UNLOCKING BRAIN HEALING: HOW NR4A2 CALMS INFLAMMATION AFTER HEMORRHAGIC STROKE
- Authors
-
-
Dr. Sergio Moreno
Division of Neurology, University of Toronto, CanadaAuthor -
Dr. Ibrahim K. Idris
Department of Neurology, All India Institute of Medical Sciences, New Delhi, IndiaAuthor
-
- Keywords:
- Intracerebral hemorrhage, NR4A2, Nurr1, Microglial polarization
- Abstract
-
Intracerebral hemorrhage (ICH) is a severe type of stroke that often leaves patients with significant neurological challenges and cognitive difficulties. This damage largely stems from a destructive wave of inflammation that sweeps through the brain after the initial bleeding. At the heart of this inflammation are microglia, the brain's immune cells, which can either worsen the damage (M1 type) or help with healing (M2 type). Our study explores how a protein called NR4A2 might help reduce early brain injury after ICH. We hypothesized that NR4A2 could protect the brain by encouraging microglia to switch to their healing M2 form, specifically by calming down a major inflammatory pathway known as TLR4/TRAF6/NF-κB. Our findings, based on a simulated ICH in rats, suggest that boosting NR4A2 levels significantly shrinks the area of bleeding, reduces harm to brain cells, and improves overall neurological function. We found that NR4A2 indeed shifted microglia towards the M2 phenotype and put a brake on the TLR4, TRAF6, and NF-κB p65 activation. When we introduced a substance that activates TLR4, NR4A2's protective effects were diminished, confirming that this pathway is crucial. NR4A2 also helped to seal up the "blood-brain barrier," which protects the brain. These results point to NR4A2 as a vital protective factor in ICH, capable of reducing secondary brain injury by guiding microglial responses and shutting down key inflammatory signals. This makes NR4A2 a promising new target for treatment.
- Downloads
-
Download data is not yet available.
- References
-
1. Lee TH (2025) Intracerebral hemorrhage [J]. Cerebrovasc Dis Extra 15(1):1–8
2. Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA et al (2022) Cerebral hemorrhage: pathophysiology, treatment, and future directions [J]. Circ Res 130(8):1204–1229
3. Rost NS, Brodtmann A, Pase MP, van Veluw SJ, Biffi A, Duering M et al (2022) Post-stroke cognitive impairment and dementia [J]. Circ Res 130(8):1252–1271
4. Zille M, Farr TD, Keep RF, Römer C, Xi G, Boltze J (2022) Novel targets, treatments, and advanced models for intracerebral haemorrhage [J]. EBioMedicine 76:103880
5. Rehni AK, Cho S, Quero HN, Shukla V, Zhang Z, Dong C et al (2022) Red blood cell microparticles limit hematoma growth in intracerebral hemorrhage [J]. Stroke 53(10):3182–3191
6. Zhang BW, Sun KH, Liu T, Zou W (2024) The crosstalk between immune cells after intracerebral hemorrhage [J]. Neuroscience 537:93–104
7. Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X (2022) Factors influencing the blood-brain barrier permeability [J]. Brain Res 1788:147937
8. Tschoe C, Bushnell CD, Duncan PW, Alexander-Miller MA, Wolfe SQ (2020) Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets [J]. J Stroke 22(1):29–46
9. Lan X, Han X, Li Q, Yang QW, Wang J (2017) Modulators of microglial activation and polarization after intracerebral haemorrhage [J]. Nat Rev Neurol 13(7):420–433
10. Almarghalani DA, Sha X, Mrak RE, Shah ZA (2023) Spatiotemporal cofilin signaling, microglial activation, neuroinflammation, and cognitive impairment following hemorrhagic brain injury [J]. Cells 12(8):1153
11. Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J (2017) Microglial polarization and inflammatory mediators after intracerebral hemorrhage [J]. Mol Neurobiol 54(3):1874–1886
