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ABSTRACT

From the flow of galaxies to the waves in our oceans, much of the physical world is governed by a class of equations known
as hyperbolic conservation laws. Simulating these laws on computers is a monumental task, especially because they often
produce sharp, sudden changes like shockwaves. For decades, scientists have hand-crafted complex numerical methods
to tackle this challenge, but these methods require deep, specialized knowledge. More recently, artificial intelligence has
shown an incredible ability to learn dynamics from data, but these "black-box" models often fail to respect the
fundamental laws of physics, leading to unstable or nonsensical results.

In this paper, we introduce a new approach that bridges this gap: the Neural Entropy-Stable Conservative Flux (NES-CF)
network. Instead of relying on predefined rules, our framework learns the physics of a system directly from data. Our key
innovation is to have the Al learn not only the system's dynamics but also a fundamental physical principle known as
entropy—a measure of disorder that must always be respected. By building this principle directly into the learning
process, our model guarantees that its predictions are physically consistent and stable. We tested our framework on a
range of challenging problems, from the simple formation of a shockwave to the complex dynamics of gas, and found that
it accurately captures the physics, even when trained with noisy data. This work represents a significant step toward
creating Al models for science that are not only powerful but also trustworthy..

Keywords: Hyperbolic Conservation Laws, Neural Networks, Entropy Stability, Physics-Informed Machine Learning,
Structure-Preserving Neural Networks, Finite Volume Method, Flux Approximation, Computational Fluid Dynamics.

Introduction
1. The Challenge: Teaching Al the Laws of Physics orderly [14, 35].

The universe is in constant motion, and for centuries, .
R ) . ] ) For decades, the gold standard for tackling these problems
scientists have sought to describe this motion with .. . .
. has been the finite volume method, a brilliant numerical
mathematics. Many of the most fundamental processes,
from the weather in our atmosphere to the flow of water in
a river, are described by a powerful set of tools called
hyperbolic partial differential equations (PDEs) [16, 24,
37]. These equations are built on a simple but profound
idea: certain physical quantities, like mass, momentum,

and energy, must be conserved.

technique that breaks the problem down into small,
manageable pieces [2, 24]. Scientists have poured immense
effort into designing sophisticated numerical "fluxes" that
can handle shocks without creating bizarre, non-physical
wobbles in the solution [15, 31, 32]. The pinnacle of this
effort is the creation of entropy-stable schemes—methods
that are hard-wired to respect the laws of thermodynamics,
ensuring their predictions are robust and physically correct
[10, 17, 34]. The catch? Designing these schemes is an art
form that requires deep, system-specific expertise.

However, solving these equations is anything but simple. A
defining feature of hyperbolic systems is their dramatic
tendency to create "shocks"—sudden, sharp changes in the
solution, like the sonic boom from a supersonic jet. To be
physically meaningful, these solutions must also obey the
second law of thermodynamics, a rule mathematically
captured by an "entropy condition,” which essentially
prevents the universe from spontaneously becoming more

In recent years, a new player has entered the scene: machine
learning. With its incredible power to find patterns in data,
Al has shown it can learn the dynamics of complex systems
without being explicitly told the rules [9, 11, 12]. This has led
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to an explosion of research in "Physics-Informed Neural
Networks" (PINNs) and their cousins, which try to learn
the solutions to PDEs [5, 25, 28, 38]. But when faced with
the wild world of hyperbolic equations, these methods
often stumble. They can be easily confused by shocks,
producing unstable or physically impossible results
because they lack a deep, built-in understanding of the
underlying physical laws like conservation and entropy
[29, 36].

This brings us to a critical crossroads. On one hand, we
have classical methods that are physically rigorous but
require intense human effort. On the other, we have
powerful machine learning tools that are flexible but often
physically naive. Can we have the best of both worlds?

Some recent efforts have tried to do just that by building
the structure of classical numerical methods directly into
neural networks [6, 26, 29, 33, 36]. The Entropy-Stable
Conservative Flux Network (ESCFN), for example, forces a
neural network to operate within the rigid framework of a
known entropy-stable scheme [26]. This works well, but
it's like teaching someone to paint using a coloring book—
the outlines are already drawn. What if we don't know the
right outlines? What if the system's physics are a complete
mystery?

In this paper, we tear up the coloring book. We introduce
the Neural Entropy-Stable Conservative Flux (NES-CF)
network, a framework that learns the fundamental
physics of a hyperbolic system from the ground up. Our
approach makes two key leaps:

1. It learns the rules, not just the game: Instead of
starting with a known physical law, our network
simultaneously learns the system's flux (the rules of
motion) and its corresponding entropy function (a
fundamental law it must obey).

