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ABSTRACT 
 

From the flow of galaxies to the waves in our oceans, much of the physical world is governed by a class of equations known 
as hyperbolic conservation laws. Simulating these laws on computers is a monumental task, especially because they often 
produce sharp, sudden changes like shockwaves. For decades, scientists have hand-crafted complex numerical methods 
to tackle this challenge, but these methods require deep, specialized knowledge. More recently, artificial intelligence has 
shown an incredible ability to learn dynamics from data, but these "black-box" models often fail to respect the 
fundamental laws of physics, leading to unstable or nonsensical results. 
In this paper, we introduce a new approach that bridges this gap: the Neural Entropy-Stable Conservative Flux (NES-CF) 
network. Instead of relying on predefined rules, our framework learns the physics of a system directly from data. Our key 
innovation is to have the AI learn not only the system's dynamics but also a fundamental physical principle known as 
entropy—a measure of disorder that must always be respected. By building this principle directly into the learning 
process, our model guarantees that its predictions are physically consistent and stable. We tested our framework on a 
range of challenging problems, from the simple formation of a shockwave to the complex dynamics of gas, and found that 
it accurately captures the physics, even when trained with noisy data. This work represents a significant step toward 
creating AI models for science that are not only powerful but also trustworthy.. 

Keywords: Hyperbolic Conservation Laws, Neural Networks, Entropy Stability, Physics-Informed Machine Learning, 
Structure-Preserving Neural Networks, Finite Volume Method, Flux Approximation, Computational Fluid Dynamics. 

 

Introduction 

1. The Challenge: Teaching AI the Laws of Physics 

The universe is in constant motion, and for centuries, 

scientists have sought to describe this motion with 

mathematics. Many of the most fundamental processes, 

from the weather in our atmosphere to the flow of water in 

a river, are described by a powerful set of tools called 

hyperbolic partial differential equations (PDEs) [16, 24, 

37]. These equations are built on a simple but profound 

idea: certain physical quantities, like mass, momentum, 

and energy, must be conserved. 

However, solving these equations is anything but simple. A 

defining feature of hyperbolic systems is their dramatic 

tendency to create "shocks"—sudden, sharp changes in the 

solution, like the sonic boom from a supersonic jet. To be 

physically meaningful, these solutions must also obey the 

second law of thermodynamics, a rule mathematically 

captured by an "entropy condition," which essentially 

prevents the universe from spontaneously becoming more 

orderly [14, 35]. 

For decades, the gold standard for tackling these problems 

has been the finite volume method, a brilliant numerical 

technique that breaks the problem down into small, 

manageable pieces [2, 24]. Scientists have poured immense 

effort into designing sophisticated numerical "fluxes" that 

can handle shocks without creating bizarre, non-physical 

wobbles in the solution [15, 31, 32]. The pinnacle of this 

effort is the creation of entropy-stable schemes—methods 

that are hard-wired to respect the laws of thermodynamics, 

ensuring their predictions are robust and physically correct 

[10, 17, 34]. The catch? Designing these schemes is an art 

form that requires deep, system-specific expertise. 

In recent years, a new player has entered the scene: machine 

learning. With its incredible power to find patterns in data, 

AI has shown it can learn the dynamics of complex systems 

without being explicitly told the rules [9, 11, 12]. This has led 
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to an explosion of research in "Physics-Informed Neural 

Networks" (PINNs) and their cousins, which try to learn 

the solutions to PDEs [5, 25, 28, 38]. But when faced with 

the wild world of hyperbolic equations, these methods 

often stumble. They can be easily confused by shocks, 

producing unstable or physically impossible results 

because they lack a deep, built-in understanding of the 

underlying physical laws like conservation and entropy 

[29, 36]. 

This brings us to a critical crossroads. On one hand, we 

have classical methods that are physically rigorous but 

require intense human effort. On the other, we have 

powerful machine learning tools that are flexible but often 

physically naive. Can we have the best of both worlds? 

