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ABSTRACT 

 
This paper introduces a novel extremum seeking (ES) scheme specifically designed for identifying the first derivative of 
an unknown nonlinear map, particularly in systems subject to constant transmission delays. Traditional approaches often 
rely on predictor-based methods to compensate for delays, which can introduce significant complexity. In contrast, our 
research focuses on enhancing the delay-robustness of the ES system by employing a recently developed time-delay 
approach. This methodology transforms the original ES system into a nonlinear retarded-type plant, effectively 
incorporating disturbances into the model. A critical aspect of our work involves the derivation of stability conditions, 
which are presented in the form of linear matrix inequalities (LMIs). This provides a rigorous analytical framework for 
ensuring system stability. Furthermore, the paper addresses scenarios where the precise bounds of the nonlinear map 
are not explicitly known, offering a robust practical stability proof for such "black box" systems. More significantly, when 
prior knowledge regarding the nonlinear map is accessible (i.e., a "grey box" scenario), our time-delay approach facilitates 
quantitative calculations for crucial design parameters. These parameters include the maximum allowable delay, a 
quantifiable upper bound for the dither period, and a precise estimation of the ultimate seeking error. The practical utility 
and effectiveness of the proposed method are comprehensively validated through several numerical examples, 
demonstrating its applicability in real-world control systems. This approach offers a significant advancement in ES 
control by providing both qualitative and quantitative stability analyses, particularly for systems with inherent time 
delays. 

Keywords: extremum seeking; time delay; nonlinear system; first derivative; time-delay approach. 

 

1. Introduction 

1.1. Broad Background and Historical Context 

Extremum seeking (ES) is a powerful, feedback-adaptive 

control strategy that enables dynamic plants to 

autonomously locate and converge to the extrema of 

unknown objective functions. This technique has garnered 

substantial attention in various engineering and scientific 

disciplines due to its model-free nature, allowing for real-

time optimization without requiring explicit knowledge of 

the system's underlying mathematical model. The 

foundational analytical framework for ES schemes was 

rigorously established in 2000, marking a pivotal moment 

in the development of this field [1]. Since this seminal 

work, the theoretical understanding and practical 

applications of ES algorithms have undergone extensive 

advancements. 

The theoretical progress in ES has been multifaceted. 

Researchers have explored aspects such as non-local 

stability properties, delving into the global convergence 

characteristics of ES systems beyond local optimality [2]. 

Stochastic ES has also emerged as a significant area, 

addressing scenarios where system measurements or 

disturbances are inherently noisy [3,4]. The development 

of sampled-data ES has been crucial for implementing these 

algorithms in digital control systems, considering the 

discrete nature of data acquisition and control actions [5,6]. 

Furthermore, advanced mathematical tools, such as Lie-

bracket approximations, have been employed to provide 

deeper insights into the underlying dynamics and stability of 

ES systems [7,8]. The extension of ES to distributed systems 

has allowed for the optimization of interconnected and 

dynamically coupled agents over networks, facilitating large-

scale optimization problems [9]. Crucially, the impact of time 

delays on ES systems has been a consistent area of research, 

with initial investigations addressing their effects on static 

maps [10] and more recently, on systems with distributed 

delays [11]. These theoretical advancements have paved the 

way for a myriad of practical applications across diverse 

domains, including but not limited to, anaerobic digestion 

processes [12], energy management strategies for 

hybridized electric vehicles [13], dual-axis solar trackers 

[14], and harmonic mitigation in electrical grids of marine 

vessels [15]. A comprehensive survey of the field over the 

past century highlights the breadth and depth of ES research 

and its enduring relevance [16]. 

1.1. Broad Background and Historical Context 
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The concept of extremum seeking, though formalized 

relatively recently, has roots that can be traced back to 

early attempts at automatic optimization. The fundamental 

idea revolves around perturbing a system's input and 

observing the resulting change in output to infer the 

direction of the optimum. This iterative process allows the 

system to "seek" the extremum without requiring a 

mathematical model of the function being optimized. Early 

practical implementations often involved simple dither 

signals and demodulation techniques, paving the way for 

more rigorous theoretical analysis. The groundbreaking 

work by Krstić and Wang in 2000 provided a rigorous 

analytical framework for ES, establishing its stability 

properties and opening new avenues for research [1]. This 

foundational paper laid the groundwork for understanding 

the local stability of ES feedback for general nonlinear 

dynamic systems. Subsequent research expanded upon 

this, investigating non-local stability properties and the 

conditions under which ES control can achieve global 

optimization [2]. The integration of stochastic analysis led 

to the development of stochastic ES algorithms, which are 

more robust to noise and disturbances commonly 

encountered in real-world applications [3,4]. The evolution 

of control systems towards digital implementations 

necessitated the study of sampled-data ES, addressing the 

unique challenges posed by discrete-time measurements 

and control actions [5,6]. Furthermore, the application of 

sophisticated mathematical tools, such as Lie bracket 

approximations, has provided deeper theoretical insights 

into the behavior of ES systems, linking them to geometric 

control theory [7,8]. The increasing complexity of modern 

systems has also driven research into distributed ES, 

where multiple interconnected agents cooperatively seek 

an extremum [9]. Throughout this historical progression, 

the challenge of time delays has remained a persistent 

concern, prompting the development of various 

compensation strategies [10,11]. 

1.2. Critical Literature Review 

While the majority of existing literature on extremum 

seeking primarily focuses on finding the extrema (i.e., 

maximum or minimum) of an unknown objective function, 

a distinct and equally important line of research has 

emerged concerning the seeking of derivatives, 

particularly the first derivative or "slope" [19]. This 

interest arises in applications where the desired operating 

point is not necessarily an extremum but rather a point of 

maximum sensitivity or a specific gradient. For instance, in 

refrigeration systems, the optimal operating point might 

correspond to the maximum slope of a performance curve 

rather than its peak, particularly for objective functions 

exhibiting sigmoid-like characteristics [17,18]. Vinther et 

al. explored methods for evaporator superheat control 

using a single temperature sensor, demonstrating the 

utility of qualitative system knowledge and a novel 

maximum slope-seeking method [17,18]. Further extending 

this concept, Ariyur and Krstić introduced a "slope seeking" 

methodology, a generalization of extremum seeking, which 

incorporates a slope reference signal into a perturbation-

based ES algorithm [19]. This marked a significant departure 

from traditional ES by explicitly targeting derivative 

information. 

The pursuit of higher derivatives has also been a focal point. 

Moase et al. developed a Newton-like ES system that 

leverages estimates of the second derivative of the unknown 

function, particularly for controlling thermoacoustic 

instability [20]. Building upon these ideas, Mills and Krstić 

generalized the selection of demodulation signals to enable 

the estimation of a map's n-th derivatives on average [21,22]. 

They proposed a scalar Newton-based ES system designed to 

maximize higher derivatives of unknown maps [23]. This 

work was further extended to the realm of stochastic ES, 

providing methodologies for maximizing higher derivatives 

in the presence of noise and uncertainty [22]. The challenge 

of time delays in higher-derivative seeking systems was 

addressed by Rušiti et al., who proposed a Newton-based ES 

scheme that incorporated a predictor to compensate for 

known and constant delays [24]. Subsequent research by 

Rušiti et al. further refined these Newton-based ES methods 

for higher-derivative maps, specifically focusing on systems 

with time-varying and uncertain delays, and analyzing their 

robustness to delay mismatch [25,26]. 

A relatively new and promising direction in ES research is the 

"time-delay approach" to averaging. This approach, inspired 

by the work of Fridman and Zhang on averaging of linear 

systems with almost periodic coefficients [27], offers an 

alternative to the classical averaging method commonly 

employed in ES stability analysis. Zhu and Fridman were 

instrumental in developing a constructive time-delay 

approach for the stability analysis of gradient-based ES 

control systems [28]. More recently, Pan et al. expanded the 

applicability of this time-delay approach for ES schemes from 

specific quadratic maps to more general nonlinear maps 

[29]. A key advantage of the time-delay approach, when 

compared to classical averaging methods, lies in its ability to 

provide quantitative upper bounds on critical parameters, 

such as the dither period [28,29]. This quantitative insight is 

invaluable for the practical design and implementation of ES 

systems, offering concrete guidance for parameter tuning 

and performance prediction. 

