MORPHOLOGICAL, CHEMICAL, AND MECHANICAL CHARACTERIZATION OF MEROSTACHYS SKVORTSOVA FIBERS: IMPACT OF ALKALI TREATMENT FOR SUSTAINABLE POLYMER COMPOSITE APPLICATIONS
Keywords:
Merostachys skvortzovii, Taquara-lixa, natural fibers, alkali treatmentAbstract
This study investigates the fascinating world of Merostachys skvortzovii Sendulsky (Taquara-lixa) fibers, exploring their natural characteristics and how a simple alkali treatment can transform them. Our goal was to see if these fibers, both as they are and after treatment, could be a great fit for reinforcing polymer composites. We know natural fibers are a sustainable choice, but they often struggle to bond well with plastics because of their water-loving nature. So, we used an alkali treatment (mercerization) to change their surface and chemical makeup. What we found was exciting: Scanning Electron Microscopy (SEM) showed that the alkali treatment effectively cleaned up the fiber surfaces, making them rougher and more receptive. Chemical analysis confirmed a significant boost in cellulose content, with a reduction in less desirable components like hemicellulose and lignin. X-ray Diffraction (XRD) revealed an improved internal structure, indicating better order within the fibers. Thermogravimetric Analysis (TGA) also showed that the treated fibers could withstand higher temperatures, which is a big plus for making composites. Most notably, our mechanical tests pointed to a substantial improvement in both strength and stiffness after the alkali treatment. These findings truly highlight the immense potential of alkali-treated Taquara-lixa fibers to help us create high-performance, sustainable, and truly "green" composites for a better future.
References
1. Liu D, Song J, Anderson DP, Chang PR, Hua Y. Bamboo fiber and its reinforced composites: structure and properties. Cellulose 2012; 19: 1449-1480.
2. Rajulu AV, Chary KN, Reddy GR, Meng YZ. Void content, density and weight reduction studies on short bamboo fiber-epoxy composites. J Reinf Compos. 2004; 23: 127-130.
3. Kim BJ, Han G, Wu Q. Performance of Bamboo Plastic Composites with Hybrid Bamboo and Precipitated Calcium Carbonate Fillers. Polym Compos. 2012; 33: 68-78.
4. McMathis J. Could a bamboo fiber composite replace steel reinforcements in concrete? Am Ceram Soc. Post Published on 22nd August 2014.
5. Sankar K, Sa Ribeiro RA, Sa Ribeiro MG, Kriven WM. Potassium-Based Geopolymer Composites Reinforced with Chopped Bamboo Fibers. J Am Ceram Soc. 2017; 100: 49-55.
6. Ogunbiyi MA, Olawale SO, Tudjegbe OE, Akinola SR. Comparative analysis of the tensile strength of bamboo and reinforcement steel bars as structural member in building construction. Int J Sci Technol Res. 2015; 4: 47-52.
7. Gratani L, Crescente MF, Varone L, Fabrini G, Digiulio E. Growth pattern and photosynthetic activity of different bamboo species growing in the Botanical Garden of Rome. Flora. 2008; 203: 77-84.
8. Filho AP, Badr O. Biomass Resources for Energy in North-Eastern Brazil. Applied Energy. 2004; 77: 51-57.
9. Liebsch D, Reginato M. Flowering and fruiting of Merostachys skvortzovii Sendulsky (taquara-sixa) in the state of Paraná, (Florescimento e frutificacao de Merostachys skvortzovii Sendulsky (taquara-lixa) no estado do Paraná), Iheringia, Sér. Bot. 2009; 64: 53-56.
10. Borges Neto C. Development of epoxy resin compounds and taquara-lixa fibers (Merostachys skvortzovii Sendulsky) for structural applications. Doctoral Thesis (2014), Post-Graduation in Engineering and Science of Materials Program (PIPE), Technology Sector, Federal University of Parana, Curitiba (PR-Brazil).
11. https://pt.wikipedia.org/wiki/Taquara Accessed on 3rd August 2017.
12. Zakikhani P, Zahari R, Sultan MTH, Majid DL. Bamboo fibre extraction and its reinforced polymer composite material. World Academy of Science, Engineering and Technology Int J Mater Metal Eng. 2014; 8: 315-408.
13. Osorio L, Trujillo E, Van Vuure AW, Verpoes I. Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites. J Reinf Plastic Compos. 2011; 30: 396-408.
