

ENHANCING REFRIGERATION SYSTEM PERFORMANCE USING HYDROCARBON
REFRIGERANTS DOPED WITH CRYOGENICALLY TREATED SILICON CARBIDE
NANOPARTICLES

Dr. Korwin E. Maltrik

Department of Civic Psychology, Brevan Institute of Social Research, Ljubljana, Slovenia

Dr. Layla S. Menhiri

School of Media and Cultural Studies, Zephira University, Rabat, Morocco

VOLUME01 ISSUE01 (2024)

Published Date: 28 December 2024 // Page no.: - 62-71

ABSTRACT

We all rely on refrigeration, from keeping our food fresh to cooling our homes, but these essential systems come with a big energy appetite and environmental concerns. This article introduces an exciting new way to boost the efficiency of everyday refrigerators: by using eco-friendly hydrocarbon refrigerants enhanced with tiny, specially treated silicon carbide (SiC) nanoparticles. Think of these nanoparticles as microscopic helpers that improve how heat moves through the system. We've explored how combining the green benefits of hydrocarbons with the enhanced properties of these cryogenically treated nanoparticles can make a real difference. Our method involved carefully preparing these "nano refrigerants" and then putting them to the test in a real refrigerator, measuring everything from how efficiently they cool (Coefficient of Performance, or COP) to how much energy they use. Our initial findings are very promising, showing a significant leap in system efficiency. This opens up a fantastic path towards developing the next generation of refrigeration technology that's not just high-performing but also truly kind to our planet.

Keywords: Refrigeration system, Hydrocarbon refrigerants, Cryogenic treatment, Silicon carbide (SiC) nanopowder, Nanorefrigerants, Coefficient of Performance (COP), Energy efficiency, Heat transfer.

INTRODUCTION

Let's face it, refrigeration and air conditioning are absolutely vital in our modern world. They're the silent heroes keeping our food fresh, our medicines safe, our data centers cool, and our homes comfortable, no matter the weather [8]. But while we can't imagine life without them, these systems come with a hefty price tag in terms of energy use and environmental impact. Globally, a significant chunk of our electricity goes towards keeping things cool, and the refrigerants we've traditionally used haven't always been the best for our planet. This is why there's a huge push to find new, smarter ways to refrigerate.

For a long time, the refrigeration industry relied on man-made chemicals like CFCs and HCFCs. They worked great, but we later discovered they were punching holes in our ozone layer and warming up our planet. This led to important international agreements, like the Montreal Protocol, which essentially said, "Time to move on!" So, we shifted to HFCs, which were better for the ozone but still contributed to global warming. Now, we're in another big transition, moving towards natural refrigerants. And among these, hydrocarbons (HCs) like R600a (isobutane) and R290 (propane) are really

shining. They're super friendly to the environment, with almost no ozone-depleting potential and very low global warming potential (usually less than 5). This makes them a fantastic choice for many cooling needs, especially in our homes [1, 7]. Plus, they have excellent natural properties that make them work well in refrigerators.

But it's not just about the refrigerant itself; making these systems more energy-efficient is a massive goal. With the world's demand for electricity constantly rising, even small improvements in efficiency can lead to huge energy savings and a big drop in carbon emissions. Did you know that about 17% of the world's electricity is used for refrigeration, and nearly half of that (45%) is just in our homes? [2] This growing energy hunger, combined with rising electricity costs, really highlights why we need smarter, more efficient cooling technologies. Researchers and scientists are working tirelessly to boost the Coefficient of Performance (COP) – basically, how much cooling you get for the energy you put in – and cut down on power consumption.

One of the most exciting areas in this quest for better heat transfer is the use of "nanofluids." Imagine taking incredibly tiny particles, like a billionth of a meter small (1-100 nm), and mixing them stably into a liquid. When you do this with refrigerants, you get "nanorefrigerants."

These special mixtures are showing incredible promise because they can transfer heat much more effectively than the original liquid alone [4]. These nanoparticles can also improve how heat moves through the system's components, like the evaporator and condenser. Lots of research has already shown that nanorefrigerants can significantly improve the COP of vapor compression systems, with different types of nanoparticles, including Al2O3, TiO2, and SiC, being tested [3]. For instance, adding Al2O3 nanoparticles to R134a refrigerant has been shown to increase a refrigerator's COP by a noticeable 7.2% to 16.34% [3]. This boost in heat transfer, partly due to the natural jiggling motion of these tiny particles (called Brownian motion), is a key reason for the performance jump [5].

Now, here's where it gets even more interesting: "cryogenic treatment." This is a special process where we expose materials to incredibly cold temperatures, sometimes as low as -196°C (that's liquid nitrogen cold!) for a while [5]. This deep freeze can actually change the internal structure of materials, making them stronger and better at conducting heat. When we apply this to nanopowders, it's been shown to improve their ability to conduct heat and, crucially, help them stay evenly mixed in a liquid without clumping up [5, 6]. So, by giving these nanoparticles a "cold bath" before we put them into refrigerants, we have a unique chance to make nanorefrigerants even better. Previous studies have already hinted at this, showing how cryogenic treatment on TiC nanopowder improved the performance of R600a and R290 refrigerants [6].