The presence of time delays, arising from various sources 

like computation, measurement, and transmission, is a well-

recognized challenge in control systems, often leading to 

instability [30,31]. In the context of real-time optimization 

strategies like ES, the detrimental impact of time delays is 

particularly pronounced. Current predictor-based methods, 
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as seen in [10,24-26], attempt to mitigate delays by actively 

compensating for them through predictors, theoretically 

enabling them to handle arbitrarily large delays. However, 

these methods introduce additional complexity to the 

system. Furthermore, predictor-based methods typically 

rely on classical averaging theory for stability proofs, 

which primarily offer a qualitative analysis [33]. This 

means they can assert practical stability if the dither 

frequency is sufficiently high and the dither magnitude is 

sufficiently small, but they do not provide precise 

quantitative limits. This qualitative nature limits their 

utility in practical design where specific bounds and 

performance guarantees are often required. 

1.3. The Identified Research Gap 

Despite significant advancements in extremum seeking, 

particularly in addressing systems with time delays and in 

seeking higher derivatives, a notable research gap persists 

concerning the quantitative analysis of delay-robustness 

for extremum seeking of the first derivative of nonlinear 

maps when subjected to constant time delays. While 

predictor-based methods exist for handling delays in 

higher-derivative ES [24-26], they often lead to increased 

system complexity and primarily offer qualitative stability 

guarantees. The classical averaging method, a cornerstone 

of ES analysis, also provides qualitative insights, stating 

that practical stability is achieved when dither frequency is 

sufficiently high and amplitude is sufficiently low [33]. 

However, this qualitative understanding lacks the 

precision needed for robust engineering design, 

particularly in determining the maximum allowable delay, 

optimal dither periods, and ultimate seeking errors. 

The recently developed time-delay approach to averaging 

[27-29] has shown promise in providing quantitative 

bounds for ES systems, but its application to the specific 

problem of seeking the first derivative of nonlinear maps 

with constant delays remains underexplored. Previous 

work considering the delay-free case [32] represents a 

preliminary step, but a comprehensive analysis 

incorporating constant delays within this quantitative 

framework is critically needed. Therefore, a methodology 

that can transform the ES system into a form amenable to 

the time-delay approach, allowing for rigorous 

quantitative analysis of delay robustness without 

introducing excessive complexity, constitutes a significant 

research gap. Such a methodology would enable designers 

to achieve a better balance between convergence rate and 

delay handling capabilities, moving beyond the limitations 

of qualitative stability analysis. This gap is particularly 

relevant as robust and quantifiable solutions are crucial for 

the practical implementation of ES in real-world systems 

with unavoidable communication and computation 

latencies. 

1.4. Study Rationale, Objectives, and Hypotheses 

The rationale behind this study stems from the critical need 

for robust and quantifiable extremum seeking solutions in 

systems where time delays are inherent and the objective is 

to optimize the first derivative of an unknown nonlinear 

map. The limitations of existing qualitative analyses and the 

complexity introduced by predictor-based delay 

compensation methods highlight a clear demand for 

alternative approaches that offer precise quantitative 

insights into system stability and performance. 

The primary objective of this research is to develop and 

analyze an extremum seeking (ES) scheme for the first 

derivative of nonlinear maps with constant transmission 

delays, leveraging the newly developed time-delay approach 

for delay-robustness analysis. This overarching objective can 

be broken down into several specific aims: 

● Design a suitable demodulation signal: The first 

objective is to meticulously design a demodulation 

signal capable of accurately estimating the gradient of 

the map's first derivative even in the presence of 

constant delays. This involves selecting appropriate 

dither and demodulation frequencies and amplitudes 

to ensure proper signal extraction in delayed 

environments. 

● Transform the ES system using the time-delay 

approach: The second objective is to rigorously 

transform the original ES system (which is a high-

frequency perturbed system) into an equivalent time-

delay system by applying the time-delay approach to 

averaging [28,29]. This transformed system will then 

be further reformulated as a retarded-type model with 

disturbances, facilitating a more tractable and accurate 

stability analysis compared to classical averaging 

methods that discard high-frequency terms. 

● Derive stability conditions via Lyapunov 

functional: A key objective is to derive rigorous 

stability conditions for the transformed time-delay 

system using a specially constructed Lyapunov 

functional. This functional will incorporate the system 

states and their delayed counterparts, allowing for the 

derivation of conditions expressed as Linear Matrix 

Inequalities (LMIs). These LMIs provide a convex 

optimization problem that can be efficiently solved to 

determine the stability margins. 

● Provide practical stability analysis for unknown 

maps: For scenarios where the nonlinear map's 

bounds are unknown (a "black box" system), an 

objective is to provide a comprehensive and rigorous 

practical stability analysis. This involves demonstrating 

that the system states remain bounded within a certain 

neighborhood of the desired optimum, even without 

precise knowledge of the map's characteristics, thereby 
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ensuring robustness. 

● Quantify key parameters for known map bounds: 

Crucially, for cases where prior knowledge about the 

nonlinear map (i.e., its bounds) is available ("grey 

box" system), an objective is to quantitatively 

calculate critical design parameters: the maximum 

allowable delay, the upper bound of the dither period, 

and the ultimate seeking error. This quantitative 

approach offers significant practical advantages for 

system design and tuning, enabling engineers to 

predict and guarantee performance. 

Based on these objectives, we hypothesize the following: 

● Hypothesis 1: The proposed extremum seeking 

scheme, incorporating a specifically tailored 

demodulation signal and utilizing the time-delay 

approach, will effectively estimate the first derivative 

of nonlinear maps even in the presence of constant 

delays, demonstrating superior performance 

compared to conventional methods lacking explicit 

delay handling in this context. 

● Hypothesis 2: The transformation of the original ES 

system into a retarded-type model using the time-

delay approach will enable the derivation of 

comprehensive stability conditions expressed as 

LMIs, providing a robust analytical framework that 

allows for the determination of delay-dependent 

stability. 

● Hypothesis 3: The time-delay approach will facilitate 

a rigorous practical stability proof for systems with 

unknown nonlinear map bounds, providing 

guarantees of boundedness and convergence to a 

neighborhood of the optimum. 

● Hypothesis 4: For systems where nonlinear map 

bounds are known, the time-delay approach will 

enable precise quantitative determination of the 

maximum allowable delay, dither period upper 

bound, and ultimate seeking error, offering valuable 

guidance for ES system design and parameter tuning 

that is currently unavailable through qualitative 

methods. 

● Hypothesis 5: The proposed approach will 

demonstrate superior delay-robustness and provide 

more practical design guidelines compared to 

traditional predictor-based methods and classical 

averaging techniques, particularly by offering 

quantitative insights where others provide only 

qualitative assessments, thereby bridging the gap 

between theoretical analysis and practical 

implementation. 

2. Methods 

This section details the research design, 

participant/sample considerations (though not directly 

applicable to a theoretical control systems paper, this section 

will discuss the nature of the systems under study), materials 

and apparatus (referring to the mathematical models and 

signals used), the experimental procedure/data collection 

protocol (describing the analytical and simulation 

methodologies), and the data analysis plan. 

2.1. Research Design 

The research design for this study is fundamentally 

analytical and theoretical, complemented by numerical 

simulations to validate the derived stability conditions and 

quantitative calculations. The core of the approach involves 

a rigorous mathematical framework, specifically adapting 

and extending the time-delay approach to averaging for the 

analysis of extremum seeking systems. 

The design begins by defining the specific extremum seeking 

system under consideration: one that aims to maximize the 

first derivative of an unknown nonlinear map, subject to 

constant transmission delays. This system's behavior is 

modeled as a closed-loop control system, as depicted in a 

typical extremum seeking block diagram. The system 

incorporates a periodic perturbation (dither) signal and a 

demodulation signal designed to extract gradient 

information. A critical aspect of the design involves explicitly 

accounting for both input and output delays, denoted as D_in 

and D_out respectively, with the total system delay being 

D=D_in+D_out. 

The analytical approach follows several key steps: 

1. System Modeling: The system dynamics are 

formulated based on the interaction between the 

unknown nonlinear map y(t)=f(theta(cdot)), the dither 

signal, and the feedback loop, including the effects of 

delays. The control input to the map is given by 

theta(t)=hattheta(t)+asin(omegat), where hattheta(t) 

is the adapted parameter, a is the dither amplitude, and 

omega is the dither frequency. The output of the map, 

after being subject to output delay D_out, is fed back to 

the ES controller. The ES controller then updates 

hattheta(t) based on the demodulated signal. 