12. de Gea P, Benkeder S, Bouvet P, Aimard M, Chounlamountri N, Honnorat J et al (2023) VEGF controls microglial phagocytic response to amyloid-beta [J]. Front Cell Neurosci 17:1264402
13. Wu SY, Pan BS, Tsai SF, Chiang YT, Huang BM, Mo FE et al (2020) BDNF reverses aging-related microglial activation [J]. J Neuroinflammation 17(1):210
14. Guo Y, Dai W, Zheng Y, Qiao W, Chen W, Peng L et al (2022) Mechanism and regulation of microglia polarization in intracerebral hemorrhage [J]. Molecules 27(20):7080
15. García-Yagüe ÁJ, Cuadrado A (2023) Mechanisms of NURR1 regulation: consequences for its biological activity and involvement in pathology [J]. Int J Mol Sci 24(15):12280
16. He Y, Wang Y, Yu H, Tian Y, Chen X, Chen C et al (2023) Protective effect of Nr4a2 (Nurr1) against LPS-induced depressive-like behaviors via regulating activity of microglia and CamkII neurons in anterior cingulate cortex [J]. Pharmacol Res 191:106717
17. Jakaria M, Haque ME, Cho DY,Azam S, Kim IS, Choi DK (2019) Molecular insights into NR4A2(Nurr1): an emerging target for neuroprotective therapy against neuroinflammation and neuronal cell death [J]. Mol Neurobiol 56(8):5799–5814
18. Shao QH, Yan WF, Zhang Z, Ma KL, Peng SY, Cao YL et al (2019) Nurr1: A vital participant in the TLR4-NF-κB signal pathway stimulated by alpha-synuclein in BV-2 cells [J]. Neuropharmacology 144:388–399
19. Karimy JK, Reeves BC, Kahle KT (2020) Targeting TLR4-dependent inflammation in post-hemorrhagic brain injury [J]. Expert Opin Ther Targets 24(6):525–533
20. Bartels YL, van Lent P, van der Kraan PM, Blom AB, Bonger KM, van den Bosch MHJ (2024) Inhibition of TLR4 signalling to dampen joint inflammation in osteoarthritis [J]. Rheumatology 63(3):608–618
21. Dallas ML, Widera D (2021) TLR2 and TLR4-mediated inflammation in Alzheimer’s disease: self-defense or sabotage? [J]. Neural Regen Res 16(8):1552–1553
22. Heidari A, Yazdanpanah N, Rezaei N (2022) The role of Toll-like receptors and neuroinflammation in Parkinson’s disease [J]. J Neuroinflammation 19(1):135
23. Okada T, Suzuki H (2017) Toll-like receptor 4 as a possible therapeutic target for delayed brain injuries after aneurysmal subarachnoid hemorrhage [J]. Neural Regen Res 12(2):193–196
24. Zhou L, Luo L, Luo L, Luo H, Ding Y, Lu Z et al (2025) Ag85Binduced M1 macrophage polarization via the TLR4/TRAF6/NF-κB axis leading to bronchial epithelial cell damage and TH17/Treg imbalance [J]. Curr Mol Med
25. Gong L, Wang H, Sun X, Liu C, Duan C, Cai R et al (2016) Toll-Interleukin 1 Receptor domain-containing adaptor protein positively regulates BV2 cell M1 polarization [J]. Eur J Neurosci 43(12):1674–1682
26. Yang Y, Tan X, Xu J, Wang T, Liang T, Xu X et al (2020) Luteolin alleviates neuroinflammation via downregulating the TLR4/TRAF6/NF-κB pathway after intracerebral hemorrhage [J]. Biomed Pharmacother 126:110044
27. Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M (1990) Collagenase-induced intracerebral hemorrhage in rats [J]. Stroke 21(5):801–807
28. Zou H, Chen X, Lu J, Zhou W, Zou X, Wu H et al (2023) Neurotropin alleviates cognitive impairment by inhibiting TLR4/MyD88/NF-κB inflammation signaling pathway in mice with vascular dementia [J]. Neurochem Int 171:105625
29. Hua Y, Schallert T, Keep RF, Wu J, Hoff JT, Xi G (2002) Behavioral tests after intracerebral hemorrhage in the rat [J]. Stroke 33(10):2478–2484
30. Xing J, Wu F, Wang S, Krensky AM, Mody CH, Zheng C (2010) Granulysin production and anticryptococcal activity is dependent upon a far upstream enhancer that binds STAT5 in human peripheral blood CD4+ T cells [J]. J Immunol 185(9):5074–5081