Some recent efforts have tried to do just that by building 

the structure of classical numerical methods directly into 

neural networks [6, 26, 29, 33, 36]. The Entropy-Stable 

Conservative Flux Network (ESCFN), for example, forces a 

neural network to operate within the rigid framework of a 

known entropy-stable scheme [26]. This works well, but 

it's like teaching someone to paint using a coloring book—

the outlines are already drawn. What if we don't know the 

right outlines? What if the system's physics are a complete 

mystery? 

In this paper, we tear up the coloring book. We introduce 

the Neural Entropy-Stable Conservative Flux (NES-CF) 

network, a framework that learns the fundamental 

physics of a hyperbolic system from the ground up. Our 

approach makes two key leaps: 

1. It learns the rules, not just the game: Instead of 

starting with a known physical law, our network 

simultaneously learns the system's flux (the rules of 

motion) and its corresponding entropy function (a 

fundamental law it must obey). 

2. It's physically consistent by design: We use a 

special type of network, an Input Convex Neural 

Network (ICNN) [1], to represent the entropy. This 

guarantees that the learned physical law is valid, 

ensuring the model's predictions are stable and make 

physical sense. 

In short, we've developed a method that doesn't just mimic 

a known numerical scheme; it discovers a physically valid 

one on its own. Through a series of demanding tests, we 

show that our NES-CF network can produce stable, 

accurate, and robust predictions, paving the way for a new 

generation of scientific AI that can help us discover and 

understand the world around us. 

2. The Building Blocks: A Refresher on Hyperbolic 

Systems 

Before we dive into how our neural network works, let's 

quickly revisit the key concepts from physics and 

mathematics that our model is built upon. 

2.1. The Language of Conservation and Entropy 

At its heart, a one-dimensional hyperbolic conservation law 

is an equation that looks like this: 

 

∂t∂u+∂x∂f(u)=0 
 

This equation describes how a vector of conserved 

quantities, u (like density or momentum), changes over time 

t and space x. The function f(u) is the "flux," which tells us 

how these quantities move around. The system is 

"hyperbolic" if information propagates at finite speeds, like 

waves. 

As we mentioned, the solutions to these equations can have 

shocks, which means we need a way to pick out the one 

solution that actually occurs in nature. This is where entropy 

comes in. For a given system, we can often find a special pair 

of functions: a convex entropy function η(u) and its 

corresponding entropy flux ψ(u). The physically correct 

solution is the one that satisfies the following inequality: 

 

∂t∂η(u)+∂x∂ψ(u)≤0 
 

This is the mathematical expression of the second law of 

thermodynamics. It states that the total entropy, a measure 

of disorder, can only stay the same or increase. In our 

simulations, this means entropy must be dissipated at 

shocks. 

There's a beautiful connection here: the existence of a strictly 

convex entropy function actually guarantees that the system 

is hyperbolic. This is because we can define a new set of 

"entropy variables," v=(∇η(u))T, which allows us to rewrite 

the original equations in a more well-behaved, symmetric 

form. This property is the secret sauce for designing stable 

numerical methods. 

2.2. Taming the Equations: The Finite Volume Method 

To solve these equations on a computer, we use the finite 

volume method. We chop our spatial domain into a series of 

small cells, and instead of tracking the solution at every 

single point, we track the average value of u within each cell. 

The change in a cell's average value over time is determined 

by the flux of quantities moving in and out of it through its 

boundaries: 

 

dtduj(t)=−Δx1(fj+1/2−fj−1/2) 
 

Here, uj is the average in cell j, and fj+1/2 is the numerical 

flux at the interface between cell j and cell j+1. The entire art 

of the finite volume method boils down to designing a good 

numerical flux. 

2.3. Building Stable Schemes: The Entropy-Stable 

Approach 
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How do we design a flux that respects the laws of physics? 

The modern answer is to build it in two parts. 

First, we start with an entropy-conservative flux, fj+1/2∗

. This is a special kind of flux that, on its own, would 

perfectly conserve entropy [34]. While mathematically 

elegant, it's too perfect for the real world—it doesn't have 

the grit to handle shocks and will produce ugly oscillations. 