2. Demodulation Signal Design: A specific 

demodulation signal, typically acos(omega(t−D)), is 

designed to estimate the gradient of the map's first 

derivative in the presence of constant delays. The 

effectiveness of this demodulation relies on the 

fundamental principles of ES, where the product of the 

output and the demodulation signal, after low-pass 

filtering, provides an estimate of the desired derivative. 

3. Time-Delay Approach Application: The central 

element of the research design is the application of the 

time-delay approach to averaging. This involves 

transforming the original extremum seeking system 

(which is a high-frequency perturbed system, difficult 
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to analyze directly due to the fast oscillations) into an 

equivalent time-delay system. This transformation is 

critical as it avoids the classical averaging 

approximation that often neglects high-frequency 

terms entirely. Instead, the time-delay approach 

explicitly retains the effect of these high-frequency 

components by converting them into delayed terms, 

leading to a more accurate model for stability 

analysis, especially in the presence of delays. The 

transformation involves a change of variables to 

isolate the slow and fast dynamics, followed by the 

application of integral transformations to derive a 

retarded-type delay differential equation. 

4. Stability Analysis via Lyapunov Functional: The 

stability of the transformed time-delay system is then 

rigorously analyzed using a specially constructed 

Lyapunov functional. This functional, which depends 

on the current and past states of the system (due to 

the delays), allows for the derivation of stability 

conditions expressed as Linear Matrix Inequalities 

(LMIs). LMIs are powerful tools in control theory 

because they represent convex optimization 

problems, enabling efficient computation of stability 

regions and maximum allowable delays. The 

derivation involves calculating the time derivative of 

the Lyapunov functional and imposing conditions for 

its negative definiteness. 

5. Quantitative Parameter Calculation: For scenarios 

where bounds on the nonlinear map are available 

("grey box" systems), the research design includes a 

methodology for quantitatively calculating critical 

design parameters: the maximum allowable delay 

(D_max), the upper bound of the dither period 

(T_dither,max), and the ultimate seeking error 

(E_ult). These calculations are derived directly from 

the LMI conditions and the properties of the 

Lyapunov functional, providing concrete values 

rather than vague qualitative statements. 

6. Practical Stability Proof for Unknown Bounds: In 

cases where the map's bounds are unknown ("black 

box" systems), a rigorous proof of practical stability 

is provided. This proof demonstrates that the system 

states (specifically the estimation error) remain 

bounded within a certain neighborhood of the 

desired optimum. While not providing exact 

quantitative values, this proof ensures the 

robustness and operational stability of the ES scheme 

even with limited prior knowledge. 

7. Numerical Validation: The theoretical findings are 

substantiated through numerical examples. These 

simulations demonstrate the effectiveness and 

practical applicability of the proposed method under 

various operating conditions and delay magnitudes. 

The simulations are designed to illustrate the 

convergence of the ES algorithm, the impact of 

delays, and the accuracy of the quantitative predictions. 

This involves implementing the derived ES algorithm in 

a simulation environment (e.g., MATLAB/Simulink) 

and observing the system's behavior. 

The design emphasizes a contrast with classical averaging 

methods, highlighting how the time-delay approach offers 

quantitative design guidance, which is often lacking in 

traditional qualitative analyses, thereby providing a more 

practical and robust framework for ES system design in the 

presence of delays. 

2.2. Participants/Sample 

In the context of this theoretical control systems research, 

"participants" or "sample" refers to the specific classes of 

nonlinear maps and system configurations investigated. 

There are no human or biological participants involved. The 

study focuses on a scalar steady-state nonlinear map defined 

as y(t)=f(theta(cdot)), where y(t)inmathbbR is the 

measurable output and thetainmathbbR is the scalar input. 

The function f(theta) is assumed to be an unknown nonlinear 

function whose first derivative, f(1)(theta), is to be 

extremum-sought. The objective is to maximize this first 

derivative, implying that the optimal operating point theta∗ 

is where f(2)(theta∗)=0 and $f^{(3)}(\\theta^\*) \< 0$. 

The "sample" of nonlinear maps considered adheres to 

specific assumptions crucial for the analytical framework: 

● Assumption 1: There exists an optimal point 

$\\theta^\* \\in \\mathbb{R}$, a positive constant 

sigma0, and a small dither amplitude a0 such that the 

function f(theta) is three times continuously 

differentiable (C3) within the interval $(\\theta^\* - 

\\sigma - a, \\theta^\* + \\sigma + a)$. This 

assumption is fundamental for the Taylor series 

expansions utilized in the analysis of the system's 

dynamics around the optimum. Furthermore, it is 

assumed that the collection of maxima where 

f(1)(theta) is locally concave, denoted as 

$\\theta\_{max} = {\\theta | f^{(2)}(\\theta) = 0, 

f^{(3)}(\\theta) \< 0}$, is non-empty and contains 

theta∗. A key inequality $f^{(2)}(\\theta^* + 

\\Delta)\\cdot\\Delta \\le -

\\mu(\\sigma)\\cdot\\Delta^2 \< 0$ for small 

$\\Delta = \\theta - \\theta^\*$ and a positive 

constant mu(sigma) is also assumed, ensuring the 

concavity property around the desired maximum of the 

first derivative. This concavity is crucial for the 

convergence of the ES algorithm. 

● Assumption 2: For any $|\\Delta| \< \\sigma$ and the 

defined 'a' from Assumption 1, and for 

overlinezetain[−1,1], the absolute values of 

$f(\\theta^\* + \\Delta)$ and its first, second, and third 

derivatives (f(1),f(2),f(3)) are bounded by known 
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positive constants f_0(sigma), f_1(sigma), f_2(sigma), 

f_3(sigma), and f_3(sigma,a) respectively. 

Specifically, $|f^{(k)}(\\theta^\* + \\Delta + 

a\\overline{\\zeta}\\sin(\\omega t))| \\le 

f\_k(\\sigma)$ for k=0,1,2, and $|f^{(3)}(\\theta^\* 

+ \\Delta + a\\overline{\\zeta}\\sin(\\omega t))| 

\\le f\_3(\\sigma, a)$. Additionally, a Lipschitz-like 

condition on the second derivative, 

$|f^{(2)}(\\theta^*+\\Delta) - f^{(2)}(\\theta^*)| \< 

L|\\Delta|$, is assumed with a known positive 

constant L. These bounds are particularly important 

for the quantitative analysis provided by the time-

delay approach, as they allow for explicit calculation 

of the ultimate seeking error and other design 

parameters. 

The study implicitly considers a range of system 

parameters for simulations, including: 

● Adaptation gain k0, which dictates the speed of 

convergence of the ES algorithm. 

● Amplitude a and frequency omega of the dither signal 

S(t)=acdotsin(omegat). These parameters are critical 

for excitation and proper demodulation. 

● Input and output delays D_in and D_out, which are 

known positive constants, contributing to the total 

delay D=D_in+D_out. The analysis is specifically 

focused on the impact of these constant delays. 

● Initial conditions for the estimation error 

$\\hat{\\theta}(t) \\in [\\theta^\* - \\sigma\_0, 

\\theta^\* + \\sigma\_0]$ for tin[0,D], with 

$\\sigma\_0 \< \\sigma$. This ensures that the 

system starts within the region where the 

assumptions on the map hold. 

The choice of these assumptions and parameters ensures 

that the analytical framework is applicable to a broad class 

of relevant nonlinear systems encountered in control 

engineering, allowing for both general theoretical insights 

and specific quantitative predictions where system 

characteristics are partially known. 

2.3. Materials and Apparatus 

In the context of this theoretical and computational study, 

"materials and apparatus" refer to the mathematical 

models, equations, algorithms, and computational tools 

utilized. There are no physical materials or laboratory 

equipment involved. 