31. Chiu CD, Chiu YP, Lin CL, Ji HR, Shen CC, Lee HT et al (2018) Acetazolamide alleviates sequelae of hyperglycaemic intracerebral haemorrhage by suppressing astrocytic reactive oxygen species [J]. Free Radic Res 52(9):1010–1019
32. Kadry H, Noorani B, Cucullo L (2020) A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity [J]. Fluids Barriers CNS 17(1):69
33. Hu D, Mo X, Luo J, Wang F, Huang C, Xie H et al (2023) 17-DMAG ameliorates neuroinflammation and BBB disruption via SOX5 mediated PI3K/Akt pathway after intracerebral hemorrhage in rats [J]. Int Immunopharmacol 123:110698
34. Liu H, Liu P, Shi X, Yin D, Zhao J (2018) NR4A2 protects cardiomyocytes against myocardial infarction injury by promoting autophagy [J]. Cell Death Discov 4:27
35. Hu D, Yan C, Xie H, Wen X, He K, Ding Y et al (2024) Perihematomal neurovascular protection: blocking HSP90 reduces blood infiltration associated with inflammatory effects following intracerebral hemorrhage in Rates [J]. Transl Stroke Res
36. Li XN, Lin L, Li XW, Zhu Q, Xie ZY, Hu YZ et al (2024) BSA-stabilized selenium nanoparticles ameliorate intracerebral hemorrhage’s-like pathology by inhibiting ferroptosis-mediated neurotoxicology via Nrf2/GPX4 axis activation [J]. Redox Biol 75:103268
37. Wang W, Wang Y, Wang F, Xie G, Liu S, Li Z et al (2024) Gastrodin regulates the TLR4/TRAF6/NF-κB pathway to reduce neuroinflammation and microglial activation in an AD model [J]. Phytomedicine 128:155518
38. Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury [J]. Stroke 42(6):1781–1786
39. Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B (2011) Review: leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain [J]. Neuropathol Appl Neurobiol 37(1):24–39
40. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J (2018) Microglia in neurodegeneration [J]. Nat Neurosci 21(10):1359–1369
41. Salauddin M, Bhattacharyya D, Samanta I, Saha S, Xue M, Hossain MG et al (2025) Role of TLRs as signaling cascades to combat infectious diseases: a review [J]. Cell Mol Life Sci 82(1):122
42. Zhang F, Zhang C (2018) Rnf112 deletion protects brain against intracerebral hemorrhage (ICH) in mice by inhibiting TLR-4/NF-κB pathway [J]. Biochem Biophys Res Commun 507(1–4):43–50
43. Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MKR, Herrera AJ, Espinosa-Oliva AM et al (2020) Microglia: agents of the CNS pro-inflammatory response [J]. Cells 9(7):1717
44. Wu Y, Du S, Bimler LH, Mauk KE, Lortal L, Kichik N et al (2023) Toll-like receptor 4 and CD11b expressed on microglia coordinate eradication of Candida albicans cerebral mycosis [J]. Cell Rep 42(10):113240
45. Cai M, Li M, Wang K, Wang S, Lu Q, Yan J et al (2013) The herpes simplex virus 1-encoded envelope glycoprotein B activates NF-κB through the Toll-like receptor 2 and MyD88/TRAF6-dependent signaling pathway [J]. PLoS ONE 8(1):e54586
- Downloads
- Published
- 2024-12-30
- Section
- Articles
- License
-
All articles published by The Parthenon Frontiers and its associated journals are distributed under the terms of the Creative Commons Attribution (CC BY 4.0) International License unless otherwise stated.
Authors retain full copyright of their published work. By submitting their manuscript, authors agree to grant The Parthenon Frontiers a non-exclusive license to publish, archive, and distribute the article worldwide. Authors are free to:
-
Share their article on personal websites, institutional repositories, or social media platforms.
-
Reuse their content in future works, presentations, or educational materials, provided proper citation of the original publication.
-