
EUROPEAN JOURNAL OF EMERGING ENGINEERING AND MATHEMATICS

pg. 50

Learning Physically Consistent Dynamics: A Human-Centric Approach to Entropy-Stable
Neural Networks

Dr. Nirelle V. Aumont
Department of Computer Science, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland

Dr. Kaien R. Luskami

Department of Mechanical and Aerospace Engineering, University of California, San Diego, USA

Dr. Lioren J. Kevrand
School of Engineering and Applied Sciences, University of Oxford, United Kingdom

V0LUME 01 ISSUE 01 (2024)

Published Date: 27 December 2024 // Page no.: - 50-56

ABSTRACT

From the flow of galaxies to the waves in our oceans, much of the physical world is governed by a class of equations known
as hyperbolic conservation laws. Simulating these laws on computers is a monumental task, especially because they often
produce sharp, sudden changes like shockwaves. For decades, scientists have hand-crafted complex numerical methods
to tackle this challenge, but these methods require deep, specialized knowledge. More recently, artificial intelligence has
shown an incredible ability to learn dynamics from data, but these "black-box" models often fail to respect the
fundamental laws of physics, leading to unstable or nonsensical results.
In this paper, we introduce a new approach that bridges this gap: the Neural Entropy-Stable Conservative Flux (NES-CF)
network. Instead of relying on predefined rules, our framework learns the physics of a system directly from data. Our key
innovation is to have the AI learn not only the system's dynamics but also a fundamental physical principle known as
entropy—a measure of disorder that must always be respected. By building this principle directly into the learning
process, our model guarantees that its predictions are physically consistent and stable. We tested our framework on a
range of challenging problems, from the simple formation of a shockwave to the complex dynamics of gas, and found that
it accurately captures the physics, even when trained with noisy data. This work represents a significant step toward
creating AI models for science that are not only powerful but also trustworthy..

Keywords: Hyperbolic Conservation Laws, Neural Networks, Entropy Stability, Physics-Informed Machine Learning,
Structure-Preserving Neural Networks, Finite Volume Method, Flux Approximation, Computational Fluid Dynamics.

Introduction

1. The Challenge: Teaching AI the Laws of Physics

The universe is in constant motion, and for centuries,

scientists have sought to describe this motion with

mathematics. Many of the most fundamental processes,

from the weather in our atmosphere to the flow of water in

a river, are described by a powerful set of tools called

hyperbolic partial differential equations (PDEs) [16, 24,

37]. These equations are built on a simple but profound

idea: certain physical quantities, like mass, momentum,

and energy, must be conserved.

However, solving these equations is anything but simple. A

defining feature of hyperbolic systems is their dramatic

tendency to create "shocks"—sudden, sharp changes in the

solution, like the sonic boom from a supersonic jet. To be

physically meaningful, these solutions must also obey the

second law of thermodynamics, a rule mathematically

captured by an "entropy condition," which essentially

prevents the universe from spontaneously becoming more

orderly [14, 35].

For decades, the gold standard for tackling these problems

has been the finite volume method, a brilliant numerical

technique that breaks the problem down into small,

manageable pieces [2, 24]. Scientists have poured immense

effort into designing sophisticated numerical "fluxes" that

can handle shocks without creating bizarre, non-physical

wobbles in the solution [15, 31, 32]. The pinnacle of this

effort is the creation of entropy-stable schemes—methods

that are hard-wired to respect the laws of thermodynamics,

ensuring their predictions are robust and physically correct

[10, 17, 34]. The catch? Designing these schemes is an art

form that requires deep, system-specific expertise.

In recent years, a new player has entered the scene: machine

learning. With its incredible power to find patterns in data,

AI has shown it can learn the dynamics of complex systems

without being explicitly told the rules [9, 11, 12]. This has led

EUROPEAN JOURNAL OF EMERGING ENGINEERING AND MATHEMATICS

pg. 51

to an explosion of research in "Physics-Informed Neural

Networks" (PINNs) and their cousins, which try to learn

the solutions to PDEs [5, 25, 28, 38]. But when faced with

the wild world of hyperbolic equations, these methods

often stumble. They can be easily confused by shocks,

producing unstable or physically impossible results

because they lack a deep, built-in understanding of the

underlying physical laws like conservation and entropy

[29, 36].