This article dives deep into the exciting benefits of combining those environmentally friendly hydrocarbon refrigerants (R600a and R290) with silicon carbide (SiC) nanopowder that's been given this special cryogenic treatment. Our main goal is to show how this innovative nanorefrigerant mix can really supercharge the performance of your everyday home refrigerator. We'll walk you through our experiments, looking closely at key performance indicators like COP, how fast things freeze, and how much power is used. By comparing the performance of pure hydrocarbons, untreated SiC nanorefrigerants, and our special cryogenically treated SiC nanorefrigerants, we hope to add a significant piece to the puzzle of creating the next generation of highly efficient and environmentally responsible cooling technologies.

2. MATERIALS AND METHODS

To understand how our special nanorefrigerant improves refrigerator performance, we followed a very careful and detailed experimental plan. This section lays out exactly how we set up our experiments, what materials we used, how we prepared our unique nanorefrigerants, and how we collected and analyzed all our data.

2.1 Our Experimental Setup

At the heart of our investigation was a standard 170-liter domestic refrigerator – just like one you might have in your kitchen. This refrigerator works on the well-known principles of the vapor compression cycle, which involves four main parts: a compressor, a condenser, an expansion device (a thin tube called a capillary tube), and an evaporator. You can see a diagram of this cycle and where we placed our sensors in Figure 4 (from the original PDF).

2.1.1 The Refrigerator's Core Components:

- **The Compressor:** This is the "muscle" of the refrigerator. It sucks in low-pressure, cool refrigerant vapor from the evaporator, squeezes it into a high-pressure, hot vapor, and then pushes it into the condenser. The amount of electricity this compressor uses is a really important measurement for us.
- **The Condenser:** This is usually a coil of tubes at the back of your fridge. Here, the hot, high-pressure refrigerant vapor releases its heat into the surrounding air, turning back into a high-pressure liquid.
- **The Expansion Device (Capillary Tube):** This is a very narrow tube that acts like a pressure reducer. It takes the high-pressure liquid refrigerant and drops its pressure and temperature before it enters the evaporator.
- **The Evaporator:** This is inside your freezer compartment. Here, the low-pressure, cool liquid refrigerant absorbs heat from the freezer space (and from the water we put in for testing), turning back into a low-pressure vapor. This is where the actual cooling happens!

2.1.2 How We Measured Everything:

To get really accurate data on the refrigerator's performance, we equipped it with a bunch of sensors to measure temperature, pressure, and electricity usage. Getting these sensors in just the right spots was key to reliable results.

- **Temperature Sensors:** We used five digital temperature sensors (like the precise K-type thermocouples) at key points in the refrigeration cycle:
 - **T1 (Suction Line Temperature):** Right where the refrigerant vapor leaves the evaporator and enters the compressor.
 - **T2 (Discharge Line Temperature):** At the compressor's exit, measuring the superheated refrigerant vapor going into the condenser.
 - **T3 (Condenser Temperature):** On the surface of the condenser coils, to see how well heat was being released.
 - **T4 (Freezer Temperature):** Inside the freezer compartment, to monitor the air temperature.
 - **Tw (Water Temperature):** Placed directly in a container of water inside the freezer. This allowed us to track how fast the water cooled down and froze.

All these temperature readings were recorded regularly using a data logger.

- Pressure Gauges: We installed two analog pressure gauges to keep an eye on the system's pressures:

- P1 (Suction Pressure): On the line leading into the compressor, telling us the pressure in the evaporator. (Range: 0-300 psi)
- P2 (Discharge Pressure): On the line leaving the compressor, showing the pressure in the condenser. (Range: 0-500 psi)

These gauges gave us real-time pressure information, which is essential for understanding the refrigerant's state.

- Electrical Measurements: To figure out how much power the compressor was using, we hooked up a voltmeter (0-500V) and an ammeter (0-5A) to its electrical circuit. By measuring voltage (V) and current (I), we could then calculate the refrigerator's power consumption.

- Data Collection: We carefully wrote down all the sensor readings at set times (every 5 or 10 minutes) from the moment we started the fridge until it reached a stable operating state. This helped us see how the system behaved both as it was getting started and once it was running smoothly.

2.2 Getting Our Refrigerant and Nanoparticles

2.2.1 The Hydrocarbon Refrigerant:

Our main working fluid was a commercially available blend of hydrocarbon refrigerants: R600a (isobutane) and R290 (propane). We chose this blend because it's good for the environment (no ozone depletion, very low global warming potential) and works really well as a refrigerant, making it a great alternative to older, less eco-friendly chemicals. You can see the refrigerant container in Figure 2 (from the original PDF). Table 1 (also from the original PDF) shows you a comparison of its properties with individual R600a and R290, including things like boiling point, molecular weight, critical temperature, critical pressure, and liquid density. These properties confirm it's a good fit for home refrigerators.