So, we add the second part: a carefully controlled amount 

of numerical dissipation. This gives us our final entropy-

stable flux, f^j+1/2: 

 

f^j+1/2=fj+1/2∗−21Dj+1/2(vj+1−vj) 
 

The dissipation term is proportional to the jump in the 

entropy variables between neighboring cells, (vj+1−vj). 

The matrix Dj+1/2 controls the strength of this dissipation. 

As long as Dj+1/2 is symmetric and positive semi-definite, 

this construction mathematically guarantees that our 

numerical method will satisfy the entropy inequality and 

produce physically correct, stable solutions [35]. The 

specific form of Dj+1/2 is often chosen based on the 

physics of the system, such as the local speed of waves [10, 

17]. 

This powerful idea—combining a conservative base with 

controlled dissipation—is the foundation upon which we 

will build our learning framework. 

3. Our Approach: The Neural Entropy-Stable 

Conservative Flux (NES-CF) Framework 

Our goal is to create a neural network that can learn the 

dynamics of a hyperbolic system without being given a pre-

canned numerical scheme. We achieve this by teaching the 

network to learn the fundamental components of an 

entropy-stable flux directly from data. 

3.1. Learning the Entropy Itself 

The most critical and novel part of our method is that we 

don't assume we know the entropy function η(u). We task 

the network with learning it. This is a huge step towards 

generality, but it comes with a major challenge: the entropy 

function must be convex. 

To solve this, we use a special tool called an Input Convex 

Neural Network (ICNN) to represent the entropy, which 

we call ηθ(u). ICNNs are cleverly designed so that their 

output is always a convex function of their input, no matter 

what their trainable parameters θ are [1]. This isn't just a 

convenience; it's a hard constraint that guarantees the 

physics of our learned system is well-posed and 

hyperbolic. 

Once we have our learnable, always-convex entropy 

function ηθ, we can use the power of automatic 

differentiation—a standard feature in deep learning libraries 

like JAX [4]—to instantly compute its derivatives: the 

entropy variables vθ and the entropy Hessian matrix ηθ′′(u). 

3.2. Learning a Custom, Stable Flux 

With our learned entropy in hand, we can now construct a 

learnable numerical flux, F^j+1/2μ,w,θ, that has the entropy-

stable structure we discussed earlier: 

 

F^j+1/2μ,w,θ=Fj+1/2μ,∗−21Dj+1/2μ,w,θ(vθ,j+1−vθ,j) 
 

We use neural networks to parameterize each piece of this 

formula: 

1. The Conservative Part (Fj+1/2μ,∗): We use a 

standard fully connected neural network (FCNN), 

which we call Fμ, to learn the underlying physical flux 

of the unknown system. The conservative numerical 

flux is then simply the average of this learned flux 

evaluated at the left and right sides of the cell interface. 

2. The Dissipative Part (Dj+1/2μ,w,θ): Our learnable 

dissipation matrix follows the physical intuition of the 

Rusanov flux. It depends on two learned components: 

○ Maximum Wave Speed (λw,j+1/2max): We train 

another FCNN, ρw, to predict the maximum local 

wave speed based on the state of the system. This 

tells the model how much dissipation is needed to 

keep the simulation stable. 

○ Inverse Entropy Hessian ((ηθ′′)−1): This crucial 

piece comes directly from our learned entropy 

network ηθ. It scales the dissipation according to 

the geometry of the learned entropy landscape. 

Putting it all together, our final Neural Entropy-Stable Flux 

is a chimera—a single, complex function built from three 

collaborating neural networks (Fμ,ρw,ηθ) that are trained 

together. This construction ensures that, no matter what the 

networks learn, the resulting numerical scheme is 

guaranteed to be conservative and stable with respect to the 

very entropy function it discovered. 

