optimized. The explicit form of this
function is not assumed to be known a priori by the ES
algorithm, reflecting a "black box" or "grey box"
scenario. The system incorporates an integrator, where
the control input hattheta(t) is integrated to drive the
map input, and a dither signal is added. The system's
dynamic model is described by the equations:
dothattheta=kcdottextdemodulated_signal
theta(t)=hattheta(t)+asin(omegat)
y(t)=f(theta(t-D_in)).

The output is then observed at time t+D_out relative to
its generation.

Dither Signal: A dither  signal
S(t)=asin(omegat) is used. The amplitude a is small, and
the frequency omega is high, consistent with standard
extremum seeking practices. The choice of dither signal
is crucial for introducing the necessary probing action
to estimate the gradient.

Demodulation Signal: The demodulation signal is
specifically designed as acos(omega(t-D)), where
D=D_in+D_out is the total constant delay. This specific
form is chosen to effectively extract the first derivative
information from the delayed output signal, acting as a
"lock-in amplifier." The demodulated signal is then low-
pass filtered (conceptually, through the averaging
process) and multiplied by the adaptation gain k to
update the estimate hattheta.

sinusoidal

Lyapunov Functional Analysis: This is a key
analytical "apparatus.” A specific quadratic Lyapunov
functional is constructed, taking into account the
delayed states of the system. The time derivative of this
functional is then calculated along the trajectories of
the system. The conditions for the negative definiteness
of this derivative lead to the stability conditions.
Linear Matrix Inequalities (LMIs): LMIs serve as a
critical computational "material” and "apparatus.” The
stability conditions derived from the Lyapunov
functional are formulated as LMIs. These are powerful
mathematical tools that allow for convex optimization
problems to be solved efficiently using specialized LMI
solvers. In this study, LMIs are used to determine the
maximum allowable delay, the upper bound for the
dither period, and the ultimate seeking error, based on
the system parameters and the bounds on the
nonlinear map and its derivatives. The specific form of
the LMIs depends on the chosen Lyapunov functional
and the bounds derived during the transformation of
the system into a retarded-type time-delay system.
Taylor Series Expansion: Taylor series expansions of
the nonlinear function f(theta) are extensively used
around the optimal point $\\theta®\*$. This
mathematical "tool" allows for approximating the
nonlinear function and its derivatives, which is
essential for transforming the complex nonlinear
system into a more analytically tractable form.
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e Integral Transformations and Input-to-State
Stability (ISS) Concepts: These advanced
mathematical "tools" are applied during the
transformation process to convert the original

O Design the specific demodulation signal as
acos(omega(t-D)) to ensure proper phase
alignment for extracting the first derivative
information in the presence of delay.

system into a form suitable for time-delay system 3. Transformation to Time-Delay System:

analysis. ISS concepts are particularly relevant for
analyzing the boundedness of the system in the
presence of disturbances (which arise from the
higher-order terms in the time-delay approach).

e Simulation Software: For numerical validation,
general-purpose simulation software like MATLAB
with its Simulink environment is considered the
primary "apparatus." This allows for the
implementation of the proposed ES algorithm, the
nonlinear map with delays, and the execution of
various scenarios to observe the system's dynamic
response and verify the theoretical predictions. The
LMI Toolbox in MATLAB or similar solvers are
essential for solving the derived LMIs.

The combination of these mathematical and computational
"materials and apparatus" provides a comprehensive
framework for both the theoretical development and the
practical validation of the proposed extremum seeking
scheme.

2.4. Experimental Procedure/Data Collection Protocol

The experimental procedure in this research is primarily
based on rigorous mathematical derivation and analysis,
followed by computational simulations. There is no
physical data collection in the traditional sense; instead,
"data" refers to the system's states and parameters
generated through simulation.

The protocol for conducting this research involved the
following steps:

1. System Formulation and Assumptions:

0 Define the general extremum seeking setup for
maximizing the first derivative of an unknown
nonlinear map y=f(theta).

o Explicitly incorporate constant input and output
delays, D_in and D_out, leading to a total delay
D=D_in+D_out.

O  State the key assumptions on the nonlinear map
f(theta) (e.g., C3 differentiability, concavity of
f(1)(theta)  around  $\\theta®\*$, and
boundedness of its derivatives) as outlined in
Section 2.2. These assumptions are critical for
the validity of the analytical approach.

2. Dither and Demodulation Design:

o0 Select a sinusoidal dither signal
S(t)=asin(omegat) with a high frequency omega
and small amplitude a.
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O Apply the time-delay approach to convert the
original ES system, characterized by fast
oscillating terms, into a more tractable retarded-
type time-delay differential equation. This
involves:

m Defining a transformation of variables to
separate slow and fast dynamics.

m Using integral identities and properties of
periodic functions to reformulate the system
error dynamics.

m Carefully handling the delay terms in the
transformation, ensuring that the high-
frequency components are not simply
averaged out but are instead converted into
delayed terms within the new system
representation. This is a crucial step that
differentiates this approach from classical
averaging.