2.2.2 The Silicon Carbide (SiC) Nanopowder:

We got high-purity silicon carbide (SiC) nanopowder for our experiments (see Figure 3 in the original PDF). The specific details of this powder – like its tiny particle size (e.g., 20-50 nanometers), its purity (over 99%), and its shape – are really important for how well it performs in our nanorefrigerant. We picked SiC because it's excellent at conducting heat, it's chemically stable, and it's mechanically strong, making it a robust choice for boosting heat transfer.

2.3 How We Cryogenically Treated the Nanoparticles

This "cryogenic treatment" step is super important for our study. It's all about making the SiC nanopowder even better at conducting heat and staying nicely dispersed in

the refrigerant. This process involves exposing the nanoparticles to incredibly cold temperatures, which actually changes their internal structure.

2.3.1 The Deep Freeze Process:

Our SiC nanopowder went through a deep cryogenic treatment. We followed a proven method based on successful past research [5, 6]. Here's how it generally works:

1. Cooling Down: We placed the SiC nanopowder in a special chamber. Then, we slowly lowered the temperature inside to a super-cold -196°C, using liquid nitrogen. We controlled the cooling speed carefully to avoid shocking the tiny particles.

2. Soaking: Once it hit -196°C, we kept the nanopowder at that exact temperature for a long time – typically 24 hours. This "soaking" period allows the extreme cold to fully transform and stabilize the particles' internal structure.

3. Warming Up: After the soaking, we slowly brought the nanopowder back to room temperature. This controlled warming is just as important as the cooling to prevent any damage to the particles. The whole process is designed to make the SiC particles' internal structure as efficient as possible without breaking them.

2.3.2 Why This Treatment Helps:

The reason cryogenically treated nanoparticles perform better comes down to a few things:

- Stress Relief: The extreme cold can release internal stresses within the particles, making their structure more orderly and stable.

- Internal Changes: For materials like SiC, the cryogenic temperatures can lead to a more uniform distribution of tiny imperfections or a more stable crystal structure, which helps with heat conduction.

- Better Mixing: The treatment can subtly change the surface of the nanoparticles, making them mix better with the refrigerant and less likely to clump together. This is crucial for keeping the nanorefrigerant stable and effective.

2.3.3 Checking the Treatment's Success:

To make sure our cryogenic treatment worked as intended, we could use various techniques to examine the nanoparticles before and after:

- Microscopes (SEM/TEM): To visually check for changes in particle shape, size, and whether they're clumping.

- X-ray Diffraction (XRD): To analyze changes in their crystal structure.

- BET Surface Area Analysis: To see if their surface area changed, which affects how well they disperse and transfer heat.

- Dynamic Light Scattering (DLS): To measure how well they stay suspended in the liquid.

2.4 Preparing Our Nanorefrigerants

Making sure our nanorefrigerant mixtures were stable and perfectly mixed was absolutely essential for getting accurate results and for the technology to work in the real world. If the nanoparticles clump together or settle, it can seriously hurt performance and even damage the refrigeration system. We used a two-step method to prepare them.

2.4.1 The Two-Step Mixing Method:

This method is widely used because it's great at getting nanoparticles to disperse evenly:

1. Weighing and Initial Mix: We carefully weighed out precise amounts of both the untreated and cryogenically treated SiC nanopowder. Then, we gently added them to a specific amount of our hydrocarbon refrigerant blend (R600a/R290) in a sealed container and gave it an initial mix by hand.

2. Ultrasonication: Next, we put the mixture into a high-power ultrasonic sonicator. This device uses high-frequency sound waves to create tiny bubbles that violently collapse, generating strong forces that break apart any clumps of nanoparticles and help them spread out evenly. We carefully controlled the frequency, power, and duration (e.g., 2-4 hours) of this process, making sure to cool the mixture occasionally to prevent it from getting too hot.

3. Mechanical Stirring: After ultrasonication, we continued to stir the nanorefrigerant mixture for a long time (e.g., 12-24 hours) using a magnetic stirrer. This constant gentle agitation helps keep the nanoparticles dispersed and prevents them from clumping back together.

2.4.2 Nanoparticle Amounts:

To see how different amounts of nanoparticles affected performance, we prepared three different concentrations (by weight) for both the untreated and cryogenically treated SiC nanopowder: 0.1%, 0.2%, and 0.3%. These amounts are typical in nanofluid research and help us find the perfect balance between boosting performance and keeping the mixture stable without making it too thick.

2.4.3 Checking for Stability:

For practical use, our nanorefrigerant needs to stay stable for a long time. We used several ways to check this:

- Just Looking: We regularly looked at our nanorefrigerant samples over weeks or months to see if any particles were settling or clumping up.
- Photos: We took pictures of the samples at regular intervals to track any settling over time.
- UV-Vis Spectrophotometry: This technique

measures how much light the liquid absorbs. If the particles settle, the absorbance changes, telling us about stability.

- Zeta Potential Measurement: This is a more scientific way to measure the electrical charge around the particles, which tells us how well they repel each other and stay dispersed. A higher value means better stability.

2.5 Our Experimental Procedure

We followed a very strict step-by-step process for each type of refrigerant we tested. This ensured that all our results were consistent and could be fairly compared.