2. It's physically consistent by design: We use a
special type of network, an Input Convex Neural
Network (ICNN) [1], to represent the entropy. This
guarantees that the learned physical law is valid,
ensuring the model's predictions are stable and make
physical sense.

In short, we've developed a method that doesn't just mimic
a known numerical scheme; it discovers a physically valid
one on its own. Through a series of demanding tests, we
show that our NES-CF network can produce stable,
accurate, and robust predictions, paving the way for a new
generation of scientific Al that can help us discover and
understand the world around us.

2. The Building Blocks: A Refresher on Hyperbolic
Systems

Before we dive into how our neural network works, let's

quickly revisit the key concepts from physics and
mathematics that our model is built upon.

2.1. The Language of Conservation and Entropy

At its heart, a one-dimensional hyperbolic conservation law
is an equation that looks like this:

dtdu+dxaf(u)=0

This equation describes how a vector of conserved
quantities, u (like density or momentum), changes over time
t and space x. The function f(u) is the "flux,” which tells us
how these quantities move around. The system is
"hyperbolic" if information propagates at finite speeds, like
waves.

As we mentioned, the solutions to these equations can have
shocks, which means we need a way to pick out the one
solution that actually occurs in nature. This is where entropy
comes in. For a given system, we can often find a special pair
of functions: a convex entropy function n(u) and its
corresponding entropy flux y(u). The physically correct
solution is the one that satisfies the following inequality:

9tan (u)+9xaY(u)<0

This is the mathematical expression of the second law of
thermodynamics. It states that the total entropy, a measure
of disorder, can only stay the same or increase. In our
simulations, this means entropy must be dissipated at
shocks.

There's a beautiful connection here: the existence of a strictly
convex entropy function actually guarantees that the system
is hyperbolic. This is because we can define a new set of
"entropy variables," v=(Vn(u))T, which allows us to rewrite
the original equations in a more well-behaved, symmetric
form. This property is the secret sauce for designing stable
numerical methods.

2.2. Taming the Equations: The Finite Volume Method

To solve these equations on a computer, we use the finite
volume method. We chop our spatial domain into a series of
small cells, and instead of tracking the solution at every
single point, we track the average value of u within each cell.
The change in a cell's average value over time is determined
by the flux of quantities moving in and out of it through its
boundaries:

dtduj(t)=-Ax1(fj+1/2-f-1/2)

Here, uj is the average in cell j, and fj+1/2 is the numerical
flux at the interface between cell j and cell j+1. The entire art
of the finite volume method boils down to designing a good
numerical flux.

2.3. Building Stable Schemes: The Entropy-Stable
Approach
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How do we design a flux that respects the laws of physics?
The modern answer is to build it in two parts.

First, we start with an entropy-conservative flux, fj+1/2x
. This is a special kind of flux that, on its own, would
perfectly conserve entropy [34]. While mathematically
elegant, it's too perfect for the real world—it doesn't have
the grit to handle shocks and will produce ugly oscillations.

So, we add the second part: a carefully controlled amount
of numerical dissipation. This gives us our final entropy-
stable flux, f*j+1/2:

fAj+1/2=fj+1/2%-21Dj+1/2(vj+1-vj)

The dissipation term is proportional to the jump in the
entropy variables between neighboring cells, (vj+1-vj).
The matrix Dj+1/2 controls the strength of this dissipation.
As long as Dj+1/2 is symmetric and positive semi-definite,
this construction mathematically guarantees that our
numerical method will satisfy the entropy inequality and
produce physically correct, stable solutions [35]. The
specific form of Dj+1/2 is often chosen based on the
physics of the system, such as the local speed of waves [10,
17].

This powerful idea—combining a conservative base with
controlled dissipation—is the foundation upon which we
will build our learning framework.

3. Our Approach: The Neural Entropy-Stable
Conservative Flux (NES-CF) Framework

Our goal is to create a neural network that can learn the
dynamics of a hyperbolic system without being given a pre-
canned numerical scheme. We achieve this by teaching the
network to learn the fundamental components of an
entropy-stable flux directly from data.

3.1. Learning the Entropy Itself

The most critical and novel part of our method is that we
don't assume we know the entropy function n(u). We task
the network with learning it. This is a huge step towards
generality, but it comes with a major challenge: the entropy
function must be convex.

To solve this, we use a special tool called an Input Convex
Neural Network (ICNN) to represent the entropy, which
we call n8(u). ICNNs are cleverly designed so that their
output is always a convex function of their input, no matter
what their trainable parameters 0 are [1]. This isn't just a
convenience; it's a hard constraint that guarantees the
physics of our learned system is well-posed and
hyperbolic.