4. Lyapunov-Based Stability Analysis:

O  Construct a suitable Lyapunov functional V(t,x_t),
where x_t denotes the state of the system over the
delay interval [t-D,t]. The functional is typically a
quadratic form involving the system states and
their integrals over the delay.

o0 Calculate the time derivative of the Lyapunov
functional along the trajectories of the
transformed time-delay system. This step involves
intricate calculus for delay-dependent Lyapunov
functionals.

o Utilize Jensen's inequality and other integral
inequalities to bound various terms and obtain a
computable expression for the derivative.

0  Formulate the condition for negative definiteness
of the Lyapunov functional's derivative as a set of
Linear Matrix Inequalities (LMIs). These LMIs will
involve parameters related to the system (e.g.,
adaptation gain k, delay D) and the bounds of the
nonlinear map's derivatives.

5. Derivation of Quantitative Bounds (for Grey-Box

Scenarios):

O For cases where the bounds of f(theta) and its
derivatives are known (Assumption 2 holds
rigorously), solve the derived LMIs to find the
maximum allowable delay D_max for which the
system remains stable.

O Derive an upper bound for the dither period
(T_dither,max=2pi/omega_min) and a precise
estimate of the ultimate seeking error, which
quantifies the size of the neighborhood around
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$\\theta”\*$ to which the system converges.
These derivations directly follow from the LMI
solutions and the properties of the Lyapunov
functional.

6. Practical Stability Proof (for Black-Box
Scenarios):
o0  For general "black box" systems where detailed

bounds are not known, provide a theoretical
proof of practical stability. This proof
demonstrates that for sufficiently small dither
amplitude a and sufficiently high dither
frequency omega, the system states will remain
bounded within an  arbitrarily = small
neighborhood of $\\theta”\*$. This involves
arguments based on input-to-state stability (ISS)
or similar concepts applied to the averaged
system.

7. Numerical Simulations:

o

This

structured procedure ensures

Implement the derived extremum seeking
algorithm in a simulation environment (e.g,

MATLAB/Simulink).

Choose specific nonlinear maps (e.g,
f(theta)=-cos(theta), where
f(1)(theta)=sin(theta), and

f(2)(theta)=cos(theta) needs to be zero, and
f(3)(theta)=-sin(theta) needs to be negative).
Vary key parameters such as adaptation gain k,
dither amplitude a, dither frequency omega, and
especially the total delay D.

Record the time-evolution of the estimated
parameter hattheta(t) and the error $\\theta(t)
-\\theta"\*$.

Observe the convergence characteristics, the
impact of delays on stability and performance,
and compare simulation results with the
quantitative predictions (e.g., ultimate seeking
error) obtained from the LMI solutions.
Conduct multiple simulation runs to ensure the
robustness and reproducibility of the results.

that both the

theoretical soundness and practical applicability of the
proposed time-delay approach to extremum seeking for
the first derivative of nonlinear maps with delays are
thoroughly investigated.

2.5. Data Analysis Plan

The data analysis in this study, being primarily theoretical
and computational, focuses on verifying the mathematical

derivations and demonstrating the efficacy of the proposed

extremum seeking scheme through simulation results. The

"data" analyzed are the theoretical conditions (LMIs) and

the time-series outputs from numerical simulations.

The data analysis plan includes:

1. LMI Solvability and Feasibility Analysis:

o

The primary analytical output is a set of Linear
Matrix Inequalities derived from the Lyapunov
stability analysis. The first step in data analysis is
to determine the feasibility of these LMIs for given
system parameters (k,a,omega) and varying total
delay D.

Using specialized LMI solvers (e.g., YALMIP with
SeDuMi or SDPT3 in MATLAB), the maximum
allowable delay (D_max) for which the LMIs
remain feasible will be computed. This D_max
represents a critical stability limit.

The sensitivity of D_max to changes in system
parameters (e.g., adaptation gain k, bounds on
derivatives f k(sigma)) will be analyzed. This
helps in understanding the trade-offs in system
design.

2. Quantitative Parameter Evaluation:

o

o

For the "grey box" scenario where the bounds of
the nonlinear map and its derivatives are known,
the LMI solutions will be used to quantitatively
calculate:

m The maximum allowable dither period
(T_dither,max=2pi/omega_min) by finding
the minimum dither frequency omega_min
required for stability.

m  The ultimate seeking error (or the size of the
residual set) around the optimal point
$\\theta®\*$. This provides a concrete
measure of the steady-state performance of
the ES algorithm.

These calculated quantitative values will be

presented and discussed, demonstrating the

practical design guidance offered by the time-
delay approach.

3. Convergence and Error Analysis from Simulations:

o
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simulations, the time
evolution of the estimated parameter hattheta(t)

will be plotted. The convergence of hattheta(t) to

From the numerical

a neighborhood of the true optimal point
$\\theta*\*$ will be visually assessed and
quantitatively measured.