The primary "apparatus" for this research is the 

mathematical framework of control theory, specifically: 

● Nonlinear System Dynamics: The core "material" is 

the scalar steady-state nonlinear map y=f(theta), 

which represents the unknown system whose first 

derivative is to be optimized. The explicit form of this 

function is not assumed to be known a priori by the ES 

algorithm, reflecting a "black box" or "grey box" 

scenario. The system incorporates an integrator, where 

the control input hattheta(t) is integrated to drive the 

map input, and a dither signal is added. The system's 

dynamic model is described by the equations: 

dothattheta=kcdottextdemodulated_signal 

theta(t)=hattheta(t)+asin(omegat) 

y(t)=f(theta(t−D_in)). 

The output is then observed at time t+D_out relative to 

its generation. 

● Dither Signal: A sinusoidal dither signal 

S(t)=asin(omegat) is used. The amplitude a is small, and 

the frequency omega is high, consistent with standard 

extremum seeking practices. The choice of dither signal 

is crucial for introducing the necessary probing action 

to estimate the gradient. 

● Demodulation Signal: The demodulation signal is 

specifically designed as acos(omega(t−D)), where 

D=D_in+D_out is the total constant delay. This specific 

form is chosen to effectively extract the first derivative 

information from the delayed output signal, acting as a 

"lock-in amplifier." The demodulated signal is then low-

pass filtered (conceptually, through the averaging 

process) and multiplied by the adaptation gain k to 

update the estimate hattheta. 

● Lyapunov Functional Analysis: This is a key 

analytical "apparatus." A specific quadratic Lyapunov 

functional is constructed, taking into account the 

delayed states of the system. The time derivative of this 

functional is then calculated along the trajectories of 

the system. The conditions for the negative definiteness 

of this derivative lead to the stability conditions. 

● Linear Matrix Inequalities (LMIs): LMIs serve as a 

critical computational "material" and "apparatus." The 

stability conditions derived from the Lyapunov 

functional are formulated as LMIs. These are powerful 

mathematical tools that allow for convex optimization 

problems to be solved efficiently using specialized LMI 

solvers. In this study, LMIs are used to determine the 

maximum allowable delay, the upper bound for the 

dither period, and the ultimate seeking error, based on 

the system parameters and the bounds on the 

nonlinear map and its derivatives. The specific form of 

the LMIs depends on the chosen Lyapunov functional 

and the bounds derived during the transformation of 

the system into a retarded-type time-delay system. 

● Taylor Series Expansion: Taylor series expansions of 

the nonlinear function f(theta) are extensively used 

around the optimal point $\\theta^\*$. This 

mathematical "tool" allows for approximating the 

nonlinear function and its derivatives, which is 

essential for transforming the complex nonlinear 

system into a more analytically tractable form. 
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● Integral Transformations and Input-to-State 

Stability (ISS) Concepts: These advanced 

mathematical "tools" are applied during the 

transformation process to convert the original 

system into a form suitable for time-delay system 

analysis. ISS concepts are particularly relevant for 

analyzing the boundedness of the system in the 

presence of disturbances (which arise from the 

higher-order terms in the time-delay approach). 

● Simulation Software: For numerical validation, 

general-purpose simulation software like MATLAB 

with its Simulink environment is considered the 

primary "apparatus." This allows for the 

implementation of the proposed ES algorithm, the 

nonlinear map with delays, and the execution of 

various scenarios to observe the system's dynamic 

response and verify the theoretical predictions. The 

LMI Toolbox in MATLAB or similar solvers are 

essential for solving the derived LMIs. 

The combination of these mathematical and computational 

"materials and apparatus" provides a comprehensive 

framework for both the theoretical development and the 

practical validation of the proposed extremum seeking 

scheme. 

2.4. Experimental Procedure/Data Collection Protocol 

The experimental procedure in this research is primarily 

based on rigorous mathematical derivation and analysis, 

followed by computational simulations. There is no 

physical data collection in the traditional sense; instead, 

"data" refers to the system's states and parameters 

generated through simulation. 

The protocol for conducting this research involved the 

following steps: 

1. System Formulation and Assumptions: 

○ Define the general extremum seeking setup for 

maximizing the first derivative of an unknown 

nonlinear map y=f(theta). 

○ Explicitly incorporate constant input and output 

delays, D_in and D_out, leading to a total delay 

D=D_in+D_out. 

○ State the key assumptions on the nonlinear map 

f(theta) (e.g., C3 differentiability, concavity of 

f(1)(theta) around $\\theta^\*$, and 

boundedness of its derivatives) as outlined in 

Section 2.2. These assumptions are critical for 

the validity of the analytical approach. 

2. Dither and Demodulation Design: 

○ Select a sinusoidal dither signal 

S(t)=asin(omegat) with a high frequency omega 

and small amplitude a. 

○ Design the specific demodulation signal as 

acos(omega(t−D)) to ensure proper phase 

alignment for extracting the first derivative 

information in the presence of delay. 

3. Transformation to Time-Delay System: 

○ Apply the time-delay approach to convert the 

original ES system, characterized by fast 

oscillating terms, into a more tractable retarded-

type time-delay differential equation. This 

involves: 

■ Defining a transformation of variables to 

separate slow and fast dynamics. 

■ Using integral identities and properties of 

periodic functions to reformulate the system 

error dynamics. 

■ Carefully handling the delay terms in the 

transformation, ensuring that the high-

frequency components are not simply 

averaged out but are instead converted into 

delayed terms within the new system 

representation. This is a crucial step that 

differentiates this approach from classical 

averaging. 

4. Lyapunov-Based Stability Analysis: 

○ Construct a suitable Lyapunov functional V(t,x_t), 

where x_t denotes the state of the system over the 

delay interval [t−D,t]. The functional is typically a 

quadratic form involving the system states and 

their integrals over the delay. 

○ Calculate the time derivative of the Lyapunov 

functional along the trajectories of the 

transformed time-delay system. This step involves 

intricate calculus for delay-dependent Lyapunov 

functionals. 

○ Utilize Jensen's inequality and other integral 

inequalities to bound various terms and obtain a 

computable expression for the derivative. 

○ Formulate the condition for negative definiteness 

of the Lyapunov functional's derivative as a set of 

Linear Matrix Inequalities (LMIs). These LMIs will 

involve parameters related to the system (e.g., 

adaptation gain k, delay D) and the bounds of the 

nonlinear map's derivatives. 

5. Derivation of Quantitative Bounds (for Grey-Box 

Scenarios): 

○ For cases where the bounds of f(theta) and its 

derivatives are known (Assumption 2 holds 

rigorously), solve the derived LMIs to find the 

maximum allowable delay D_max for which the 

system remains stable. 

○ Derive an upper bound for the dither period 

(T_dither,max=2pi/omega_min) and a precise 

estimate of the ultimate seeking error, which 

quantifies the size of the neighborhood around 
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$\\theta^\*$ to which the system converges. 

These derivations directly follow from the LMI 

solutions and the properties of the Lyapunov 

functional. 

6. Practical Stability Proof (for Black-Box 

Scenarios): 

○ For general "black box" systems where detailed 

bounds are not known, provide a theoretical 

proof of practical stability. This proof 

demonstrates that for sufficiently small dither 

amplitude a and sufficiently high dither 

frequency omega, the system states will remain 

bounded within an arbitrarily small 

neighborhood of $\\theta^\*$. This involves 

arguments based on input-to-state stability (ISS) 

or similar concepts applied to the averaged 

system. 

7. Numerical Simulations: 

○ Implement the derived extremum seeking 

algorithm in a simulation environment (e.g., 

MATLAB/Simulink). 

○ Choose specific nonlinear maps (e.g., 

f(theta)=−cos(theta), where 

f(1)(theta)=sin(theta), and 

f(2)(theta)=cos(theta) needs to be zero, and 

f(3)(theta)=−sin(theta) needs to be negative). 

○ Vary key parameters such as adaptation gain k, 

dither amplitude a, dither frequency omega, and 

especially the total delay D. 

○ Record the time-evolution of the estimated 

parameter hattheta(t) and the error $\\theta(t) 

- \\theta^\*$. 

○ Observe the convergence characteristics, the 

impact of delays on stability and performance, 

and compare simulation results with the 

quantitative predictions (e.g., ultimate seeking 

error) obtained from the LMI solutions. 

○ Conduct multiple simulation runs to ensure the 

robustness and reproducibility of the results. 

This structured procedure ensures that both the 

theoretical soundness and practical applicability of the 

proposed time-delay approach to extremum seeking for 

the first derivative of nonlinear maps with delays are 

thoroughly investigated. 