This brings us to a critical crossroads. On one hand, we

have classical methods that are physically rigorous but

require intense human effort. On the other, we have

powerful machine learning tools that are flexible but often

physically naive. Can we have the best of both worlds?

Some recent efforts have tried to do just that by building

the structure of classical numerical methods directly into

neural networks [6, 26, 29, 33, 36]. The Entropy-Stable

Conservative Flux Network (ESCFN), for example, forces a

neural network to operate within the rigid framework of a

known entropy-stable scheme [26]. This works well, but

it's like teaching someone to paint using a coloring book—

the outlines are already drawn. What if we don't know the

right outlines? What if the system's physics are a complete

mystery?

In this paper, we tear up the coloring book. We introduce

the Neural Entropy-Stable Conservative Flux (NES-CF)

network, a framework that learns the fundamental

physics of a hyperbolic system from the ground up. Our

approach makes two key leaps:

1. It learns the rules, not just the game: Instead of

starting with a known physical law, our network

simultaneously learns the system's flux (the rules of

motion) and its corresponding entropy function (a

fundamental law it must obey).

2. It's physically consistent by design: We use a

special type of network, an Input Convex Neural

Network (ICNN) [1], to represent the entropy. This

guarantees that the learned physical law is valid,

ensuring the model's predictions are stable and make

physical sense.

In short, we've developed a method that doesn't just mimic

a known numerical scheme; it discovers a physically valid

one on its own. Through a series of demanding tests, we

show that our NES-CF network can produce stable,

accurate, and robust predictions, paving the way for a new

generation of scientific AI that can help us discover and

understand the world around us.

2. The Building Blocks: A Refresher on Hyperbolic

Systems

Before we dive into how our neural network works, let's

quickly revisit the key concepts from physics and

mathematics that our model is built upon.

2.1. The Language of Conservation and Entropy

At its heart, a one-dimensional hyperbolic conservation law

is an equation that looks like this:

∂t∂u+∂x∂f(u)=0

This equation describes how a vector of conserved

quantities, u (like density or momentum), changes over time

t and space x. The function f(u) is the "flux," which tells us

how these quantities move around. The system is

"hyperbolic" if information propagates at finite speeds, like

waves.

As we mentioned, the solutions to these equations can have

shocks, which means we need a way to pick out the one

solution that actually occurs in nature. This is where entropy

comes in. For a given system, we can often find a special pair

of functions: a convex entropy function η(u) and its

corresponding entropy flux ψ(u). The physically correct

solution is the one that satisfies the following inequality:

∂t∂η(u)+∂x∂ψ(u)≤0

This is the mathematical expression of the second law of

thermodynamics. It states that the total entropy, a measure

of disorder, can only stay the same or increase. In our

simulations, this means entropy must be dissipated at

shocks.

There's a beautiful connection here: the existence of a strictly

convex entropy function actually guarantees that the system

is hyperbolic. This is because we can define a new set of

"entropy variables," v=(∇η(u))T, which allows us to rewrite

the original equations in a more well-behaved, symmetric

form. This property is the secret sauce for designing stable

numerical methods.

2.2. Taming the Equations: The Finite Volume Method

To solve these equations on a computer, we use the finite

volume method. We chop our spatial domain into a series of

small cells, and instead of tracking the solution at every

single point, we track the average value of u within each cell.

The change in a cell's average value over time is determined

by the flux of quantities moving in and out of it through its

boundaries:

dtduj(t)=−Δx1(fj+1/2−fj−1/2)

Here, uj is the average in cell j, and fj+1/2 is the numerical

flux at the interface between cell j and cell j+1. The entire art

of the finite volume method boils down to designing a good

numerical flux.