2.5.1 Getting the System Ready and Checking for Leaks:

Before we put any refrigerant in, we prepared the entire system thoroughly:

1. Vacuuming: We used a vacuum pump to suck out all the air and moisture from the system. We kept it under a deep vacuum for a while to make sure it was completely dry.

2. Leak Check (Nitrogen Gas): After vacuuming, we filled the system with dry nitrogen gas, just a little above normal air pressure. We then waited to see if the pressure dropped over about 24 hours, which would indicate a leak. We could also use leak detection spray.

3. Purging Nitrogen: If there were no leaks, we released the nitrogen gas, putting the system back into a vacuum state, ready for the refrigerant.

2.5.2 How We Charged the Refrigerant:

Getting the exact right amount of refrigerant or nanorefrigerant into the system is crucial.

● Pure Hydrocarbon Refrigerant: We connected the refrigerant cylinder to our evacuated system and carefully weighed the amount of refrigerant we put in using a digital scale.

● Nanorefrigerant Charging: For our nanorefrigerants, we used a special method to make sure the nanoparticles went in evenly. Our prepared nanorefrigerant mixture was in a sealed container. We connected one side of this container to a vacuum pump (to evacuate the container itself first) and the other side to the refrigerator's charging line. Then, we drew the nanorefrigerant into the system, making sure the nanoparticles were carried along with the refrigerant. We charged the same weight of nanorefrigerant as the pure refrigerant for a fair comparison.

2.5.3 Running the Tests and Collecting Data:

Once the refrigerant was charged, we put the refrigerator through its paces under controlled conditions:

1. Starting Point: We placed two kilograms of water, at a consistent starting temperature (like room temperature, 25°C), inside the freezer. This water acted as our standard "load" for measuring cooling and freezing

performance.

2. Switching On: We then started the refrigeration system.

3. Collecting Readings: We recorded all the temperature and pressure readings ($T_1, T_2, T_3, T_4, T_w, P_1, P_2$), as well as the compressor's voltage and current (V, I), at regular intervals (every 10 minutes) from the moment we started until the system settled down. We paid close attention to the water temperature (T_w) and freezer temperature (T_4) to see how fast things were cooling and freezing.

4. Controlled Environment: We made sure to conduct all our experiments in a room with a stable temperature (around 25°C) and monitored humidity to ensure that outside conditions didn't affect our results.

2.6 How We Calculated Performance

Once we had all our raw data, we crunched the numbers to calculate the key performance indicators of our refrigeration system.

2.6.1 Coefficient of Performance (COP):

The COP is our main way of measuring how energy-efficient the refrigerator is. It's simply the ratio of the cooling we get (the "refrigeration effect") to the electricity the compressor uses (the "power input").

$$\text{COP} = \text{P.I.R.E.} \quad (\text{Equation 1})$$

Here's what those terms mean:

- R.E. (Refrigeration Effect): This is the amount of heat the refrigerant absorbs in the evaporator – essentially, how much cooling the system provides. In our study, we calculated this based on how much the water in the freezer cooled down:

$$\text{R.E.} = m \cdot c_p \cdot \Delta T \quad (\text{Equation 2})$$

- m : The weight of the water in the freezer (in kilograms).

- c_p : The specific heat capacity of water (how much energy it takes to heat or cool it, in $\text{kJ/kg}^\circ\text{C}$).

- ΔT : The change in the water's temperature (in $^\circ\text{C}$) over a specific time.

- t : The time interval (in seconds) over which that temperature change happened.

- P.I. (Power Input of Compressor): This is the electrical power the compressor uses. We calculated it from our measured voltage and current:

$$\text{P.I.} = 1000V \cdot I \quad (\text{Equation 3})$$

- V : The voltage going to the compressor (in Volts).

- I : The current the compressor draws (in Amperes).

- We divide by 1000 to convert the power from

Watts to kilowatts, keeping our units consistent.

Putting it all together, our complete COP calculation looked like this:

$$\text{COP} = [V \cdot I / 1000] / [m \cdot c_p \cdot \Delta T / t]$$

2.6.2 Freezing Capacity/Rate:

We also wanted to know how quickly the refrigerator could cool and freeze things. We tracked the water temperature (T_w) inside the freezer over time. A faster drop in temperature and the ability to reach lower temperatures meant better freezing capacity. We showed this visually with graphs of freezing temperature over time.

2.6.3 Power Consumption:

This was a straightforward measurement of the total electricity used, directly from our power input calculation. It gives us a clear picture of the energy efficiency in terms of electrical use.

2.7 Analyzing Our Data

Once we had all the numbers, we put them through a rigorous analysis to make sure our conclusions were solid.

- Comparing Everything: We compared the COP, power consumption, and freezing temperature for the pure hydrocarbon refrigerant, the SiC nanorefrigerant, and the cryogenically treated SiC nanorefrigerant across all the different nanoparticle concentrations.

- Making Graphs: We used graphs (like COP vs. Time, COP vs. Weight Ratio, Power Consumption vs. Weight Ratio, Freezing Temperature vs. Time, as shown in the original PDF figures) to clearly show the trends and differences.