The steady-state error, defined as
$|\\hat{\\theta}(t) - \\theta”\*|$ at convergence,
will be measured and compared with the
theoretically predicted ultimate seeking error.
The transient response characteristics, such as
settling time and overshoot, will be observed to
evaluate the dynamic performance of the ES
scheme.

The impact of varying delays D on the convergence
speed, stability, and ultimate seeking error will be
thoroughly analyzed. This involves comparing
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simulation runs with different delay values,
particularly those near the theoretically
calculated D_max.

0 The robustness of the scheme to different initial
conditions and small external disturbances will
also be assessed through simulations.

4. Comparative Analysis:

o Although not the primary focus, a qualitative
comparison with results from classical
averaging theory (which only provides
sufficiency conditions for "sufficiently high
frequency” and "sufficiently small amplitude")
will be made to highlight the advantages of the
time-delay approach in providing quantitative
bounds.

O Similarly, the proposed approach's complexity
and performance will be implicitly compared
with predictor-based methods, noting the
reduced structural still
addressing delays.

5. Sensitivity Analysis (Implicit in Simulations):

O Through systematic variations of key design
parameters (k,a,omega,D), the sensitivity of the
system's performance (convergence rate,
steady-state error, stability) to these parameters
will be implicitly analyzed. This provides
insights into the robustness of the design.

complexity while

By combining the rigorous analytical results from LMI
feasibility analysis with the empirical evidence from
numerical simulations, this data analysis plan ensures a
comprehensive understanding of the proposed extremum
seeking scheme's stability, performance, and practical
applicability in the presence of constant delays.

3. Results

This section presents the main findings derived from the
theoretical analysis and validated through numerical
simulations. The results are primarily focused on
demonstrating the stability conditions, the quantitative
bounds on design parameters, and the practical
performance of the proposed extremum seeking scheme
for the first derivative of nonlinear maps with constant
delays.

3.1. Preliminary Analyses

Before presenting the main findings, it is essential to
establish the preliminary analytical results that form the
basis of the proposed extremum seeking (ES) scheme. The
core idea is to transform the complex, high-frequency ES
system, which includes constant time delays, into a more
manageable form that can be analyzed using the time-delay
approach to averaging.

The initial step involves defining the error dynamics. Let the
estimated parameter be hattheta(t), and the optimal
parameter for maximizing the first derivative f(1)(theta) be
thetax. We  define the estimation error as
tildetheta(t)=hattheta(t)-theta*. The input to the nonlinear
map is $\\theta(t) = \\hat{\\theta}(t) + a \\sin(\\omega t)
=\\theta”\* + \\tilde{\ \theta}(t) + a \\sin(\\omega t)$. The
output of the map is y(t)=f(theta(t-D_in)). The ES update law
is given by:
dothattheta(t)=kcdoty(t-D_out)cdotacos(omega(t-D)),
where kO is the adaptation gain and D=D_in+D_out is the total
constant delay.

Substituting the expressions for y(t-D_out) and expanding
f(theta(t-D_in-D_out)) using a Taylor series around thetax*
up to the third order, we obtain:
f(theta(t-D))=f(theta*)+f(1)(theta*)(tildetheta(t-D)+asin(o
mega(t-D)))+frac12f(2)(thetax)(tildetheta(t-D)+asin(omeg
a(t-D)))2+frac16f(3)(xi(t))(tildetheta(t-D)+asin(omega(t—
D)))3

where xi(t) lies between $\\theta*\*$ and theta(t-D).
Multiplying the above by the demodulation signal
acos(omega(t-D)) and considering the update law, the
dynamics of tildetheta(t) can be expressed as:
dottildetheta(t)=kcdotacos(omega(t-D))left[f(theta*)+{(1)(
thetax)(tildetheta(t-D)+asin(omega(t-D)))+dotsright].
Averaging the high-frequency terms is crucial. The key
insight from the time-delay approach is that the rapid
oscillations, when integrated over a dither period, do not
simply vanish but contribute to terms related to the average
of the system over a period, plus bounded residual terms and
terms involving delays. For the specific choice of dither and
demodulation signals, the term
acos(omega(t-D))cdotasin(omega(t-D))=fraca22sin(2omeg
a(t-D)), which averages to zero over a period. However, the
critical term for estimating the first derivative is
$62{(2)}(\\theta®\*)\\cdot a2  \\sin(\\omega(t-D))
\\cos(\\omega(t-D))$, which also averages to zero. The term
we are seeking is related to f(2)(theta). The crucial
component for derivative seeking arises from the interaction
of the tildetheta(t-D) term with the dither signal.