2.3. Building Stable Schemes: The Entropy-Stable

Approach

EUROPEAN JOURNAL OF EMERGING ENGINEERING AND MATHEMATICS

pg. 52

How do we design a flux that respects the laws of physics?

The modern answer is to build it in two parts.

First, we start with an entropy-conservative flux, fj+1/2∗

. This is a special kind of flux that, on its own, would

perfectly conserve entropy [34]. While mathematically

elegant, it's too perfect for the real world—it doesn't have

the grit to handle shocks and will produce ugly oscillations.

So, we add the second part: a carefully controlled amount

of numerical dissipation. This gives us our final entropy-

stable flux, f^j+1/2:

f^j+1/2=fj+1/2∗−21Dj+1/2(vj+1−vj)

The dissipation term is proportional to the jump in the

entropy variables between neighboring cells, (vj+1−vj).

The matrix Dj+1/2 controls the strength of this dissipation.

As long as Dj+1/2 is symmetric and positive semi-definite,

this construction mathematically guarantees that our

numerical method will satisfy the entropy inequality and

produce physically correct, stable solutions [35]. The

specific form of Dj+1/2 is often chosen based on the

physics of the system, such as the local speed of waves [10,

17].

This powerful idea—combining a conservative base with

controlled dissipation—is the foundation upon which we

will build our learning framework.

3. Our Approach: The Neural Entropy-Stable

Conservative Flux (NES-CF) Framework

Our goal is to create a neural network that can learn the

dynamics of a hyperbolic system without being given a pre-

canned numerical scheme. We achieve this by teaching the

network to learn the fundamental components of an

entropy-stable flux directly from data.

3.1. Learning the Entropy Itself

The most critical and novel part of our method is that we

don't assume we know the entropy function η(u). We task

the network with learning it. This is a huge step towards

generality, but it comes with a major challenge: the entropy

function must be convex.

To solve this, we use a special tool called an Input Convex

Neural Network (ICNN) to represent the entropy, which

we call ηθ(u). ICNNs are cleverly designed so that their

output is always a convex function of their input, no matter

what their trainable parameters θ are [1]. This isn't just a

convenience; it's a hard constraint that guarantees the

physics of our learned system is well-posed and

hyperbolic.

Once we have our learnable, always-convex entropy

function ηθ, we can use the power of automatic

differentiation—a standard feature in deep learning libraries

like JAX [4]—to instantly compute its derivatives: the

entropy variables vθ and the entropy Hessian matrix ηθ′′(u).

3.2. Learning a Custom, Stable Flux

With our learned entropy in hand, we can now construct a

learnable numerical flux, F^j+1/2μ,w,θ, that has the entropy-

stable structure we discussed earlier:

F^j+1/2μ,w,θ=Fj+1/2μ,∗−21Dj+1/2μ,w,θ(vθ,j+1−vθ,j)

We use neural networks to parameterize each piece of this

formula:

1. The Conservative Part (Fj+1/2μ,∗): We use a

standard fully connected neural network (FCNN),

which we call Fμ, to learn the underlying physical flux

of the unknown system. The conservative numerical

flux is then simply the average of this learned flux

evaluated at the left and right sides of the cell interface.

2. The Dissipative Part (Dj+1/2μ,w,θ): Our learnable

dissipation matrix follows the physical intuition of the

Rusanov flux. It depends on two learned components:

○ Maximum Wave Speed (λw,j+1/2max): We train

another FCNN, ρw, to predict the maximum local

wave speed based on the state of the system. This

tells the model how much dissipation is needed to

keep the simulation stable.

○ Inverse Entropy Hessian ((ηθ′′)−1): This crucial

piece comes directly from our learned entropy

network ηθ. It scales the dissipation according to

the geometry of the learned entropy landscape.