2.5. Data Analysis Plan 

The data analysis in this study, being primarily theoretical 

and computational, focuses on verifying the mathematical 

derivations and demonstrating the efficacy of the proposed 

extremum seeking scheme through simulation results. The 

"data" analyzed are the theoretical conditions (LMIs) and 

the time-series outputs from numerical simulations. 

The data analysis plan includes: 

1. LMI Solvability and Feasibility Analysis: 

○ The primary analytical output is a set of Linear 

Matrix Inequalities derived from the Lyapunov 

stability analysis. The first step in data analysis is 

to determine the feasibility of these LMIs for given 

system parameters (k,a,omega) and varying total 

delay D. 

○ Using specialized LMI solvers (e.g., YALMIP with 

SeDuMi or SDPT3 in MATLAB), the maximum 

allowable delay (D_max) for which the LMIs 

remain feasible will be computed. This D_max 

represents a critical stability limit. 

○ The sensitivity of D_max to changes in system 

parameters (e.g., adaptation gain k, bounds on 

derivatives f_k(sigma)) will be analyzed. This 

helps in understanding the trade-offs in system 

design. 

2. Quantitative Parameter Evaluation: 

○ For the "grey box" scenario where the bounds of 

the nonlinear map and its derivatives are known, 

the LMI solutions will be used to quantitatively 

calculate: 

■ The maximum allowable dither period 

(T_dither,max=2pi/omega_min) by finding 

the minimum dither frequency omega_min 

required for stability. 

■ The ultimate seeking error (or the size of the 

residual set) around the optimal point 

$\\theta^\*$. This provides a concrete 

measure of the steady-state performance of 

the ES algorithm. 

○ These calculated quantitative values will be 

presented and discussed, demonstrating the 

practical design guidance offered by the time-

delay approach. 

3. Convergence and Error Analysis from Simulations: 

○ From the numerical simulations, the time 

evolution of the estimated parameter hattheta(t) 

will be plotted. The convergence of hattheta(t) to 

a neighborhood of the true optimal point 

$\\theta^\*$ will be visually assessed and 

quantitatively measured. 

○ The steady-state error, defined as 

$|\\hat{\\theta}(t) - \\theta^\*|$ at convergence, 

will be measured and compared with the 

theoretically predicted ultimate seeking error. 

○ The transient response characteristics, such as 

settling time and overshoot, will be observed to 

evaluate the dynamic performance of the ES 

scheme. 

○ The impact of varying delays D on the convergence 

speed, stability, and ultimate seeking error will be 

thoroughly analyzed. This involves comparing 
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simulation runs with different delay values, 

particularly those near the theoretically 

calculated D_max. 

○ The robustness of the scheme to different initial 

conditions and small external disturbances will 

also be assessed through simulations. 

4. Comparative Analysis: 

○ Although not the primary focus, a qualitative 

comparison with results from classical 

averaging theory (which only provides 

sufficiency conditions for "sufficiently high 

frequency" and "sufficiently small amplitude") 

will be made to highlight the advantages of the 

time-delay approach in providing quantitative 

bounds. 

○ Similarly, the proposed approach's complexity 

and performance will be implicitly compared 

with predictor-based methods, noting the 

reduced structural complexity while still 

addressing delays. 

5. Sensitivity Analysis (Implicit in Simulations): 

○ Through systematic variations of key design 

parameters (k,a,omega,D), the sensitivity of the 

system's performance (convergence rate, 

steady-state error, stability) to these parameters 

will be implicitly analyzed. This provides 

insights into the robustness of the design. 

By combining the rigorous analytical results from LMI 

feasibility analysis with the empirical evidence from 

numerical simulations, this data analysis plan ensures a 

comprehensive understanding of the proposed extremum 

seeking scheme's stability, performance, and practical 

applicability in the presence of constant delays. 

3. Results 

This section presents the main findings derived from the 

theoretical analysis and validated through numerical 

simulations. The results are primarily focused on 

demonstrating the stability conditions, the quantitative 

bounds on design parameters, and the practical 

performance of the proposed extremum seeking scheme 

for the first derivative of nonlinear maps with constant 

delays. 

3.1. Preliminary Analyses 

Before presenting the main findings, it is essential to 

establish the preliminary analytical results that form the 

basis of the proposed extremum seeking (ES) scheme. The 

core idea is to transform the complex, high-frequency ES 

system, which includes constant time delays, into a more 

manageable form that can be analyzed using the time-delay 

approach to averaging. 

The initial step involves defining the error dynamics. Let the 

estimated parameter be hattheta(t), and the optimal 

parameter for maximizing the first derivative f(1)(theta) be 

theta∗. We define the estimation error as 

tildetheta(t)=hattheta(t)−theta∗. The input to the nonlinear 

map is $\\theta(t) = \\hat{\\theta}(t) + a \\sin(\\omega t) 

= \\theta^\* + \\tilde{\\theta}(t) + a \\sin(\\omega t)$. The 

output of the map is y(t)=f(theta(t−D_in)). The ES update law 

is given by: 

dothattheta(t)=kcdoty(t−D_out)cdotacos(omega(t−D)), 

where k0 is the adaptation gain and D=D_in+D_out is the total 

constant delay. 

Substituting the expressions for y(t−D_out) and expanding 

f(theta(t−D_in−D_out)) using a Taylor series around theta∗ 

up to the third order, we obtain: 

f(theta(t−D))=f(theta∗)+f(1)(theta∗)(tildetheta(t−D)+asin(o

mega(t−D)))+frac12f(2)(theta∗)(tildetheta(t−D)+asin(omeg

a(t−D)))2+frac16f(3)(xi(t))(tildetheta(t−D)+asin(omega(t−

D)))3 

where xi(t) lies between $\\theta^\*$ and theta(t−D). 

Multiplying the above by the demodulation signal 

acos(omega(t−D)) and considering the update law, the 

dynamics of tildetheta(t) can be expressed as: 

dottildetheta(t)=kcdotacos(omega(t−D))left[f(theta∗)+f(1)(

theta∗)(tildetheta(t−D)+asin(omega(t−D)))+dotsright]. 

Averaging the high-frequency terms is crucial. The key 

insight from the time-delay approach is that the rapid 

oscillations, when integrated over a dither period, do not 

simply vanish but contribute to terms related to the average 

of the system over a period, plus bounded residual terms and 

terms involving delays. For the specific choice of dither and 

demodulation signals, the term 

acos(omega(t−D))cdotasin(omega(t−D))=fraca22sin(2omeg

a(t−D)), which averages to zero over a period. However, the 

critical term for estimating the first derivative is 

$f^{(2)}(\\theta^\*)\\cdot a^2 \\sin(\\omega(t-D)) 

\\cos(\\omega(t-D))$, which also averages to zero. The term 

we are seeking is related to f(2)(theta). The crucial 

component for derivative seeking arises from the interaction 

of the tildetheta(t−D) term with the dither signal. 

After carefully applying the time-delay transformation to the 

error dynamics, the original ES system, which is a high-

frequency perturbed system, is approximated by a retarded-

type time-delay system. This transformation yields an 

averaged system whose stability implies the practical 

stability of the original system. The error dynamics, after 

applying the time-delay approach to average out high-

frequency terms while preserving the essence of the delays, 

can be represented in a form similar to: 

$\\dot{\\tilde{\\theta}}(t) = k \\cdot \\frac{a^2}{2} 

f^{(2)}(\\theta^\*) \\tilde{\\theta}(t-D) + k \\cdot 

\\text{disturbance\_terms}$ 

The "disturbance_terms" encapsulate the higher-order 

components from the Taylor expansion and the non-
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averaged periodic terms, which are bounded and 

contribute to the ultimate seeking error. The significance 

of the time-delay approach here is that it explicitly retains 

the delay D in the averaged dynamics, rather than 

neglecting it or compensating for it with a predictor. This 

leads to a delay-dependent stability analysis. 

The preliminary analysis also confirms that by selecting 

the dither and demodulation signals as asin(omegat) and 

acos(omega(t−D)) respectively, and ensuring the control 

law is dothattheta=ky(t−D_out)acos(omega(t−D)), the 

averaging process yields a dynamics that drives tildetheta 

towards zero when $f^{(2)}(\\theta^\*) \< 0$, ensuring 

that the system converges to a local maximum of the first 

derivative. 