3.3. The Training Process: Balancing Data and Physics 

How do we train these networks to learn something 

meaningful? We need a carefully designed objective, or "loss 

function," that tells the model what a good solution looks like. 

Our training process is a balancing act between two 

priorities: fitting the data and obeying the laws of physics. 

The Loss Function: 

1. Data Fidelity: First and foremost, the model's 

predictions must match the training data we provide. 

We use a recurrent loss function that unrolls the 

simulation for a few steps and penalizes the difference 

between the model's prediction, u^, and the true data, 

u∗. 
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2. Physical Consistency: This is where our approach 

shines. We add extra penalty terms to the loss 

function that enforce the underlying physics. The 

most important of these is a term that forces the 

learned flux Fμ and the learned entropy ηθ to be 

compatible with each other (specifically, it enforces 

the symmetry condition from Section 2.1). 

Two-Stage Training: 

We found that trying to learn everything at once can be 

difficult. So, we adopt a two-stage training strategy: 

● Stage 1: We train all three networks together, 

encouraging them to find a good balance between 

matching the data and satisfying the physical 

constraints. 

● Stage 2: We freeze the flux and wave speed networks 

and perform a final fine-tuning of just the entropy 

network. This last step ensures the physical 

compatibility conditions are met with high precision, 

locking in the hyperbolicity of the learned system. 

This careful, two-stage process guides the networks to 

discover a self-consistent physical model that is not only 

accurate but also robust and trustworthy. 

4. Putting It to the Test: Our Experimental Setup 

To see if our NES-CF framework truly works, we put it 

through a rigorous series of tests on well-known, 

challenging problems. 

4.1. The Gauntlet of Benchmark Problems 

We chose a suite of classic problems that cover a range of 

physical phenomena: 

1. 1D Burgers' Equation: The simplest model for shock 

formation. 

2. 1D Shallow Water Equations: A system describing 

water flow, featuring both shocks and smoother 

rarefaction waves. 

3. 1D Euler Equations: The equations of gas dynamics, 

which we test on two famous problems: the Sod 

shock tube (a simple shock interaction) and the Shu-

Osher problem (a much harder case where a shock 

wave interacts with a sine wave). 

4. 2D Burgers' Equation: A test to see how our method 

handles multiple dimensions. 

For each problem, we used a high-quality numerical solver, 

PyClaw [8, 19], to generate our training data. To really test 

the model's ability to generalize, we also evaluated its 

performance on initial conditions that were qualitatively 

different from anything it had seen during training. 

4.2. The Brains of the Operation: Network Details 

Our framework uses three neural networks, each with a 

specific job: 

● Flux Network (Fμ): A standard 3-layer FCNN. 

● Wave Speed Network (ρw): A simpler 2-layer FCNN. 

● Entropy Network (ηθ): A 1-layer ICNN, which is the 

key to guaranteeing convexity. 

We implemented our models in JAX [4], a high-performance 

computing library, and trained them using the popular Adam 

optimizer [20]. 

4.3. Measuring Success: Our Evaluation Metrics 

We judged the success of our model on two main fronts: 

1. Prediction Accuracy: How well do the model's 

predictions match the true solution at future times? We 

measured this using the standard L2 error. 

2. Physical Integrity: Does the model obey the laws of 

physics? We checked this with two specific metrics: 

○ Conservation Error: We tracked the total amount 

of each conserved quantity. This should remain 

constant, and our model should achieve this up to 

machine precision. 

○ Entropy Remainder: We calculated the total 

entropy of the system at each time step. For a 

physically valid solution, this value should never 

increase. 

Finally, to simulate real-world conditions, we also tested our 

model's performance when trained on data that had been 

corrupted with different levels of random noise. 

5. The Verdict: Results and Discussion 

The results of our experiments were clear and compelling: 

the NES-CF framework successfully learns physically 

consistent and robust models directly from data. 

5.1. Capturing Shocks and Complex Waves 

Across the board, our model demonstrated an impressive 

ability to predict the complex behavior of hyperbolic 

systems. 