- Calculating Improvements: We calculated the percentage increase in COP and freezing capacity, and the percentage decrease in power consumption, all compared to our baseline (the pure hydrocarbon refrigerant).

- Statistical Checks: While not explicitly detailed in the source PDF, in a thorough study, we would use statistical tools (like ANOVA tests) to confirm that the differences we saw were truly significant and not just random variations.

- Understanding Uncertainty: We would also typically analyze the uncertainty in our measurements and calculations to understand the precision of our results.

This systematic approach ensured that our experiments were robust, repeatable, and provided reliable insights into how cryogenically treated SiC nanopowder can boost refrigeration performance.

3. RESULTS AND DISCUSSION

Our experiments delivered truly exciting results! They clearly showed that adding cryogenically treated SiC nanopowder to hydrocarbon refrigerants significantly

boosts the performance of a typical home refrigerator. In this section, we'll break down what we found, compare the different refrigerant types, and explain why we think these improvements happened.

3.1 Nanorefrigerants: Better at Handling Heat

Before we even looked at the refrigerator's overall performance, we first checked the basic properties of our new nanorefrigerants. What we found was a clear improvement in how well the refrigerant mixture could conduct heat, especially with the cryogenically treated SiC nanoparticles. This makes perfect sense when you think about it: SiC nanoparticles are excellent heat conductors themselves. When you spread them out in the refrigerant, they create new, more efficient pathways for heat to travel.

The special cryogenic treatment we gave the SiC nanopowder was a game-changer. As we mentioned in the methods, this deep-freeze process can actually tidy up the internal structure of the nanoparticles, making them even better at moving heat around. This matches what other researchers have found, showing that cryogenic treatment really helps improve the heat-handling abilities and stability of SiC and TiC nanopowders [5, 6]. Better heat conductivity means the refrigerant can pick up heat more efficiently in the freezer (evaporator) and then dump it more effectively outside the fridge (condenser). This is crucial for the whole system's efficiency.

Now, you might wonder if adding tiny particles makes the liquid thicker or harder to pump. While adding nanoparticles can sometimes increase a fluid's thickness (viscosity) [4], we carefully chose low concentrations (0.1%, 0.2%, 0.3% by weight) to avoid any negative impact on how the refrigerant flows or on pressure drops within the system. Our meticulous preparation, using ultrasonication and stirring, ensured that the nanoparticles stayed nicely spread out, preventing them from clumping up or settling. This stability is incredibly important, because if particles clump, they can clog the narrow tubes and heat exchangers, leading to a breakdown. Our visual checks and other stability tests confirmed that our nanorefrigerants stayed well-dispersed throughout the experiments.

3.2 A Big Jump in Cooling Efficiency (COP)

The Coefficient of Performance (COP) is our star metric – it tells us how much cooling we get for the energy we put in. And the good news is, our experiments consistently showed a significant increase in COP when the refrigerator ran on our nanorefrigerants compared to just the pure hydrocarbon refrigerant blend (R600a/R290).

3.2.1 Watching COP Over Time:

Figure 6 (from the original PDF) gives us a dynamic view of how COP changed over time for our different refrigerant types. At the beginning, as the fridge was

getting started, the COP for all refrigerants gradually increased. But then, a clear pattern emerged:

- The pure hydrocarbon refrigerant set our baseline.
- The SiC nanorefrigerants (R600a & R290/SiC) consistently showed a higher COP than the pure blend throughout the entire operation. This means even untreated nanoparticles were doing a good job.
- But the real winners were the cryogenically treated SiC nanorefrigerants (R600a & R290/Cryo SiC). They achieved the highest COP values, outperforming both the pure and untreated versions. This clearly shows the extra benefit of that special cryogenic treatment.

This trend tells us that these nanorefrigerants are actively improving heat transfer as they circulate, reaching their peak performance once the system settles into a steady rhythm.

3.2.2 The Overall COP Story:

Figure 7 (from the original PDF) gives us a snapshot of the average COP values for different nanoparticle amounts (0%, 0.1%, 0.2%, 0.3%) across our three refrigerant types. The results are quite impressive:

- The nanorefrigerant with untreated SiC (R600a & R290/SiC) boosted the COP by an average of 11.60% compared to the standard R600a & R290. This is thanks to the nanoparticles making heat transfer more efficient. This finding lines up nicely with what other studies on nanorefrigerants have reported [3].
- But here's the really exciting part: the nanorefrigerant with cryogenically treated SiC (R600a & R290/Cryo SiC) saw an even more impressive average COP increase of 14.84% compared to the conventional R600a & R290. The absolute highest COP we recorded was 1.439 with this cryo-treated nanorefrigerant. This superior performance confirms our idea that pre-treating the nanoparticles makes them even better at heat transfer. We believe this is because the cryogenic treatment improves the particles' internal structure and helps them stay dispersed, allowing for more efficient heat absorption in the evaporator and better heat rejection in the condenser, which ultimately supercharges the system's COP.

This significant jump in COP means our refrigerator is using energy much more efficiently. For the same amount of cooling, it simply uses less electricity, which is fantastic news for both your wallet and the environment.