14. Deshpande AP, Rao MB, Rao CL. Extraction of BFs and their use as reinforcement in polymeric composites. J Appl Polym Sci. 2000; 76: 83-92.
15. Reis EG. Composites of taquara (Merostachys sp.) fibers and polyester and epoxy matrix. Master Thesis (2013), Department of Mechanical Engineering, University of State of Santa Catarina(UDESC), Joinville (SC-Brazil).
16. Abdul Khalil HPS, Bhat AH, Ireana Yusra IF. Green composites from sustainable cellulose nanofibrils: A review. Carbohydr Polym. 2012; 87: 963-979.
17. Ren W, Zhang D, Wang G, Cheng H. Mechanical and thermal properties of bamboo pulpreinforced polyethylene composites. BioRes. 2014; 9: 4117-4127.
18. Vieira AJT, Moura C, de L. Campos RG, Herpich MR, Campos N. Aplicacao da fibra de bambu aos sistemas industrializados para desenvolvimento de placas de concreto. Anais do IV Simposio de Engenharia de Producao (2016) -ISSN: 2318-9258, RECIFE/PE -FBV -21 -23 April, 2016. 12 pages.
19. Nurul Fazita MR, Krishnan J, Bhattacharyya D, Mohammad Hafiz MK, Saruabh CK, Hussain MH, et al. Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications. A Review Mater. 2016; 9: 435.
20. Das M, Chakraborty D. Influence of alkali treatment on the fine structure and morphology of bamboo fibers. J Appl Polym Sci. 2006; 102: 5050-5056.
21. Alves Jr CA. ‘Development and mechanical characterization of polyester matrix with twigs or sticks (Merostachys sp.)’ Dissertation of Master’s Degree in Materials Engineering (2012), Department of Mechanical Engineering, University of State of Santa Catarina, Joinville, Brazil.
22. Bom RP, Reis EG. Mechanical properties of the sandwich composite made with long and chopped taquara-lixa fiber and epoxy resin (Propriedades mecanicas do compósito sanduíche feito com fibras longas e picadas de taquara-lixa e resina epoxy). Part 1. In: 12th Brazilian Congress of Polymers (2013), Florianopolis, 2011. Florianópolis/SC, Oceania Convention Center, 2013.
23. Parikh DV, Thibodeaux DP, Condon B. X-ray cryatallinity of bleached and crosslinked cottons. Textile Res. J. 2007; 77: 612-616.
24. Park S, Baker J, Himmel ME, Parill PA, Johnson DK. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulose performance. Biotechnol Fuel. 2010; 3: 1-10.
25. Xu F, Yong-Cheng S, Donghai W. X-ray scattering studies of lignocellulosic biomass: A review. Carbohyd Polym. 2013; 94: 904-917.
26. Annunciado TR, Sydenstricker THD, Amico SC. Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pol Bull. 2005; 50: 1340-1346.
27. Bledzi AK, Gassan J. Composites reinforced with cellulose based fibers. Polym Sci. 1999; 24: 221-272.
28. Gupta A, Patnaik A, Biswas S. Effect of different parameters on mechanical and erosion wear behavior of bamboo fiber reinforced epoxy composites. Int J Polym Sci. 2011; 727-737.
29. Guimaraes JL, Frollini E, Silva CG, Wypych F, Satyanarayana KG. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind. Crops Prod. 2009; 30: 407-415.
30. Sydenstricker THD, Mochnaz S, Amico SC. Pull-out and other evaluations in sisal-reinforced polyester biocomposites. Polym Test. 2003; 22: 375-380.
31. Tanobe VOA, Sydenstricker THD, Munaro M, Amico SC. A comprehensive characterization of chemically treated Brazilian sponge gourds (Luffa cylindrica). Polym Test. 2005; 24: 474-482.
32. Pires EM, Merlini C, Al-Qureshi HA, Salmoria GV, Barra GMO. Effect of alkaline Treatment of Jute Fibers on the Mechanical Behavior of Epoxy Matrix Composites. (Efeito do Tratamento Alcalino de Fibras de Juta no Comportamento Mecânico de Compósitos de Matriz Epóxi). Polímeros. 2012; 22: 339-344.
33. Beltrami LVR, Scienza L, Zattera AJ. Effect of the alkaline treatment of curaua fibers on the properties of biodegradable matrix composites. (Efeito do tratamento alcalino de fibras de curauá sobre as propriedades de compositos de matriz biodegradável). Polímeros, 2014; 24: 388-394.