● For the Burgers' equation, even when we only trained 

the model on smooth data from before a shock formed, 

it correctly predicted the emergence of a sharp, clean 

shockwave at the right time and place. 

● In the shallow water dam-break problem, the model 

accurately captured the movement of both the shock 

front and the smoother rarefaction wave. 

● The Euler equations provided the toughest challenge. 

Yet, for both the Sod and the highly complex Shu-Osher 

problems, our network learned a stable flux that 

correctly reproduced all the essential wave structures. 

While there was some minor blurring of contact 

discontinuities (a common trait of even classical 

dissipative schemes), the solutions were completely 

free of the non-physical oscillations that plague less 
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sophisticated models. 

● Finally, the model generalized gracefully to the 2D 

Burgers' equation, showing it is not limited to one-

dimensional problems. 

5.2. Grace Under Pressure: Robustness to Noise 

Real-world data is never perfect. Our framework showed 

remarkable resilience when trained on noisy data. Even 

with noise levels as high as 100% of the signal's average 

value, the NES-CF model produced stable, long-term 

predictions that were qualitatively correct. While extreme 

noise did cause the model to become more cautious and 

add more numerical diffusion, it never broke down or 

violated the fundamental physical principles it was 

designed to respect. 

5.3. Upholding the Law: Conservation and Entropy 

Stability 

This is where the core strength of our method was most 

evident. 

● Conservation: In every single test, the total amount 

of each conserved quantity was preserved to the level 

of numerical precision. The conservative finite 

volume structure was perfectly maintained. 

● Entropy Stability: This was the crucial test. For 

every problem, every initial condition (including 

those it had never seen before), and every noise level, 

the total discrete entropy of the system never 

increased. This provides definitive proof that our 

learned model is truly entropy-stable and produces 

physically admissible solutions. A naive model 

trained without this built-in constraint would quickly 

fail this test, leading to catastrophic instabilities. 

5.4. What It All Means: A Discussion 

Our results highlight a powerful principle: embedding 

fundamental physical structure directly into the learning 

process allows AI to discover self-consistent, reliable 

models of the world. By forcing the network to learn not 

just the "what" (the data) but also the "why" (the physical 

laws of entropy and conservation), we create a model that 

can generalize far beyond its training set. 

This approach offers a significant advantage over methods 

that rely on a predefined numerical scheme. By learning 

the entropy function, our model has the flexibility to adapt 

to truly unknown systems where the "correct" scheme is 

not known ahead of time. This increased generality comes 

at a small cost: the added complexity of learning the 

entropy makes the model slightly more sensitive to noise 

than a model where the entropy is fixed [26]. This is a 

natural and expected trade-off. 

The main limitation of our current work is its reliance on 

high-quality simulation data for training. The exciting next 

steps for this research will be to explore how this framework 

can be adapted to learn from sparse or incomplete 

experimental data, how to scale it to even more complex, 

multi-dimensional problems, and to develop a rigorous 

mathematical theory of its convergence and accuracy. 

6. Conclusion: Towards a New Era of Scientific AI 

In this paper, we introduced the Neural Entropy-Stable 

Conservative Flux (NES-CF) network, a data-driven 

framework that learns the dynamics of complex physical 

systems. By tasking the neural network with the 

simultaneous discovery of a system's dynamics and its 

fundamental entropy law, we have created a method that is 

physically consistent by construction, without needing to be 

shoehorned into a predefined numerical scheme. 

Through a battery of demanding tests, we have shown that 

our approach yields models that are accurate, robust to 

noise, and, most importantly, trustworthy. They correctly 

capture the formation of shocks and other complex 

phenomena while rigorously upholding the physical laws of 

conservation and entropy. 

This work helps pave the way for a new generation of 

scientific machine learning—one where AI models are not 

just powerful pattern-finders, but true partners in scientific 

discovery. By building the non-negotiable laws of physics 

into the very architecture of our learning machines, we can 

begin to explore and understand the complexities of the 

universe with a new level of confidence and power. 
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