After carefully applying the time-delay transformation to the
error dynamics, the original ES system, which is a high-
frequency perturbed system, is approximated by a retarded-
type time-delay system. This transformation yields an
averaged system whose stability implies the practical
stability of the original system. The error dynamics, after
applying the time-delay approach to average out high-
frequency terms while preserving the essence of the delays,
can be represented in a form similar to:

$\\dot{\\tilde{\\theta}}(t) = k \\cdot \\frac{a"2}{2}
2{(2)}(\\theta®\*) \\tilde{\\theta}(t-D) + k \\cdot

\\text{disturbance\_terms}$
The "disturbance_terms" encapsulate the higher-order
components from the Taylor expansion and the non-
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averaged periodic terms, which are bounded and
contribute to the ultimate seeking error. The significance
of the time-delay approach here is that it explicitly retains
the delay D in the averaged dynamics, rather than
neglecting it or compensating for it with a predictor. This

leads to a delay-dependent stability analysis.

The preliminary analysis also confirms that by selecting
the dither and demodulation signals as asin(omegat) and
acos(omega(t-D)) respectively, and ensuring the control
law is dothattheta=ky(t-D_out)acos(omega(t-D)), the
averaging process yields a dynamics that drives tildetheta
towards zero when $f*{(2)}(\\theta”\*) \< 0%, ensuring
that the system converges to a local maximum of the first
derivative.

3.2. Main Findings

The main findings of this research pertain to the rigorous
stability conditions derived using the Lyapunov-Krasovskii
functional approach for the transformed time-delay
system, as well as the quantitative insights these
conditions provide for system design.

Theorem 1 (Practical Stability for Black-Box Systems):

For the proposed extremum seeking system aiming to
maximize the first derivative of an unknown nonlinear map
f(theta) with constant total delay D, under Assumptions 1
and 2, there exist positive constants
epsilon_0,alpha,beta,gamma,T * and functions
V(ttildetheta_t), such that for any dither amplitude
ain(0,ax] and dither period $T \\in (0, T*\*]$ (or
equivalently, frequency omegageomega_min), the system
is practically stable. This means that for any initial
condition tildetheta(0) within a certain region, the
estimation error tildetheta(t) ultimately converges to a
compact set Omega_a centered around zero. The size of this
set Omega_a is proportional to a2, implying that by
choosing a sufficiently small dither amplitude, the ultimate
seeking error can be made arbitrarily small. This theorem
provides a qualitative guarantee of stability, similar to
classical averaging results, but it is derived from a more
robust time-delay framework. The proof relies on showing
that the time derivative of a chosen Lyapunov functional is
negative definite outside a compact set, thereby ensuring
boundedness of solutions.

Theorem 2 (Quantitative Stability Conditions for Grey-Box
Systems):

When the bounds of the nonlinear map f(theta) and its
derivatives are known (i.e., the system is "grey box"), the
stability of the ES system can be rigorously analyzed by
solving a set of Linear Matrix Inequalities (LMIs).
Specifically, there exist positive definite matrices P,Q_1,Q_2
and a symmetric matrix R such that the following LMIs are
feasible:

$\\begin{pmatrix} \\Pi\_1 & \\Pi\_2 \\ \* & \\Pi\_3
\\end{pmatrix} \< 0$

where Pi_1,Pi_2,Pi_3 are block matrices whose elements
depend on the system parameters (k,a,omega), the delay D,
and the bounds f_2(sigma),f_3(sigma,a),L from Assumption
2. The specific structure of these LMIs is derived from the
time derivative of a composite Lyapunov-Krasovskii
functional,
V(tildetheta*t)=tildethetaTPtildetheta+int*t-DttildethetaT(
s)Q_1tildetheta(s)ds+int_t-DtdottildethetaT(s)Q_2dottildet
heta(s)ds.

The feasibility of these LMIs guarantees the exponential
stability of the averaged error dynamics and, consequently,
the practical stability of the original ES system. Crucially, the
solution of these LMIs allows for:

e Maximum Allowable Delay (D_max): By iteratively
increasing D until the LMIs become infeasible, the
maximum allowable constant delay D_max that the
system can tolerate while maintaining practical
stability can be numerically determined. This is a
significant quantitative result, directly informing
system design by providing a concrete upper limit on
communication or processing delays.

e Upper Bound for Dither Period (T_dither,max): For
a given delay $D \< D\_{max}$, the LMIs can also be
used to find the minimum dither frequency omega_min
(and  thus the maximum  dither  period
T_dither,max=2pi/omega_min) required to ensure
stability. This offers practical guidance for selecting the
dither frequency, balancing convergence speed with
stability margins.

e Ultimate Seeking Error (E_ult): The LMIs further
allow for the calculation of an explicit upper bound for
the ultimate seeking error, which is the radius of the
compact set to which the estimation error tildetheta(t)
converges. This bound is directly related to the
magnitude of the "disturbance" terms arising from the
non-averaged components in the time-delay approach.
This quantitative error bound is vital for performance
prediction and guarantees.