3.2. Main Findings 

The main findings of this research pertain to the rigorous 

stability conditions derived using the Lyapunov-Krasovskii 

functional approach for the transformed time-delay 

system, as well as the quantitative insights these 

conditions provide for system design. 

Theorem 1 (Practical Stability for Black-Box Systems): 

For the proposed extremum seeking system aiming to 

maximize the first derivative of an unknown nonlinear map 

f(theta) with constant total delay D, under Assumptions 1 

and 2, there exist positive constants 

epsilon_0,alpha,beta,gamma,T∗ and functions 

V(t,tildetheta_t), such that for any dither amplitude 

ain(0,a∗] and dither period $T \\in (0, T^\*]$ (or 

equivalently, frequency omegageomega_min), the system 

is practically stable. This means that for any initial 

condition tildetheta(0) within a certain region, the 

estimation error tildetheta(t) ultimately converges to a 

compact set Omega_a centered around zero. The size of this 

set Omega_a is proportional to a2, implying that by 

choosing a sufficiently small dither amplitude, the ultimate 

seeking error can be made arbitrarily small. This theorem 

provides a qualitative guarantee of stability, similar to 

classical averaging results, but it is derived from a more 

robust time-delay framework. The proof relies on showing 

that the time derivative of a chosen Lyapunov functional is 

negative definite outside a compact set, thereby ensuring 

boundedness of solutions. 

Theorem 2 (Quantitative Stability Conditions for Grey-Box 

Systems): 

When the bounds of the nonlinear map f(theta) and its 

derivatives are known (i.e., the system is "grey box"), the 

stability of the ES system can be rigorously analyzed by 

solving a set of Linear Matrix Inequalities (LMIs). 

Specifically, there exist positive definite matrices P,Q_1,Q_2 

and a symmetric matrix R such that the following LMIs are 

feasible: 

$\\begin{pmatrix} \\Pi\_1 & \\Pi\_2 \\ \* & \\Pi\_3 

\\end{pmatrix} \< 0$ 

where Pi_1,Pi_2,Pi_3 are block matrices whose elements 

depend on the system parameters (k,a,omega), the delay D, 

and the bounds f_2(sigma),f_3(sigma,a),L from Assumption 

2. The specific structure of these LMIs is derived from the 

time derivative of a composite Lyapunov-Krasovskii 

functional, 

V(tildetheta∗t)=tildethetaTPtildetheta+int∗t−DttildethetaT(

s)Q_1tildetheta(s)ds+int_t−DtdottildethetaT(s)Q_2dottildet

heta(s)ds. 

The feasibility of these LMIs guarantees the exponential 

stability of the averaged error dynamics and, consequently, 

the practical stability of the original ES system. Crucially, the 

solution of these LMIs allows for: 

● Maximum Allowable Delay (D_max): By iteratively 

increasing D until the LMIs become infeasible, the 

maximum allowable constant delay D_max that the 

system can tolerate while maintaining practical 

stability can be numerically determined. This is a 

significant quantitative result, directly informing 

system design by providing a concrete upper limit on 

communication or processing delays. 

● Upper Bound for Dither Period (T_dither,max): For 

a given delay $D \< D\_{max}$, the LMIs can also be 

used to find the minimum dither frequency omega_min 

(and thus the maximum dither period 

T_dither,max=2pi/omega_min) required to ensure 

stability. This offers practical guidance for selecting the 

dither frequency, balancing convergence speed with 

stability margins. 

● Ultimate Seeking Error (E_ult): The LMIs further 

allow for the calculation of an explicit upper bound for 

the ultimate seeking error, which is the radius of the 

compact set to which the estimation error tildetheta(t) 

converges. This bound is directly related to the 

magnitude of the "disturbance" terms arising from the 

non-averaged components in the time-delay approach. 

This quantitative error bound is vital for performance 

prediction and guarantees. 

These findings represent a significant advancement over 

classical averaging techniques, which primarily offer 

qualitative stability statements. By providing concrete 

numerical limits and explicit error bounds, the time-delay 

approach transforms the ES design process from a trial-and-

error procedure into a systematically quantifiable task. 

3.3. Secondary or Exploratory Findings 

Beyond the core stability analysis and quantitative 

parameter calculations, several secondary or exploratory 

findings emerged from this study, particularly from the 

detailed analysis of the residual terms and the behavior 

observed in simulations. 
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One important exploratory finding is the detailed 

characterization of the residual terms that are typically 

neglected in classical averaging theory but are explicitly 

retained and bounded within the time-delay approach. 

These terms, arising from the higher-order components of 

the Taylor expansion and the non-averaged periodic 

functions, directly contribute to the ultimate seeking error. 

The analysis shows that these residual terms are functions 

of the dither amplitude a, the dither frequency omega, and 

the bounds of the higher derivatives of f(theta). 

Specifically, it was found that the magnitude of these terms 

is proportional to a2 and inversely proportional to omega, 

confirming that smaller amplitudes and higher frequencies 

reduce the steady-state error. This explicit quantification 

of the disturbance terms is crucial for predicting the 

practical performance limits of the ES system. 

Another exploratory finding relates to the trade-offs 

between design parameters. The LMI analysis revealed 

intricate interdependencies between the adaptation gain k, 

the dither parameters (a,omega), and the maximum 

allowable delay D_max. For instance, increasing the 

adaptation gain k generally improves the convergence rate 

but can also reduce the maximum tolerable delay or 

necessitate a higher dither frequency to maintain stability. 

Similarly, while a smaller dither amplitude a leads to a 

smaller ultimate seeking error, it might also make the 

system more susceptible to noise or require higher loop 

gain for acceptable transient performance. The 

quantitative nature of the LMIs allows for a systematic 

exploration of these trade-offs, enabling optimal 

parameter tuning for specific application requirements. 

Furthermore, through numerical simulations, it was 

observed that the proposed scheme demonstrates 

robustness to initial conditions within the assumed 

operating region. Even with relatively large initial errors, 

the system consistently converged to the neighborhood of 

the optimum, albeit with varying transient durations 

depending on the initial distance from $\\theta^\*$. This 

empirical observation reinforces the theoretical practical 

stability guarantees. The simulations also confirmed that 

when the total delay D approaches or exceeds the 

calculated D_max, the system exhibits oscillatory or 

unstable behavior, validating the accuracy of the LMI-

derived stability boundaries. These exploratory findings 

underscore the comprehensive understanding of ES 

system behavior provided by the time-delay approach, 

moving beyond simple convergence statements to offer 

detailed insights into performance limitations and design 

sensitivities. 

4. Discussion 

The findings presented in this study offer significant 

advancements in the field of extremum seeking (ES) control, 

particularly for applications involving the optimization of the 

first derivative of nonlinear maps in the presence of constant 

time delays. By leveraging a time-delay approach to 

averaging, this research provides a robust analytical 

framework that yields both qualitative and, critically, 

quantitative stability conditions, thereby bridging a notable 

gap in existing literature. 

4.1. Interpretation of Key Findings 

The core of this research's contribution lies in the successful 

adaptation of the time-delay approach to the analysis of 

extremum seeking for the first derivative of nonlinear maps 

with constant delays. The primary interpretation of the main 

findings revolves around the transition from qualitative to 

quantitative stability analysis. 

The practical stability theorem (Theorem 1) for "black-box" 

systems reaffirms that the ES algorithm, when designed with 

sufficiently small dither amplitude and high dither 

frequency, can indeed drive the estimation error to an 

arbitrarily small neighborhood of the desired optimal point 

$\\theta^\*$. This result aligns with the general 

understanding derived from classical averaging theory 

[1,33]. However, the crucial distinction is that this qualitative 

guarantee is embedded within a framework that naturally 

accounts for time delays, avoiding the heuristic neglect of 

delayed terms or the complexity of predictor-based 

compensation. The implication is that even without precise 

knowledge of the nonlinear map's bounds, one can be 

confident that the ES will eventually converge to a desirable 

operating region, provided suitable dither parameters are 

chosen. 

The most impactful interpretation stems from the 

quantitative stability conditions derived through Linear 

Matrix Inequalities (LMIs) for "grey-box" systems (Theorem 

2). The feasibility of these LMIs, dependent on the system 

parameters and the known bounds of the nonlinear map's 

derivatives, directly determines the stability of the system. 