Once we have our learnable, always-convex entropy
function n6, we can use the power of automatic

differentiation—a standard feature in deep learning libraries
like JAX [4]—to instantly compute its derivatives: the
entropy variables v0 and the entropy Hessian matrix n0" (u).

3.2. Learning a Custom, Stable Flux

With our learned entropy in hand, we can now construct a
learnable numerical flux, F*j+1/2p,w,0, that has the entropy-
stable structure we discussed earlier:

FAj+1/20,w,0=Fj+1/2,*-21Dj+1/21,w,8(v6,j+1-v6,j)

We use neural networks to parameterize each piece of this
formula:

1. The Conservative Part (Fj+1/2u*): We use a
standard fully connected neural network (FCNN),
which we call Fy, to learn the underlying physical flux
of the unknown system. The conservative numerical
flux is then simply the average of this learned flux
evaluated at the left and right sides of the cell interface.

2. The Dissipative Part (Dj+1/2u,w,0): Our learnable
dissipation matrix follows the physical intuition of the
Rusanov flux. It depends on two learned components:
0 Maximum Wave Speed (Aw,j+1/2max): We train

another FCNN, pw, to predict the maximum local
wave speed based on the state of the system. This
tells the model how much dissipation is needed to
keep the simulation stable.

o Inverse Entropy Hessian ((16')-1): This crucial
piece comes directly from our learned entropy
network n0. It scales the dissipation according to
the geometry of the learned entropy landscape.

Putting it all together, our final Neural Entropy-Stable Flux
is a chimera—a single, complex function built from three
collaborating neural networks (Fu,pw,n0) that are trained
together. This construction ensures that, no matter what the
networks learn, the resulting numerical scheme is
guaranteed to be conservative and stable with respect to the
very entropy function it discovered.

3.3. The Training Process: Balancing Data and Physics

How do we train these networks to learn something
meaningful? We need a carefully designed objective, or "loss
function," that tells the model what a good solution looks like.
Our training process is a balancing act between two
priorities: fitting the data and obeying the laws of physics.

The Loss Function:

1. Data Fidelity: First and foremost, the model's
predictions must match the training data we provide.
We use a recurrent loss function that unrolls the
simulation for a few steps and penalizes the difference
between the model's prediction, u”, and the true data,
U,
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2. Physical Consistency: This is where our approach
shines. We add extra penalty terms to the loss
function that enforce the underlying physics. The
most important of these is a term that forces the
learned flux Fu and the learned entropy n6é to be
compatible with each other (specifically, it enforces
the symmetry condition from Section 2.1).

Two-Stage Training:
We found that trying to learn everything at once can be
difficult. So, we adopt a two-stage training strategy:
® Stage 1: We train all three networks together,
encouraging them to find a good balance between
matching the data and satisfying the physical
constraints.
® Stage 2: We freeze the flux and wave speed networks
and perform a final fine-tuning of just the entropy
network. This last step ensures the physical
compatibility conditions are met with high precision,
locking in the hyperbolicity of the learned system.

This careful, two-stage process guides the networks to
discover a self-consistent physical model that is not only
accurate but also robust and trustworthy.

4. Putting It to the Test: Our Experimental Setup

To see if our NES-CF framework truly works, we put it
through a rigorous series of tests on well-known,
challenging problems.

4.1. The Gauntlet of Benchmark Problems

We chose a suite of classic problems that cover a range of
physical phenomena:

1. 1D Burgers' Equation: The simplest model for shock
formation.

2. 1D Shallow Water Equations: A system describing
water flow, featuring both shocks and smoother
rarefaction waves.

3. 1D Euler Equations: The equations of gas dynamics,
which we test on two famous problems: the Sod
shock tube (a simple shock interaction) and the Shu-
Osher problem (a much harder case where a shock
wave interacts with a sine wave).

4. 2D Burgers' Equation: A test to see how our method
handles multiple dimensions.

For each problem, we used a high-quality numerical solver,
PyClaw [8, 19], to generate our training data. To really test
the model's ability to generalize, we also evaluated its
performance on initial conditions that were qualitatively
different from anything it had seen during training.

4.2. The Brains of the Operation: Network Details

Our framework uses three neural networks, each with a
specific job:

Flux Network (Fu): A standard 3-layer FCNN.

Wave Speed Network (pw): A simpler 2-layer FCNN.
e Entropy Network (n6): A 1-layer ICNN, which is the

key to guaranteeing convexity.

We implemented our models in JAX [4], a high-performance
computing library, and trained them using the popular Adam
optimizer [20].