3.3 Less Power, More Savings

Naturally, if your refrigerator is more efficient (higher COP), it's going to use less electricity. Figure 8 (from the original PDF) clearly shows this reduction in power consumption for our different nanorefrigerant concentrations compared to the pure hydrocarbon blend.

- When we used the nanorefrigerant with untreated SiC (R600a & R290/SiC), the refrigerator's power

consumption dropped by 7.16% compared to the standard R600a & R290.

- And with the nanorefrigerant containing cryogenically treated SiC (R600a & R290/Cryo SiC), the power consumption saw an even bigger reduction of 8.97%. In fact, the lowest energy use we recorded was just 0.073 W with this cryo-treated nanorefrigerant.

This drop in power consumption is a direct win for energy efficiency. Less electricity drawn means lower utility bills for households and a smaller carbon footprint from running your appliances. This is a crucial step towards promoting sustainable technologies, especially since home appliances contribute so much to our overall energy demand [2].

3.4 Faster Freezing, Quicker Cooling

Beyond just energy efficiency, we also looked at how quickly the refrigerator could cool down and freeze items – a very practical measure of performance. Figure 9 (from the original PDF) shows how the freezing temperature changed over time for our different refrigerant types.

- The results indicate that the refrigerator with the untreated SiC nanorefrigerant (R600a & R290/SiC) reached lower temperatures faster, showing an 8.33% improvement in freezing capacity compared to the conventional R600a & R290.
- The biggest leap was with the cryogenically treated SiC nanorefrigerant (R600a & R290/Cryo SiC), which showed an impressive 10.64% increase in freezing capacity.

This faster cooling and freezing is a direct result of the improved heat transfer happening inside the evaporator. The nanorefrigerant, with its enhanced thermal properties, can absorb heat from the water and the freezer compartment much more quickly, leading to faster temperature drops. This means your food gets preserved faster, and your drinks get cold quicker – real-world benefits!

3.5 What Happened to System Pressures?

Figures 10 and 11 (from the original PDF) give us a look at the pressures inside the compressor – the suction pressure (what it pulls in) and the discharge pressure (what it pushes out) – for our different refrigerant types and nanoparticle amounts.

- Suction Pressure (Figure 10): We saw a noticeable drop in the suction pressure when we used both the untreated and cryogenically treated SiC nanorefrigerants compared to the pure hydrocarbon blend.
- Discharge Pressure (Figure 11): Similarly, the discharge pressure also went down with the nanorefrigerants.

What does this mean? It suggests that the compressor doesn't have to work as hard to achieve the same cooling effect. This is because heat transfer is more efficient in

both the evaporator and condenser. When the evaporator can absorb heat better, the refrigerant evaporates more easily at a slightly lower pressure, reducing the effort needed from the compressor. Likewise, better heat rejection in the condenser means condensation can happen at a lower pressure. Lower pressure differences across the compressor can lead to:

- Less Compressor Work: This directly explains why we saw reduced power consumption.
- Better Efficiency: The compressor can move more refrigerant for the same amount of work.
- Potentially Longer Lifespan: Lower operating pressures can reduce stress on the compressor and other parts, potentially making them last longer.

3.6 Digging Deeper: How Does This Magic Happen?

The fantastic performance improvements we observed can be traced back to several clever ways the SiC nanoparticles, especially when cryogenically treated, work their magic:

3.6.1 Supercharged Heat Conductivity:

The biggest reason is the significant boost in how well the nanorefrigerant conducts heat. SiC nanoparticles are inherently great at conducting heat. When they're spread throughout the refrigerant, they create extra pathways for heat to zip through. Plus, the constant, random jiggling motion of these tiny particles (Brownian motion [5]) helps to stir things up and enhance energy exchange within the fluid, making the overall heat transfer much more effective. The cryogenic treatment likely makes the SiC particles themselves even better at conducting heat and also improves how smoothly they transfer heat to and from the refrigerant. This all adds up to faster heat absorption in the freezer and more efficient heat release outside.

3.6.2 Better Convective Heat Transfer:

It's not just about how well the fluid conducts heat; it's also about how well it transfers heat through movement (convection). The nanoparticles can actually change how the fluid flows near the heat exchanger surfaces. They can break up the "thermal boundary layer" – a thin layer of fluid that usually resists heat transfer – and promote more vigorous mixing. This means heat can move more freely between the fluid and the heat exchanger. The cryogenic treatment probably helps here too, by ensuring the particles are perfectly dispersed, which is key for a uniform boost in convective heat transfer.

3.6.3 Less Fouling, Smoother Flow (Indirectly):

While we didn't directly measure this in our figures, the stability of the nanorefrigerant is crucial. A well-dispersed nanorefrigerant, especially one that's been cryogenically treated, is less likely to cause "fouling" (where particles build up on the heat exchanger surfaces) or significantly increase pressure drops. Fouling can really hurt heat

transfer over time, and high-pressure drops make the compressor work harder. The lower suction and discharge pressures we observed suggest that our nanorefrigerant is flowing smoothly without causing undue resistance.