Putting it all together, our final Neural Entropy-Stable Flux

is a chimera—a single, complex function built from three

collaborating neural networks (Fμ,ρw,ηθ) that are trained

together. This construction ensures that, no matter what the

networks learn, the resulting numerical scheme is

guaranteed to be conservative and stable with respect to the

very entropy function it discovered.

3.3. The Training Process: Balancing Data and Physics

How do we train these networks to learn something

meaningful? We need a carefully designed objective, or "loss

function," that tells the model what a good solution looks like.

Our training process is a balancing act between two

priorities: fitting the data and obeying the laws of physics.

The Loss Function:

1. Data Fidelity: First and foremost, the model's

predictions must match the training data we provide.

We use a recurrent loss function that unrolls the

simulation for a few steps and penalizes the difference

between the model's prediction, u^, and the true data,

u∗.

EUROPEAN JOURNAL OF EMERGING ENGINEERING AND MATHEMATICS

pg. 53

2. Physical Consistency: This is where our approach

shines. We add extra penalty terms to the loss

function that enforce the underlying physics. The

most important of these is a term that forces the

learned flux Fμ and the learned entropy ηθ to be

compatible with each other (specifically, it enforces

the symmetry condition from Section 2.1).

Two-Stage Training:

We found that trying to learn everything at once can be

difficult. So, we adopt a two-stage training strategy:

● Stage 1: We train all three networks together,

encouraging them to find a good balance between

matching the data and satisfying the physical

constraints.

● Stage 2: We freeze the flux and wave speed networks

and perform a final fine-tuning of just the entropy

network. This last step ensures the physical

compatibility conditions are met with high precision,

locking in the hyperbolicity of the learned system.

This careful, two-stage process guides the networks to

discover a self-consistent physical model that is not only

accurate but also robust and trustworthy.

4. Putting It to the Test: Our Experimental Setup

To see if our NES-CF framework truly works, we put it

through a rigorous series of tests on well-known,

challenging problems.

4.1. The Gauntlet of Benchmark Problems

We chose a suite of classic problems that cover a range of

physical phenomena:

1. 1D Burgers' Equation: The simplest model for shock

formation.

2. 1D Shallow Water Equations: A system describing

water flow, featuring both shocks and smoother

rarefaction waves.

3. 1D Euler Equations: The equations of gas dynamics,

which we test on two famous problems: the Sod

shock tube (a simple shock interaction) and the Shu-

Osher problem (a much harder case where a shock

wave interacts with a sine wave).

4. 2D Burgers' Equation: A test to see how our method

handles multiple dimensions.

For each problem, we used a high-quality numerical solver,

PyClaw [8, 19], to generate our training data. To really test

the model's ability to generalize, we also evaluated its

performance on initial conditions that were qualitatively

different from anything it had seen during training.

4.2. The Brains of the Operation: Network Details

Our framework uses three neural networks, each with a

specific job:

● Flux Network (Fμ): A standard 3-layer FCNN.

● Wave Speed Network (ρw): A simpler 2-layer FCNN.

● Entropy Network (ηθ): A 1-layer ICNN, which is the

key to guaranteeing convexity.

We implemented our models in JAX [4], a high-performance

computing library, and trained them using the popular Adam

optimizer [20].

4.3. Measuring Success: Our Evaluation Metrics

We judged the success of our model on two main fronts:

1. Prediction Accuracy: How well do the model's

predictions match the true solution at future times? We

measured this using the standard L2 error.

2. Physical Integrity: Does the model obey the laws of

physics? We checked this with two specific metrics:

○ Conservation Error: We tracked the total amount

of each conserved quantity. This should remain

constant, and our model should achieve this up to

machine precision.

○ Entropy Remainder: We calculated the total

entropy of the system at each time step. For a

physically valid solution, this value should never

increase.

Finally, to simulate real-world conditions, we also tested our

model's performance when trained on data that had been

corrupted with different levels of random noise.

5. The Verdict: Results and Discussion

The results of our experiments were clear and compelling:

the NES-CF framework successfully learns physically

consistent and robust models directly from data.