This is a profound shift from traditional ES analysis. Instead 

of merely stating that stability holds for "sufficiently small" 

or "sufficiently large" parameters, the LMI framework allows 

for the computation of the maximum allowable delay 

(D_max), the maximum dither period (T_dither,max), and the 

ultimate seeking error (E_ult). 

● Maximum Allowable Delay: The ability to numerically 

determine D_max is invaluable for practical control 

system design. Engineers can now assess whether a 

proposed ES implementation is feasible given known 

communication or processing delays in their system. 

This moves beyond theoretical statements of delay 

robustness to providing concrete design specifications. 

If an existing system has delays exceeding the 
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calculated D_max, the LMIs indicate that the current 

ES design is unstable, prompting a redesign or 

reconsideration of the system architecture. 

● Dither Period Upper Bound: Similarly, the 

quantitative upper bound on the dither period (or 

lower bound on frequency) allows for an informed 

selection of dither parameters. While higher dither 

frequencies generally improve convergence and 

reduce steady-state error, they also consume more 

computational resources and can excite unmodeled 

high-frequency dynamics. Knowing the maximum 

permissible period ensures stability while potentially 

allowing for lower frequencies if system constraints 

demand it, optimizing the trade-off between 

performance and resource utilization. 

● Ultimate Seeking Error: The explicit calculation of 

E_ult directly quantifies the achievable accuracy of 

the extremum seeking process. This is critical for 

performance guarantees in applications where 

precision is paramount. Designers can use this bound 

to determine if the ES system meets the required 

steady-state accuracy and, if not, to identify which 

parameters (e.g., dither amplitude, adaptation gain) 

need adjustment to improve precision. This offers a 

level of design certainty previously unattainable. 

The secondary findings, particularly concerning the 

explicit role of residual terms, further reinforce the 

quantitative power of the time-delay approach. By showing 

how these terms directly contribute to the ultimate seeking 

error and how their magnitude is influenced by dither 

amplitude and frequency, the study provides a deeper 

understanding of the trade-offs inherent in ES design. The 

observed robustness to initial conditions in simulations 

also validates the practical applicability of the theoretical 

framework within its defined region of attraction. In 

essence, the time-delay approach transforms ES design 

from an art into a more precise engineering science, 

particularly when dealing with the pervasive challenge of 

time delays. 

4.2. Comparison with Previous Literature 

The current study builds upon and significantly 

differentiates itself from previous work in extremum 

seeking, particularly concerning the handling of time 

delays and the analysis of derivative seeking. 

A significant body of prior research on ES with delays has 

focused on predictor-based methods [10,24,25,26]. 

These approaches aim to compensate for delays by 

predicting future states of the system. While conceptually 

appealing and capable of handling potentially large delays, 

predictor-based schemes often introduce additional 

complexity into the control system architecture. The 

stability analysis of such systems frequently relies on 

classical averaging theory, which provides qualitative 

guarantees—stating that stability holds for sufficiently fast 

dither signals and sufficiently small dither amplitudes [33]. 

In contrast, our time-delay approach avoids the explicit 

design of a predictor, instead transforming the system 

dynamics directly into a time-delay form amenable to 

rigorous analysis. More importantly, our approach provides 

quantitative stability conditions (LMIs) and explicit bounds 

on the maximum allowable delay, the dither period, and the 

ultimate seeking error. This quantitative distinction is a key 

advantage, offering concrete design guidelines that 

predictor-based methods, when analyzed via classical 

averaging, typically do not. Furthermore, the issue of 

robustness to delay mismatch, explored in [26] for predictor-

based methods, is intrinsically addressed within our LMI 

framework, where the maximum tolerable delay can be 

directly computed. 

The study also contrasts with classical averaging theory as 

applied to ES systems [1,2,3,5]. Classical averaging, while 

fundamental to understanding ES, often treats the high-

frequency dither signal as a perturbation that averages to 

zero, leading to an averaged system without the fast 

dynamics. While effective for proving practical stability, this 

simplification can obscure the precise impact of delays and 

typically yields only qualitative statements of convergence. 

Our time-delay approach, as introduced by Zhu and Fridman 

[28] and extended by Pan et al. [29] for general static maps, 

meticulously accounts for the non-averaged components 

arising from the high-frequency terms. By transforming 

these into delayed terms in a retarded-type system, the 

method provides a more accurate representation of the 

system dynamics and allows for the derivation of delay-

dependent LMIs. This enables the quantification of design 

parameters, a capability largely absent in traditional 

averaging analysis. The work by Yang and Fridman [34,35] 

also explores the time-delay approach for large delays and 

multivariable static maps, further showcasing the versatility 

of this relatively new analytical tool, which our work 

specifically applies to the first derivative seeking problem. 

Regarding derivative seeking, previous works such as 

Ariyur and Krstić [19] introduced the concept of slope 

seeking, and Mills and Krstić [21,22,23] extended it to higher 

derivatives. Rušiti et al. [24,25] further explored Newton-

based ES for higher derivatives with delays, using predictor-

based compensation. Our work distinguishes itself by 

applying the quantitative time-delay approach specifically to 

the problem of seeking the first derivative in the presence of 

constant delays, filling a specific niche. While the underlying 

objective of derivative seeking is similar, the analytical 

methodology and the type of stability guarantees provided 

are distinct. Our approach offers a potentially simpler 

controller structure compared to predictor-based methods 
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for higher derivative seeking, while providing more precise 

design parameters. 

Finally, the reference to Li et al. [32], which addresses 

extremum seeking for the first derivative using a time-

delay approach in a delay-free context, serves as a 

foundational precursor. Our current study extends this 

work by explicitly incorporating and analyzing the effects 

of constant delays, demonstrating the robustness and 

quantitative capabilities of the time-delay approach in a 

more realistic and challenging control scenario. In 

summary, this research provides a rigorous, quantitative, 

and less complex alternative to existing methods for 

extremum seeking of derivatives in the presence of 

constant time delays. 

4.3. Strengths and Limitations of the Study 

The current study presents several notable strengths and, 

like any research, possesses certain limitations that offer 

avenues for future work. 

Strengths: 

● Quantitative Stability Analysis: A primary strength 

is the shift from qualitative to quantitative stability 

analysis. The use of the time-delay approach in 

conjunction with LMIs allows for the explicit 

calculation of the maximum allowable delay, the 

dither period upper bound, and the ultimate seeking 

error. This provides concrete, verifiable design 

parameters, which is a significant advantage over 

methods that offer only theoretical existence proofs 

without numerical bounds. 

● Enhanced Delay Robustness: The study rigorously 

addresses the challenge of constant time delays, 

which are ubiquitous in real-world control systems. 

By transforming the ES system into a retarded-type 

delay differential equation, the approach inherently 

accounts for delays in the stability analysis, leading to 

more accurate and reliable stability conditions. 

● Reduced Complexity (compared to Predictors): 

While dealing with delays, the proposed method 

avoids the need for complex predictor-based control 

schemes. This can lead to simpler implementation 

and potentially reduced computational burden, 

especially for systems where analytical predictors 

might be challenging to derive or implement. 

● Rigorous Mathematical Framework: The use of 

Lyapunov-Krasovskii functionals and LMI 

formulations provides a mathematically rigorous 

framework for stability analysis. This ensures the 

reliability and soundness of the theoretical results. 

● Applicability to First Derivative Seeking: The focus 

on maximizing the first derivative addresses a 

specific, yet important, class of optimization 

problems where the optimum is not necessarily a peak 

but a point of maximal sensitivity or slope, relevant to 

various industrial applications (e.g., refrigeration, 

power electronics). 

● Generalizability (within Assumptions): While 

specific assumptions are made on the map's 

differentiability and concavity, the framework is 

general enough to apply to a broad range of nonlinear 

functions, as demonstrated by the "black-box" and 

"grey-box" scenarios. 

Limitations: 

● Constant Delays Only: The most significant limitation 

is that the current analysis is restricted to constant time 

delays. Many real-world systems experience time-

varying or uncertain delays, which would require a 

more complex adaptive or robust control framework 

within the time-delay approach. Extending this work to 

time-varying delays presents a considerable challenge. 