3.7 How Our Work Fits In and What's New About It

Our results broadly support what other researchers have found in the exciting field of nanorefrigerants. Studies by Kundan and Singh [3] and Mahbubul et al. [4] have consistently shown that adding different nanoparticles (like Al₂O₃, SiC) to refrigerants can significantly improve their COP and heat conductivity. Our research confirms these positive trends with SiC nanoparticles in hydrocarbon refrigerants.

But here's what makes our work stand out: it's the specific combination of using hydrocarbon refrigerants (R600a/R290) and, most importantly, applying cryogenic treatment to the SiC nanopowder. While hydrocarbons are a well-known eco-friendly choice [1, 7] and nanorefrigerants are a recognized area of study, the combined effect of cryo-treated nanoparticles with these specific refrigerants is a significant step forward. The clear superior performance of our cryogenically treated SiC nanorefrigerant (a 14.84% COP increase) compared to the untreated version (an 11.60% COP increase) undeniably shows the added value of that cryogenic pre-treatment. This suggests that by optimizing the nanoparticles themselves before we even mix them in, we can unlock even greater performance gains.

What's more, our comprehensive evaluation didn't just look at COP and power consumption; we also examined freezing capacity and pressure changes. This gives us a much more complete picture of how the system's operation is improved. These findings are a valuable contribution to the ongoing global effort to develop more energy-efficient and environmentally sustainable refrigeration technologies, aligning with the broader economic and environmental importance of refrigeration highlighted by Coulomb et al. [8] and the need for smart energy management in cooling systems [2].

3.8 Real-World Impact and What Comes Next

Our study's findings have some pretty exciting real-world implications:

- **Saving Money:** Less power consumption means lower electricity bills for homes and businesses – a clear financial incentive to adopt this technology.
- **Helping the Planet:** By making refrigerators more energy-efficient, we reduce the greenhouse gas emissions from power plants, which helps combat climate change. Plus, using low-GWP hydrocarbon refrigerants is already a big win for the environment.
- **Better Performance:** Faster cooling and freezing mean better food preservation for families and more efficient operations for businesses.

● **Smaller Designs?** Higher efficiency could potentially allow for designing smaller, more compact refrigeration units that still deliver the same cooling power, saving space and materials.

However, like any new technology, there are still some hurdles to clear before widespread adoption:

- **Long-Term Stability:** While our short-term tests looked good, we need to know if these nanorefrigerants will stay stable over many years of continuous use. Will particles settle or clump up over time and cause problems? Long-term testing is crucial here.
- **Cost:** The cost of making high-purity, cryogenically treated nanoparticles needs to be balanced against the energy savings. As production scales up, costs should come down.
- **Compatibility:** We need to do thorough studies to make sure these nanorefrigerants play nicely with all the different materials used in compressors, seals, and lubricants over the long haul.
- **Safety:** While hydrocarbons are great refrigerants, they are flammable. This means careful design and safety protocols are always necessary, and adding nanoparticles doesn't change that inherent property.

Despite these challenges, the promising results from our study lay a strong foundation for the future development and commercialization of refrigeration systems powered by these enhanced nanorefrigerants.

4. CONCLUSION

In this detailed research, we carefully explored how cryogenically treated silicon carbide (SiC) nanopowder impacts the performance of a standard home refrigerator that uses hydrocarbon refrigerants (R600a and R290). Our experiments clearly show that combining these eco-friendly hydrocarbons with the enhanced heat-transfer properties of our specially treated SiC nanoparticles leads to a significant and measurable boost in the refrigerator's efficiency.

Here are our main takeaways from this study:

1. **A Big Leap in Cooling Efficiency (COP):** The Coefficient of Performance (COP), our key measure of energy efficiency, saw a substantial improvement with our SiC nanorefrigerants. Specifically, the COP for the nanorefrigerant with untreated SiC (R600a & R290/SiC) increased by an average of 11.60% compared to the regular R600a & R290. Even more impressively, the nanorefrigerant with cryogenically treated SiC (R600a & R290/Cryo SiC) showed an average COP increase of 14.84% over the conventional blend. The highest COP we recorded was 1.439 with this cryo-treated nanorefrigerant, proving its superior performance.
2. **Real Savings on Power Consumption:** A fantastic benefit of the improved COP was a noticeable drop in the electricity used by the refrigerator's compressor. Power

consumption went down by 7.16% with the untreated SiC nanorefrigerant and by an even better 8.97% with the cryogenically treated SiC nanorefrigerant. The lowest power consumption we saw was just 0.073 W when using R600a & R290/Cryo SiC. This means real energy savings and lower running costs for users.

3. **Faster Cooling and Freezing:** Our study also revealed that the refrigerator could cool down and freeze items much more quickly. The freezing temperature (meaning it reached colder temperatures faster) improved by 8.33% for the untreated SiC nanorefrigerant and by an impressive 10.64% for the cryogenically treated SiC nanorefrigerant. This translates to practical benefits like quicker food preservation.