5.1. Capturing Shocks and Complex Waves

Across the board, our model demonstrated an impressive

ability to predict the complex behavior of hyperbolic

systems.

● For the Burgers' equation, even when we only trained

the model on smooth data from before a shock formed,

it correctly predicted the emergence of a sharp, clean

shockwave at the right time and place.

● In the shallow water dam-break problem, the model

accurately captured the movement of both the shock

front and the smoother rarefaction wave.

● The Euler equations provided the toughest challenge.

Yet, for both the Sod and the highly complex Shu-Osher

problems, our network learned a stable flux that

correctly reproduced all the essential wave structures.

While there was some minor blurring of contact

discontinuities (a common trait of even classical

dissipative schemes), the solutions were completely

free of the non-physical oscillations that plague less

EUROPEAN JOURNAL OF EMERGING ENGINEERING AND MATHEMATICS

pg. 54

sophisticated models.

● Finally, the model generalized gracefully to the 2D

Burgers' equation, showing it is not limited to one-

dimensional problems.

5.2. Grace Under Pressure: Robustness to Noise

Real-world data is never perfect. Our framework showed

remarkable resilience when trained on noisy data. Even

with noise levels as high as 100% of the signal's average

value, the NES-CF model produced stable, long-term

predictions that were qualitatively correct. While extreme

noise did cause the model to become more cautious and

add more numerical diffusion, it never broke down or

violated the fundamental physical principles it was

designed to respect.

5.3. Upholding the Law: Conservation and Entropy

Stability

This is where the core strength of our method was most

evident.

● Conservation: In every single test, the total amount

of each conserved quantity was preserved to the level

of numerical precision. The conservative finite

volume structure was perfectly maintained.

● Entropy Stability: This was the crucial test. For

every problem, every initial condition (including

those it had never seen before), and every noise level,

the total discrete entropy of the system never

increased. This provides definitive proof that our

learned model is truly entropy-stable and produces

physically admissible solutions. A naive model

trained without this built-in constraint would quickly

fail this test, leading to catastrophic instabilities.

5.4. What It All Means: A Discussion

Our results highlight a powerful principle: embedding

fundamental physical structure directly into the learning

process allows AI to discover self-consistent, reliable

models of the world. By forcing the network to learn not

just the "what" (the data) but also the "why" (the physical

laws of entropy and conservation), we create a model that

can generalize far beyond its training set.

This approach offers a significant advantage over methods

that rely on a predefined numerical scheme. By learning

the entropy function, our model has the flexibility to adapt

to truly unknown systems where the "correct" scheme is

not known ahead of time. This increased generality comes

at a small cost: the added complexity of learning the

entropy makes the model slightly more sensitive to noise

than a model where the entropy is fixed [26]. This is a

natural and expected trade-off.

The main limitation of our current work is its reliance on

high-quality simulation data for training. The exciting next

steps for this research will be to explore how this framework

can be adapted to learn from sparse or incomplete

experimental data, how to scale it to even more complex,

multi-dimensional problems, and to develop a rigorous

mathematical theory of its convergence and accuracy.

6. Conclusion: Towards a New Era of Scientific AI

In this paper, we introduced the Neural Entropy-Stable

Conservative Flux (NES-CF) network, a data-driven

framework that learns the dynamics of complex physical

systems. By tasking the neural network with the

simultaneous discovery of a system's dynamics and its

fundamental entropy law, we have created a method that is

physically consistent by construction, without needing to be

shoehorned into a predefined numerical scheme.

Through a battery of demanding tests, we have shown that

our approach yields models that are accurate, robust to

noise, and, most importantly, trustworthy. They correctly

capture the formation of shocks and other complex

phenomena while rigorously upholding the physical laws of

conservation and entropy.

This work helps pave the way for a new generation of

scientific machine learning—one where AI models are not

just powerful pattern-finders, but true partners in scientific

discovery. By building the non-negotiable laws of physics

into the very architecture of our learning machines, we can

begin to explore and understand the complexities of the

universe with a new level of confidence and power.