● Scalar Map Assumption: The study focuses on a scalar 

input/output nonlinear map. Extending the results to 

multi-variable maps would significantly increase the 

complexity of the LMI formulations and the overall 

analytical derivation. While some progress on multi-

variable maps exists with the time-delay approach [35], 

its application to derivative seeking is still an open area. 

● Known Delay Magnitude (for Quantitative Results): 

While the method is robust to the presence of constant 

delays, the quantitative results (LMIs for D_max, 

T_dither,max, E_ult) rely on the knowledge of the delay 

magnitude D. If the delay is unknown or only bounded, 

the LMI conditions would need to be reformulated for 

robustness to delay uncertainty. 

● Local Practical Stability: Similar to most ES schemes, 

the stability proven is local and practical. It guarantees 

convergence to a neighborhood of the optimum within 

a certain region of attraction. Global convergence or 

global stability without stringent assumptions remains 

a challenge. 

● Computational Burden of LMIs: While LMIs provide a 

powerful tool, solving them can be computationally 

intensive, especially for large-scale systems or for real-

time applications where parameters are changing. 

However, for design-time analysis, this is generally not 

a critical issue. 

● Specific Dither/Demodulation Signals: The analysis 

is based on sinusoidal dither and a specific cosine-

based demodulation signal. While common, other 

perturbation or demodulation strategies might exist 

that could offer different performance characteristics. 

Addressing these limitations would further enhance the 

applicability and robustness of the time-delay approach for 

extremum seeking in more complex and realistic scenarios. 
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4.4. Implications for Theory and Practice 

The implications of this study are far-reaching for both 

theoretical advancements in control systems and the 

practical implementation of optimization strategies in 

various engineering domains. 

Theoretical Implications: 

● Validation of Time-Delay Approach: This research 

further validates the utility and power of the 

relatively new time-delay approach to averaging for 

analyzing ES systems. It demonstrates that this 

approach can effectively handle not only general 

static maps but also the more nuanced problem of 

derivative seeking in the presence of delays, 

providing a powerful alternative to classical 

averaging. 

● Bridge Between Averaging and Delay Systems: 

The study effectively bridges the gap between 

classical averaging theory for ES and the robust 

control theory for time-delay systems. By explicitly 

transforming high-frequency dynamics into delay-

dependent terms, it offers a more comprehensive and 

accurate analytical model, pushing the boundaries of 

ES analysis. 

● Foundation for Future Research: The quantitative 

framework established through LMIs provides a solid 

foundation for future theoretical research. This 

includes exploring its application to time-varying 

delays, distributed parameter systems, multi-

variable extremum seeking, or even adaptive control 

of systems with unknown time delays using the same 

analytical tools. It also opens avenues for 

investigating robustness to noise and model 

uncertainties within this framework. 

● Deeper Understanding of ES Dynamics: By 

explicitly dissecting the residual terms and their 

contribution to the ultimate seeking error, the study 

offers a more granular understanding of the inherent 

trade-offs in ES design. This theoretical insight can 

guide the development of more sophisticated ES 

algorithms. 

Practical Implications: 

● Quantifiable Design Guidance: The most 

immediate practical implication is the ability to 

provide concrete, quantitative design guidelines. 

Engineers can now determine the maximum 

permissible delay, the optimal dither frequency 

range, and the achievable steady-state accuracy for 

their ES implementations. This reduces reliance on 

trial-and-error, leading to faster development cycles 

and more reliable control systems. 

● Improved System Reliability and Performance: By 

precisely accounting for delays, the proposed method 

contributes to the design of more robust and stable ES 

systems. This is particularly crucial in applications 

where time delays are unavoidable (e.g., networked 

control systems, processes with significant transport 

lags, remote control) and where instability can lead to 

catastrophic failures. The ability to predict the ultimate 

seeking error also ensures performance guarantees for 

precision applications. 

● Cost-Effective Optimization: The model-free nature 

of ES, combined with the robust delay handling of this 

approach, offers a cost-effective solution for optimizing 

systems without requiring complex system 

identification or detailed mathematical models. This is 

especially beneficial for "black box" processes where 

creating a precise model is difficult or impossible. 

● Applicability in Diverse Fields: The methodology is 

broadly applicable to various engineering fields 

requiring real-time optimization of derivatives. 

Examples include maximizing power in fuel cells where 

the optimal operating point might be where voltage 

sensitivity is maximized, optimizing the efficiency of 

heat exchangers based on temperature gradients, or 

even tuning resonant frequencies in electrical circuits 

by maximizing impedance slopes. 

● Decision-Making Tool: The LMI-based analysis serves 

as a powerful decision-making tool during the design 

phase. It allows engineers to quantitatively assess the 

impact of different control parameters, system 

upgrades (e.g., reducing communication delay), or 

sensor choices on the overall stability and performance 

of the ES system before physical implementation. 

In essence, this research translates advanced theoretical 

concepts into practical tools, empowering engineers to 

design and implement more effective, reliable, and precisely 

tuned extremum seeking control systems in delay-affected 

environments. 

5. Conclusion and Future Research Directions 

This study successfully introduced and rigorously analyzed a 

novel extremum seeking (ES) scheme for maximizing the 

first derivative of unknown nonlinear maps in the presence 

of constant transmission delays. By employing a recently 

developed time-delay approach to averaging, we 

transformed the original high-frequency perturbed system 

into a nonlinear retarded-type plant, enabling a 

comprehensive stability analysis. A key contribution is the 

derivation of stability conditions expressed as Linear Matrix 

Inequalities (LMIs), which provide both qualitative practical 

stability guarantees for "black-box" systems and, more 

critically, quantitative calculations for the maximum 

allowable delay, upper bounds for the dither period, and 

estimates of the ultimate seeking error for "grey-box" 
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systems. Numerical examples validated the effectiveness 

and practical utility of the proposed method, 

demonstrating its superior capability in providing precise 

design parameters compared to traditional qualitative 

approaches. This research marks a significant step towards 

enabling the design of more robust and predictable ES 

control systems in delay-affected environments, moving 

beyond heuristic parameter tuning to a more systematic, 

quantifiable methodology. 

Despite these advancements, several promising avenues 

for future research emerge from the limitations identified 

in this study: 

● Extension to Time-Varying and Unknown Delays: 

A crucial future direction is to extend the time-delay 

approach to handle time-varying delays, which are 

more prevalent in real-world networked control 

systems, and particularly, systems with unknown or 

uncertain delays. This would likely involve adaptive 

control techniques or robust control design 

methodologies integrated with the time-delay 

averaging framework. 

● Multi-Variable Extremum Seeking: This study 

focused on scalar maps. Future work could explore 

the application of the time-delay approach to multi-

variable extremum seeking for the gradient of a 

multi-variable function. This would significantly 

increase the complexity of the LMI formulations and 

require novel approaches to handle the higher 

dimensionality. 

● Inclusion of Disturbances and Noise: While the 

current framework implicitly handles some 

disturbances via residual terms, explicitly 

incorporating and analyzing the impact of external 

noise and disturbances on the quantitative bounds of 

stability and performance would be valuable. This 

could involve stochastic time-delay averaging or 

robust control design techniques. 

● Application to Dynamic Systems: The current study 

focuses on static nonlinear maps with delays. 

Extending the time-delay approach to extremum 

seeking for dynamic systems, where the map output 

depends on the history of the input, would be a more 

challenging but highly relevant direction. 

● Experimental Validation: While numerical 

simulations provide strong evidence, future research 

should include experimental validation on physical 

platforms to further demonstrate the practical 

efficacy and robustness of the proposed scheme in 

real-world scenarios, accounting for unmodeled 

dynamics and real-world noise. 

● Optimization of Dither Signals: Investigating the 

impact of non-sinusoidal dither signals or optimized 

dither signal designs within the time-delay approach 

could potentially lead to improved convergence rates 

or reduced ultimate seeking errors. 

● Development of Specialized LMI Solvers: For 

complex or high-dimensional systems, the 

computational burden of LMI solvers could be a 

practical concern. Research into developing more 

efficient or specialized LMI solvers tailored for this 

class of problems could be beneficial. 

By addressing these future research directions, the time-

delay approach can be further refined and expanded to tackle 

an even broader spectrum of challenging extremum seeking 

problems in modern control engineering. 
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