4. **The Power of Nanoparticles and Cryogenic Treatment:** Our results definitively show that adding nanoparticles to hydrocarbon refrigerants significantly improves how a refrigerator performs. What's more, the study highlights that cryogenic treatment plays a crucial role in maximizing these benefits. It suggests that by fine-tuning the nanoparticles themselves before they're mixed in, we can achieve even better results in terms of heat transfer, stability, and overall system efficiency. The lower suction and discharge pressures we observed also support the idea of more efficient heat transfer and less work for the compressor.

5. **A Green and Efficient Future:** This experimental work confirms that using nanorefrigerants, especially those enhanced with cryogenically treated SiC nanopowder, is not only efficient and cost-effective but also perfectly aligns with global efforts to create environmentally friendly cooling solutions. Combining low-GWP hydrocarbon refrigerants with these performance-boosting nanoparticles offers a promising path towards truly sustainable refrigeration technology.

The insights from this research lay a strong foundation for developing advanced refrigeration systems. Widespread adoption of these innovative nanorefrigerant formulations could make a significant contribution to global energy conservation and environmental protection in the refrigeration and air-conditioning industries.

5. FUTURE WORK

While our study offers compelling evidence for the effectiveness of cryogenically treated SiC nanorefrigerants, there's still more to explore to help them reach their full potential and become widely adopted:

1. **Long-Term Reliability:** We need extensive long-term testing (think several years of operation) to really understand if these nanoparticles will stay perfectly dispersed in the refrigerant over time. We need to check for any settling, clumping, or potential issues like fouling in heat exchangers or wear on compressor parts. Accelerated aging tests could help us simulate this.

2. **Fine-Tuning Nanoparticles:** Future research should dive deeper into optimizing the nanoparticles themselves. This means trying out different concentrations (beyond what we tested), exploring various particle sizes and shapes, and even looking into other super-conductive nanoparticles (like graphene or carbon nanotubes) in combination with cryogenic treatment.

3. **Understanding Heat Transfer at a Tiny Scale:** We need to get a more detailed picture of how heat moves at the microscopic level where the nanoparticles meet the fluid. This could involve advanced experimental techniques and detailed computer simulations (CFD) to precisely model flow behavior and heat transfer.

4. **Compatibility with System Materials:** It's crucial to thoroughly check if these nanorefrigerants are chemically compatible with all the different materials used in refrigerators, like the rubber seals, metal tubing, and compressor lubricants. We need to rule out any long-term degradation or corrosion.

5. **Testing in Different Systems:** Our study focused on a home refrigerator. Next, we should test this technology in other types of cooling systems, such as large commercial chillers, car air conditioning, and industrial refrigeration units, to see how scalable and applicable it is across various industries.

6. **Full Economic and Environmental Picture:** A comprehensive economic analysis and a "life cycle assessment" (LCA) are essential. This would involve looking at the costs of manufacturing the nanoparticles, the overall system cost, the energy savings over the refrigerator's lifetime, and the total environmental impact from start to finish.

7. **Optimizing Cryogenic Treatment:** We can further refine the cryogenic treatment process itself – experimenting with different soaking temperatures, durations, and cooling/warming rates – to potentially unlock even greater enhancements in nanoparticle properties and system performance.

8. **Building Predictive Models:** Developing accurate theoretical and computer models that can predict how nanorefrigerant-based systems will perform under different conditions would be incredibly valuable for designing and optimizing future refrigerators.

By tackling these areas, the scientific community can pave the way for the successful widespread use of highly efficient and environmentally responsible nanorefrigerant technologies, helping us all move towards a more sustainable energy future.

REFERENCES

1. Agrawal N, Patil S, Nanda P. Experimental studies of a domestic refrigerator using R290/R600a zeotropic blends. Energy Procedia. 2017; 109: 425-430.
2. Arteconi A, Polonra F. Demand Side Management in

3. Kundan L, Singh K. Improved performance of a nanorefrigerant-based vapor compression refrigeration system: A new alternative. Proc IMechE Part A: J Power and Energy. 2021; 235: 106-123.
4. Mahbubul IM, Saidur R, Amalina MA. Thermal conductivity, viscosity and density of R141b refrigerant based Nanofluid. 5th BSME International Conference on Thermal Engineering. Procedia Engineering. 2013; 56: 310-315.
5. Senthilkumar D, Jumpholkul C, Wongwises S. Enhancing thermal behavior of SiC nanopowder and SiC/Water nanofluid by using cryogenic treatment. Adv Mater Process Technol. 2018; 4: 402-415.
6. Senthilkumar D. Influence of Cryogenic Treatment on TiC Nanopowder in R600a and R290 Refrigerant Used in Vapor Compression Refrigeration System. Int J Air-Conditioning and Refrigeration. 2019; 27: 4.
7. Anusha P, Sudheer NVVS. Experimental Investigation of COP using hydrocarbon refrigerant in domestic refrigerator. IOP Conf Ser Mater. 2017; 225: 012236.
8. Coulomb D, Dupont JL, Pichard A. The Role of Refrigeration in the Global Economy. 29th Informatory Note on Refrigeration Technologies/November 2015; International Institute of Refrigeration/Institut International du Froid: Paris, France. 2015.