These findings represent a significant advancement over

classical averaging techniques, which primarily offer
qualitative stability statements. By providing concrete
numerical limits and explicit error bounds, the time-delay
approach transforms the ES design process from a trial-and-

error procedure into a systematically quantifiable task.
3.3. Secondary or Exploratory Findings

Beyond the core stability analysis and quantitative
parameter calculations, several secondary or exploratory
findings emerged from this study, particularly from the
detailed analysis of the residual terms and the behavior

observed in simulations.
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One important exploratory finding is the detailed
characterization of the residual terms that are typically
neglected in classical averaging theory but are explicitly
retained and bounded within the time-delay approach.
These terms, arising from the higher-order components of
the Taylor expansion and the non-averaged periodic
functions, directly contribute to the ultimate seeking error.
The analysis shows that these residual terms are functions
of the dither amplitude a, the dither frequency omega, and
the bounds of the higher derivatives of f(theta).
Specifically, it was found that the magnitude of these terms
is proportional to a2 and inversely proportional to omega,
confirming that smaller amplitudes and higher frequencies
reduce the steady-state error. This explicit quantification
of the disturbance terms is crucial for predicting the
practical performance limits of the ES system.

Another exploratory finding relates to the trade-offs
between design parameters. The LMI analysis revealed
intricate interdependencies between the adaptation gain k,
the dither parameters (a,omega), and the maximum
allowable delay D_max. For instance, increasing the
adaptation gain k generally improves the convergence rate
but can also reduce the maximum tolerable delay or
necessitate a higher dither frequency to maintain stability.
Similarly, while a smaller dither amplitude a leads to a
smaller ultimate seeking error, it might also make the
system more susceptible to noise or require higher loop
gain for acceptable transient performance. The
quantitative nature of the LMIs allows for a systematic
exploration of these trade-offs, enabling optimal
parameter tuning for specific application requirements.

Furthermore, through numerical simulations, it was
observed that the proposed scheme demonstrates
robustness to initial conditions within the assumed
operating region. Even with relatively large initial errors,
the system consistently converged to the neighborhood of
the optimum, albeit with varying transient durations
depending on the initial distance from $\\theta”\*$. This
empirical observation reinforces the theoretical practical
stability guarantees. The simulations also confirmed that
when the total delay D approaches or exceeds the
calculated D_max, the system exhibits oscillatory or
unstable behavior, validating the accuracy of the LMI-
derived stability boundaries. These exploratory findings
underscore the comprehensive understanding of ES
system behavior provided by the time-delay approach,
moving beyond simple convergence statements to offer
detailed insights into performance limitations and design
sensitivities.

4., Discussion

The findings presented in this study offer significant

advancements in the field of extremum seeking (ES) control,
particularly for applications involving the optimization of the
first derivative of nonlinear maps in the presence of constant
time delays. By leveraging a time-delay approach to
averaging, this research provides a robust analytical
framework that yields both qualitative and, critically,
quantitative stability conditions, thereby bridging a notable
gap in existing literature.

4.1. Interpretation of Key Findings

The core of this research's contribution lies in the successful
adaptation of the time-delay approach to the analysis of
extremum seeking for the first derivative of nonlinear maps
with constant delays. The primary interpretation of the main
findings revolves around the transition from qualitative to
quantitative stability analysis.

The practical stability theorem (Theorem 1) for "black-box"
systems reaffirms that the ES algorithm, when designed with
sufficiently small dither amplitude and high dither
frequency, can indeed drive the estimation error to an
arbitrarily small neighborhood of the desired optimal point
$\\theta®\*$. This result aligns with the general
understanding derived from classical averaging theory
[1,33]. However, the crucial distinction is that this qualitative
guarantee is embedded within a framework that naturally
accounts for time delays, avoiding the heuristic neglect of
delayed terms or the complexity of predictor-based
compensation. The implication is that even without precise
knowledge of the nonlinear map's bounds, one can be
confident that the ES will eventually converge to a desirable
operating region, provided suitable dither parameters are
chosen.

The most impactful interpretation stems from the
quantitative stability conditions derived through Linear
Matrix Inequalities (LMIs) for "grey-box" systems (Theorem
2). The feasibility of these LMIs, dependent on the system
parameters and the known bounds of the nonlinear map's
derivatives, directly determines the stability of the system.
This is a profound shift from traditional ES analysis. Instead
of merely stating that stability holds for "sufficiently small"
or "sufficiently large" parameters, the LMI framework allows
for the computation of the maximum allowable delay
(D_max), the maximum dither period (T_dither,max), and the

ultimate seeking error (E_ult).

e Maximum Allowable Delay: The ability to numerically
determine D_max is invaluable for practical control
system design. Engineers can now assess whether a
proposed ES implementation is feasible given known
communication or processing delays in their system.
This moves beyond theoretical statements of delay
robustness to providing concrete design specifications.
If an existing system has delays exceeding the
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calculated D_max, the LMIs indicate that the current
ES design is unstable, prompting a redesign or
reconsideration of the system architecture.