REFERENCES

[1] B. Amos, L. Xu, and J. Z. Kolter. Input convex neural

networks. In International conference on machine learning,

pages 146–155. PMLR, 2017.

[2] T. J. Barth. Numerical Methods for Gasdynamic Systems

on Unstructured Meshes, pages 195–285. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1999.

[3] G. R. Bigg, M. R. Wadley, D. P. Stevens, and J. A. Johnson.

Modelling the dynamics and thermodynamics of icebergs.

Cold Regions Science and Technology, 26(2):113–135, 1997.

[4] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,

D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S.

Wanderman-Milne, and Q. Zhang. JAX: composable

transformations of Python+NumPy programs, 2018.

[5] Z. Chen, V. Churchill, K. Wu, and D. Xiu. Deep neural

network modeling of unknown partial differential equations

in nodal space. Journal of Computational Physics,

449:110782, 2022.

EUROPEAN JOURNAL OF EMERGING ENGINEERING AND MATHEMATICS

pg. 55

[6] Z. Chen, A. Gelb, and Y. Lee. Learning the dynamics for

unknown hyperbolic conservation laws using deep neural

networks. SIAM Journal on Scientific Computing,

46(2):A825–A850, 2024.

[7] V. Churchill and D. Xiu. Flow map learning for unknown

dynamical systems: Overview, implementation, and

benchmarks. Journal of Machine Learning for Modeling and

Computing, 4(2):173–201, 2023.

[8] Clawpack Development Team. Clawpack software,

2020. Version 5.7.1.

[9] A. Dulny, A. Hotho, and A. Krause. NeuralPDE: Modelling

dynamical systems from data. In R. Bergmann, L. Malburg,

S. C. Rodermund, and I. J. Timm, editors, KI 2022: Advances

in Artificial Intelligence, pages 75–89, Cham, 2022. Springer

International Publishing.

[10] U. S. Fjordholm, S. Mishra, and E. Tadmor. Arbitrarily

high-order accurate entropy stable essentially

nonoscillatory schemes for systems of conservation laws.

SIAM Journal on Numerical Analysis, 50(2):544–573, 2012.

[11] M. Forgione and D. Piga. dynoNet: A neural network

architecture for learning dynamical systems. International

Journal of Adaptive Control and Signal Processing,

35(4):612–626, 2021.

[12] K. Gajamannage, D. I. Jayathilake, Y. Park, and E. M.

Bollt. Recurrent neural networks for dynamical systems:

Applications to ordinary differential equations, collective

motion, and hydrological modeling. Chaos: An

Interdisciplinary Journal of Nonlinear Science,

33(1):013109, 01 2023.

[13] L. Girard, S. Bouillon, J. Weiss, D. Amitrano, T. Fichefet,

and V. Legat. A new modeling framework for sea-ice

mechanics based on elasto-brittle rheology. Annals of

Glaciology, 52(57):123–132, 2011.

[14] E. Godlewski and P.-A. Raviart. Numerical

approximation of hyperbolic systems of conservation laws,

volume 118. Springer Science & Business Media, 2013.

[15] S. Gottlieb and C.-W. Shu. Total variation diminishing

Runge-Kutta schemes. Math. Comput., 67(221):73–85, jan

1998.

[16] J. R. Holton and G. J. Hakim. An Introduction to Dynamic

Meteorology. Academic Press, Oxford, 5th edition, 2012.

[17] F. Ismail and P. L. Roe. Affordable, entropy-consistent

Euler flux functions ii: Entropy production at shocks.

Journal of Computational Physics, 228(15):5410–5436,

2009.

[18] M. Kast and J. S. Hesthaven. Positional embeddings for

solving PDEs with evolutional deep neural networks. Journal

of Computational Physics, 508:112986, 2024.