4.3. Measuring Success: Our Evaluation Metrics
We judged the success of our model on two main fronts:

1. Prediction Accuracy: How well do the model's
predictions match the true solution at future times? We
measured this using the standard L2 error.

2. Physical Integrity: Does the model obey the laws of
physics? We checked this with two specific metrics:

0 Conservation Error: We tracked the total amount
of each conserved quantity. This should remain
constant, and our model should achieve this up to
machine precision.

o Entropy Remainder: We calculated the total
entropy of the system at each time step. For a
physically valid solution, this value should never
increase.

Finally, to simulate real-world conditions, we also tested our
model's performance when trained on data that had been
corrupted with different levels of random noise.

5. The Verdict: Results and Discussion

The results of our experiments were clear and compelling:
the NES-CF framework successfully learns physically
consistent and robust models directly from data.

5.1. Capturing Shocks and Complex Waves

Across the board, our model demonstrated an impressive
ability to predict the complex behavior of hyperbolic
systems.

® Forthe Burgers' equation, even when we only trained
the model on smooth data from before a shock formed,
it correctly predicted the emergence of a sharp, clean
shockwave at the right time and place.

® [n the shallow water dam-break problem, the model
accurately captured the movement of both the shock
front and the smoother rarefaction wave.

® The Euler equations provided the toughest challenge.
Yet, for both the Sod and the highly complex Shu-Osher
problems, our network learned a stable flux that
correctly reproduced all the essential wave structures.
While there was some minor blurring of contact
discontinuities (a common trait of even classical
dissipative schemes), the solutions were completely
free of the non-physical oscillations that plague less
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sophisticated models.

e Finally, the model generalized gracefully to the 2D
Burgers' equation, showing it is not limited to one-
dimensional problems.

5.2. Grace Under Pressure: Robustness to Noise

Real-world data is never perfect. Our framework showed
remarkable resilience when trained on noisy data. Even
with noise levels as high as 100% of the signal's average
value, the NES-CF model produced stable, long-term
predictions that were qualitatively correct. While extreme
noise did cause the model to become more cautious and
add more numerical diffusion, it never broke down or
violated the fundamental physical principles it was
designed to respect.

5.3. Upholding the Law: Conservation and Entropy
Stability

This is where the core strength of our method was most
evident.

® Conservation: In every single test, the total amount
of each conserved quantity was preserved to the level
of numerical precision. The conservative finite
volume structure was perfectly maintained.

e Entropy Stability: This was the crucial test. For
every problem, every initial condition (including
those it had never seen before), and every noise level,
the total discrete entropy of the system never
increased. This provides definitive proof that our
learned model is truly entropy-stable and produces
physically admissible solutions. A naive model
trained without this built-in constraint would quickly
fail this test, leading to catastrophic instabilities.

5.4. What It All Means: A Discussion

Our results highlight a powerful principle: embedding
fundamental physical structure directly into the learning
process allows Al to discover self-consistent, reliable
models of the world. By forcing the network to learn not
just the "what" (the data) but also the "why" (the physical
laws of entropy and conservation), we create a model that
can generalize far beyond its training set.

This approach offers a significant advantage over methods
that rely on a predefined numerical scheme. By learning
the entropy function, our model has the flexibility to adapt
to truly unknown systems where the "correct” scheme is
not known ahead of time. This increased generality comes
at a small cost: the added complexity of learning the
entropy makes the model slightly more sensitive to noise
than a model where the entropy is fixed [26]. This is a
natural and expected trade-off.

The main limitation of our current work is its reliance on

high-quality simulation data for training. The exciting next
steps for this research will be to explore how this framework
can be adapted to learn from sparse or incomplete
experimental data, how to scale it to even more complex,
multi-dimensional problems, and to develop a rigorous
mathematical theory of its convergence and accuracy.

6. Conclusion: Towards a New Era of Scientific Al

In this paper, we introduced the Neural Entropy-Stable
Conservative Flux (NES-CF) network, a data-driven
framework that learns the dynamics of complex physical
systems. By tasking the neural network with the
simultaneous discovery of a system's dynamics and its
fundamental entropy law, we have created a method that is
physically consistent by construction, without needing to be
shoehorned into a predefined numerical scheme.

Through a battery of demanding tests, we have shown that
our approach yields models that are accurate, robust to
noise, and, most importantly, trustworthy. They correctly
capture the formation of shocks and other complex
phenomena while rigorously upholding the physical laws of
conservation and entropy.

This work helps pave the way for a new generation of
scientific machine learning—one where Al models are not
just powerful pattern-finders, but true partners in scientific
discovery. By building the non-negotiable laws of physics
into the very architecture of our learning machines, we can
begin to explore and understand the complexities of the
universe with a new level of confidence and power.
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