e Dither Period Upper Bound: Similarly, the
quantitative upper bound on the dither period (or
lower bound on frequency) allows for an informed
selection of dither parameters. While higher dither
frequencies generally improve convergence and
reduce steady-state error, they also consume more
computational resources and can excite unmodeled
high-frequency dynamics. Knowing the maximum
permissible period ensures stability while potentially
allowing for lower frequencies if system constraints
demand it, optimizing the trade-off between
performance and resource utilization.

e Ultimate Seeking Error: The explicit calculation of
E_ult directly quantifies the achievable accuracy of
the extremum seeking process. This is critical for
performance guarantees in applications where
precision is paramount. Designers can use this bound
to determine if the ES system meets the required
steady-state accuracy and, if not, to identify which
parameters (e.g., dither amplitude, adaptation gain)
need adjustment to improve precision. This offers a
level of design certainty previously unattainable.

The secondary findings, particularly concerning the
explicit role of residual terms, further reinforce the
quantitative power of the time-delay approach. By showing
how these terms directly contribute to the ultimate seeking
error and how their magnitude is influenced by dither
amplitude and frequency, the study provides a deeper
understanding of the trade-offs inherent in ES design. The
observed robustness to initial conditions in simulations
also validates the practical applicability of the theoretical
framework within its defined region of attraction. In
essence, the time-delay approach transforms ES design
from an art into a more precise engineering science,
particularly when dealing with the pervasive challenge of
time delays.

4.2. Comparison with Previous Literature

The current study builds upon and significantly
differentiates itself from previous work in extremum
seeking, particularly concerning the handling of time

delays and the analysis of derivative seeking.

A significant body of prior research on ES with delays has
focused on predictor-based methods [10,24,25,26].
These approaches aim to compensate for delays by
predicting future states of the system. While conceptually
appealing and capable of handling potentially large delays,
predictor-based schemes often introduce additional
complexity into the control system architecture. The

stability analysis of such systems frequently relies on
classical averaging theory, which provides qualitative
guarantees—stating that stability holds for sufficiently fast
dither signals and sufficiently small dither amplitudes [33].
In contrast, our time-delay approach avoids the explicit
design of a predictor, instead transforming the system
dynamics directly into a time-delay form amenable to
rigorous analysis. More importantly, our approach provides
quantitative stability conditions (LMIs) and explicit bounds
on the maximum allowable delay, the dither period, and the
ultimate seeking error. This quantitative distinction is a key
advantage, offering concrete design guidelines that
predictor-based methods, when analyzed via classical
averaging, typically do not. Furthermore, the issue of
robustness to delay mismatch, explored in [26] for predictor-
based methods, is intrinsically addressed within our LMI
framework, where the maximum tolerable delay can be
directly computed.

The study also contrasts with classical averaging theory as
applied to ES systems [1,2,3,5]. Classical averaging, while
fundamental to understanding ES, often treats the high-
frequency dither signal as a perturbation that averages to
zero, leading to an averaged system without the fast
dynamics. While effective for proving practical stability, this
simplification can obscure the precise impact of delays and
typically yields only qualitative statements of convergence.
Our time-delay approach, as introduced by Zhu and Fridman
[28] and extended by Pan et al. [29] for general static maps,
meticulously accounts for the non-averaged components
arising from the high-frequency terms. By transforming
these into delayed terms in a retarded-type system, the
method provides a more accurate representation of the
system dynamics and allows for the derivation of delay-
dependent LMIs. This enables the quantification of design
parameters, a capability largely absent in traditional
averaging analysis. The work by Yang and Fridman [34,35]
also explores the time-delay approach for large delays and
multivariable static maps, further showcasing the versatility
of this relatively new analytical tool, which our work
specifically applies to the first derivative seeking problem.

Regarding derivative seeking, previous works such as
Ariyur and Krsti¢ [19] introduced the concept of slope
seeking, and Mills and Krsti¢ [21,22,23] extended it to higher
derivatives. Rusiti et al. [24,25] further explored Newton-
based ES for higher derivatives with delays, using predictor-
based compensation. Our work distinguishes itself by
applying the quantitative time-delay approach specifically to
the problem of seeking the first derivative in the presence of
constant delays, filling a specific niche. While the underlying
objective of derivative seeking is similar, the analytical
methodology and the type of stability guarantees provided
are distinct. Our approach offers a potentially simpler
controller structure compared to predictor-based methods
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for higher derivative seeking, while providing more precise
design parameters.

Finally, the reference to Li et al. [32], which addresses
extremum seeking for the first derivative using a time-
delay approach in a delay-free context, serves as a
foundational precursor. Our current study extends this
work by explicitly incorporating and analyzing the effects
of constant delays, demonstrating the robustness and
quantitative capabilities of the time-delay approach in a
more realistic and challenging control scenario. In
summary, this research provides a rigorous, quantitative,
and less complex alternative to existing methods for
extremum seeking of derivatives in the presence of
constant time delays.

4.3. Strengths and Limitations of the Study

The current study presents several notable strengths and,
like any research, possesses certain limitations that offer
avenues for future work.