[19] D. I. Ketcheson, K. T. Mandli, A. J. Ahmadia, A. Alghamdi,

M. Quezada de Luna, M. Parsani, M. G. Knepley, and M.

Emmett. PyClaw: Accessible, Extensible, Scalable Tools for

Wave Propagation Problems. SIAM Journal on Scientific

Computing, 34(4):C210–C231, Nov. 2012.

[20] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In Y. Bengio and Y. LeCun, editors, 3rd

International Conference on Learning Representations, ICLR

2015, San Diego, CA, USA, May 7-9, 2015, Conference Track

Proceedings, 2015.

[21] A. Kurganov and E. Tadmor. New high-resolution central

schemes for nonlinear conservation laws and convection–

diffusion equations. Journal of computational physics,

160(1):241–282, 2000.

[22] A. Kurganov and E. Tadmor. New high-resolution central

schemes for nonlinear conservation laws and convection–

diffusion equations. Journal of Computational Physics,

160(1):241–282, 2000.

[23] P. G. LeFloch, J. M. Mercier, and C. Rohde. Fully discrete,

entropy conservative schemes of arbitraryorder. SIAM

Journal on Numerical Analysis, 40(5):1968–1992, 2002.

[24] R. J. LeVeque. Finite Volume Methods for Hyperbolic

Problems. Cambridge Texts in Applied Mathematics.

Cambridge University Press, 2002.

[25] L. Liu and W. Cai. DeepPropNet – a recursive deep

propagator neural network for learning evolution PDE

operators, 2022.

[26] L. Liu, T. Li, A. Gelb, and Y. Lee. Entropy stable

conservative flux form neural networks. arXiv preprint

arXiv:2411.01746, 2024.

[27] L. Liu, K. Nath, and W. Cai. A causality-deeponet for

causal responses of linear dynamical systems.

Communications in Computational Physics, 35(5):1194–1228,

2024.

[28] Z. Long, Y. Lu, X. Ma, and B. Dong. PDE-Net: Learning

PDEs from data, 2018.

[29] D. G. Patsatzis, M. di Bernardo, L. Russo, and C. Siettos.

Gorinns: Godunov-riemann informed neural networks for

learning hyperbolic conservation laws. Journal of

Computational Physics, 534:114002, 2025.

[30] R. S. Pritchard. An Elastic-Plastic Constitutive Law for

EUROPEAN JOURNAL OF EMERGING ENGINEERING AND MATHEMATICS

pg. 56

Sea Ice. Journal of Applied Mechanics, 42(2):379–384, 06

1975.

[31] P. Roe. Approximate riemann solvers, parameter

vectors, and difference schemes. Journal of Computational

Physics, 43(2):357–372, 1981.

[32] C.-W. Shu and S. Osher. Efficient implementation of

essentially non-oscillatory shock-capturing schemes. J.

Comput. Phys., 77(2):439–471, 1988.

[33] S. W. Suh, J. F. MacArt, L. N. Olson, and J. B. Freund. A

TVD neural network closure and application to turbulent

combustion. Journal of Computational Physics, 523:113638,

2025.

[34] E. Tadmor. The numerical viscosity of entropy stable

schemes for systems of conservation laws. i. Mathematics

of Computation, 49:91–103, 1987.

[35] E. Tadmor. Entropy stable schemes. In Handbook of

Numerical Analysis, volume 17, pages 467–493. Elsevier,

2016.

[36] Y. Tong, S. Xiong, X. He, S. Yang, Z. Wang, R. Tao, R. Liu,

and B. Zhu. Roenet: Predicting discontinuity of hyperbolic

systems from continuous data. International Journal for

Numerical Methods in Engineering, 125(6):e7406, 2024.

[37] C. B. Vreugdenhil. Numerical Methods for Shallow-Water

Flow. Springer, Dordrecht, 1994.

[38] Y. Yin, M. Kirchmeyer, J.-Y. Franceschi, A.

Rakotomamonjy, and P. Gallinari. Continuous PDE dynamics

forecasting with implicit neural representations. In

International Conference on Learning Representations (ICLR),

2023.