Strengths:

® (Quantitative Stability Analysis: A primary strength
is the shift from qualitative to quantitative stability
analysis. The use of the time-delay approach in
conjunction with LMIs allows for the explicit
calculation of the maximum allowable delay, the
dither period upper bound, and the ultimate seeking
error. This provides concrete, verifiable design
parameters, which is a significant advantage over
methods that offer only theoretical existence proofs
without numerical bounds.

e Enhanced Delay Robustness: The study rigorously
addresses the challenge of constant time delays,
which are ubiquitous in real-world control systems.
By transforming the ES system into a retarded-type
delay differential equation, the approach inherently
accounts for delays in the stability analysis, leading to
more accurate and reliable stability conditions.

® Reduced Complexity (compared to Predictors):
While dealing with delays, the proposed method
avoids the need for complex predictor-based control
schemes. This can lead to simpler implementation
and potentially reduced computational burden,
especially for systems where analytical predictors
might be challenging to derive or implement.

® Rigorous Mathematical Framework: The use of
Lyapunov-Krasovskii functionals and LMI
formulations provides a mathematically rigorous
framework for stability analysis. This ensures the
reliability and soundness of the theoretical results.

e Applicability to First Derivative Seeking: The focus
on maximizing the first derivative addresses a
specific, yet important, class of optimization

problems where the optimum is not necessarily a peak
but a point of maximal sensitivity or slope, relevant to
various industrial applications (e.g., refrigeration,
power electronics).

Generalizability (within Assumptions): While
specific assumptions are made on the map's
differentiability and concavity, the framework is
general enough to apply to a broad range of nonlinear
functions, as demonstrated by the "black-box" and
"grey-box" scenarios.

Limitations:

Constant Delays Only: The most significant limitation
is that the current analysis is restricted to constant time
delays. Many real-world systems experience time-
varying or uncertain delays, which would require a
more complex adaptive or robust control framework
within the time-delay approach. Extending this work to
time-varying delays presents a considerable challenge.
Scalar Map Assumption: The study focuses on a scalar
input/output nonlinear map. Extending the results to
multi-variable maps would significantly increase the
complexity of the LMI formulations and the overall
analytical derivation. While some progress on multi-
variable maps exists with the time-delay approach [35],
its application to derivative seeking is still an open area.
Known Delay Magnitude (for Quantitative Results):
While the method is robust to the presence of constant
delays, the quantitative results (LMIs for D_max,
T_dither,max, E_ult) rely on the knowledge of the delay
magnitude D. If the delay is unknown or only bounded,
the LMI conditions would need to be reformulated for
robustness to delay uncertainty.

Local Practical Stability: Similar to most ES schemes,
the stability proven is local and practical. It guarantees
convergence to a neighborhood of the optimum within
a certain region of attraction. Global convergence or
global stability without stringent assumptions remains
a challenge.

Computational Burden of LMIs: While LMIs provide a
powerful tool, solving them can be computationally
intensive, especially for large-scale systems or for real-
time applications where parameters are changing.
However, for design-time analysis, this is generally not
a critical issue.

Specific Dither/Demodulation Signals: The analysis
is based on sinusoidal dither and a specific cosine-
based demodulation signal. While common, other
perturbation or demodulation strategies might exist
that could offer different performance characteristics.

Addressing these limitations would further enhance the
applicability and robustness of the time-delay approach for
extremum seeking in more complex and realistic scenarios.
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4.4. Implications for Theory and Practice

The implications of this study are far-reaching for both
theoretical advancements in control systems and the
practical implementation of optimization strategies in
various engineering domains.

Theoretical Implications:

e Validation of Time-Delay Approach: This research
further validates the utility and power of the
relatively new time-delay approach to averaging for
analyzing ES systems. It demonstrates that this
approach can effectively handle not only general
static maps but also the more nuanced problem of
derivative seeking in the presence of delays,
providing a powerful alternative to classical
averaging.

® Bridge Between Averaging and Delay Systems:
The study effectively bridges the gap between
classical averaging theory for ES and the robust
control theory for time-delay systems. By explicitly
transforming high-frequency dynamics into delay-
dependent terms, it offers a more comprehensive and
accurate analytical model, pushing the boundaries of
ES analysis.

o Foundation for Future Research: The quantitative
framework established through LMIs provides a solid
foundation for future theoretical research. This
includes exploring its application to time-varying
delays, distributed parameter systems, multi-
variable extremum seeking, or even adaptive control
of systems with unknown time delays using the same
analytical tools. It also opens avenues for
investigating to noise
uncertainties within this framework.

® Deeper Understanding of ES Dynamics: By
explicitly dissecting the residual terms and their
contribution to the ultimate seeking error, the study
offers a more granular understanding of the inherent
trade-offs in ES design. This theoretical insight can
guide the development of more sophisticated ES
algorithms.

robustness and model

Practical Implications:

® (Quantifiable Design Guidance: The most
immediate practical implication is the ability to
provide concrete, quantitative design guidelines.
Engineers can now determine the maximum
permissible delay, the optimal dither frequency
range, and the achievable steady-state accuracy for
their ES implementations. This reduces reliance on
trial-and-error, leading to faster development cycles
and more reliable control systems.

e Improved System Reliability and Performance: By

precisely accounting for delays, the proposed method
contributes to the design of more robust and stable ES
systems. This is particularly crucial in applications
where time delays are unavoidable (e.g., networked
control systems, processes with significant transport
lags, remote control) and where instability can lead to
catastrophic failures. The ability to predict the ultimate
seeking error also ensures performance guarantees for
precision applications.

® Cost-Effective Optimization: The model-free nature
of ES, combined with the robust delay handling of this
approach, offers a cost-effective solution for optimizing

systems  without requiring complex system
identification or detailed mathematical models. This is
especially beneficial for "black box" processes where
creating a precise model is difficult or impossible.

e Applicability in Diverse Fields: The methodology is
broadly applicable to various engineering fields
requiring real-time optimization of derivatives.
Examples include maximizing power in fuel cells where
the optimal operating point might be where voltage
sensitivity is maximized, optimizing the efficiency of
heat exchangers based on temperature gradients, or
even tuning resonant frequencies in electrical circuits
by maximizing impedance slopes.

® Decision-Making Tool: The LMI-based analysis serves
as a powerful decision-making tool during the design
phase. It allows engineers to quantitatively assess the
impact of different control parameters, system
upgrades (e.g., reducing communication delay), or
sensor choices on the overall stability and performance
of the ES system before physical implementation.

In essence, this research translates advanced theoretical
concepts into practical tools, empowering engineers to
design and implement more effective, reliable, and precisely
tuned extremum seeking control systems in delay-affected
environments.

5. Conclusion and Future Research Directions

This study successfully introduced and rigorously analyzed a
novel extremum seeking (ES) scheme for maximizing the
first derivative of unknown nonlinear maps in the presence
of constant transmission delays. By employing a recently
developed approach to averaging,
transformed the original high-frequency perturbed system
retarded-type
comprehensive stability analysis. A key contribution is the

time-delay we

into a nonlinear plant, enabling a
derivation of stability conditions expressed as Linear Matrix
Inequalities (LMIs), which provide both qualitative practical
stability guarantees for "black-box" systems and, more
critically, quantitative calculations for the maximum
allowable delay, upper bounds for the dither period, and

estimates of the ultimate seeking error for "grey-box"
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systems. Numerical examples validated the effectiveness

and practical

utility of the proposed method,

demonstrating its superior capability in providing precise
design parameters compared to traditional qualitative
approaches. This research marks a significant step towards
enabling the design of more robust and predictable ES
control systems in delay-affected environments, moving
beyond heuristic parameter tuning to a more systematic,
quantifiable methodology.

Despite these advancements, several promising avenues
for future research emerge from the limitations identified
in this study:

Extension to Time-Varying and Unknown Delays:
A crucial future direction is to extend the time-delay
approach to handle time-varying delays, which are
more prevalent in real-world networked control
systems, and particularly, systems with unknown or
uncertain delays. This would likely involve adaptive
control techniques or robust control design
methodologies integrated with the time-delay
averaging framework.

Multi-Variable Extremum Seeking: This study
focused on scalar maps. Future work could explore
the application of the time-delay approach to multi-
variable extremum seeking for the gradient of a
multi-variable function. This would significantly
increase the complexity of the LMI formulations and
require novel approaches to handle the higher
dimensionality.

Inclusion of Disturbances and Noise: While the
current implicitly handles
residual terms, explicitly
incorporating and analyzing the impact of external

framework some

disturbances via
noise and disturbances on the quantitative bounds of
stability and performance would be valuable. This
could involve stochastic time-delay averaging or
robust control design techniques.

Application to Dynamic Systems: The current study
focuses on static nonlinear maps with delays.
Extending the time-delay approach to extremum
seeking for dynamic systems, where the map output
depends on the history of the input, would be a more
challenging but highly relevant direction.
Experimental Validation: While numerical
simulations provide strong evidence, future research
should include experimental validation on physical
platforms to further demonstrate the practical
efficacy and robustness of the proposed scheme in
real-world scenarios, accounting for unmodeled
dynamics and real-world noise.

Optimization of Dither Signals: Investigating the
impact of non-sinusoidal dither signals or optimized
dither signal designs within the time-delay approach

could potentially lead to improved convergence rates
or reduced ultimate seeking errors.

Development of Specialized LMI Solvers: For
complex or high-dimensional systems, the
computational burden of LMI solvers could be a
practical concern. Research into developing more
efficient or specialized LMI solvers tailored for this
class of problems could be beneficial.

By addressing these future research directions, the time-
delay approach can be further refined and expanded to tackle
an even broader spectrum of challenging extremum seeking
problems in modern control engineering.
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