34. Razera IAT, Silva CG, Almeida EVR, Frollini E. Treatments of jute fibers aiming at improvement of fiberphenolic matrix adhesion. Polimeros. 2014; 24: 417-421.
35. Sellers Junior T. Adhesive in the Wood Industry. In: A. Pizzi, K.L. Mittal (Eds.), Handbook of Adhesive Technology, Marcel Dekker, New York, 1994, Chapter 37.
36. Browning BL. The Chemistry of Wood. Interscience, New York. 2003.
37. Souza Junior FG, Piccian PHS, Roch EV. Estudo das Propriedades Mecanicas e Eletricas de Fibras de Curauá Modificada com Polianilina. Polimeros. 2010; 20: 377-382.
38. Cardoso PH, Bastian FL, Thire RSM. Producao de laminados compositos de epoxi/fibra de Curauá. 12º Congresso Brasileiro de Polimeros, 12. Anais..., Florianopolis/SC, 2013.
39. Brigida AIS, Calado VMA, Gonçalves LRB, Coelho MAZ. Effect of Chemical Treatments on Properties of Green Coconut Fiber. Carbohyd Polym. 2010; 79: 832-838.
40. Tomczak F, Sydenstricker THD, Satyanarayana KG. Studies on lignocellulosic fibers of Brazil. Part II: Morphology and properties of Brazilian coconut fibers. Compos. Part A-2007a; 38: 1710-1721.
41. Ramírez MGL. Characterization of thermoplastic starch biocomposites reinforced by green coconut fiber. Doctorate Thesis (2011) [In Portuguese], University of Paraná (UFPR), Curitiba (PR-Brazil).
42. Tomczak F, Sydenstricker THD, Satyanarayana KG. Studies on lignocellulosic fibers of Brazil: Part III: Morphology and properties of Brazilian Curauá fibers. Compos. Part A. 2007b; 38: 2227-2236.
43. Satyanarayana KG, Sydenstricker THD, Santos LPD, Santos JD, Mazzaro I, Mikowski A. Characterization of blue agave bagasse fibers of Mexico. Compos. Part A. 2013; 45: 153-161.
44. Satyanarayana KG, Flores-Sahagun THS, Mazzaro I, Sukumaran K, Gopalakrishna P, Ravikumar KK. Characterization of Aechmea Magdalenae leaf yarns. J Biobased Mater. Bioenergy. 2014; 8: 1-8.
45. Tóbon AED, Chaparro WAA, Rivera WG. Improvement of tensile properties in WPC of LDPE: HIPS/ Natural fiber through crosslinking with DCP (Mejoramiento de las propriedades de tensión em WPC de LDPE: HIPS fibra natural medianteentrecruzamiento com DCP). Polímeros. 2014; 24: 291-299.
46. Lim TT, Huang X. Evaluation of hydrophobicity/oleophilicity of kapok and its performance in oily water filtration: Comparison of raw and solvent-treated fibers, Industrial Crops and Products. 2007; 26: 125-134.
47. Wang T, Yu Q, Kong J, Wong C. Synthesis and heat-insulating properties of yttria-stabilized ZrO2 hollow fibers derived from a ceiba template. Ceramics International. 2017; 43: 9296-9302.
48. Coelho de Carvalho LM. Dal Toe Casagrande M. Mechanical Behaviour of Reinforced Sand with Natural Curauá Fibers through Full Scale Direct Shear Tests. E3S Web Conf. 2019: 92: 12003.
49. Monteiro de Lima A. Del Pino GG, Rivera JLV. Chong KB, Bezazi A, Neto JCDM, et al. Characterization of Polyester Resin Nanocomposite with Curauá Fibers and Graphene Oxide. Revista Ciencias Tecnicas Agropecuarias. 2019; 28: 1-10.
50. Maciel NOR, Ferreira JB, Vieira J. da S, Ribeiro CGD, Lopes FPD, Margem FM, et al. Comparative Tensile Strength Analysis between Epoxy Composites Reinforced with Curauá Fiberand Glass Fiber. Journal of Materials Research and Technology. 2018; 7: 561-565.
51. Sánchez MP, Sulbaran-Rangel BC, Tejeda A, Zurita F. Evaluation of Three Lignocellulosic Wastes as a Source of Biodegradable Carbon for Denitrification in Treatment Wetlands. Int J Environ Sci Technol. 2020.
52. Santos RD, Ferreira SR, Oliveira GE, Silva FA, Souza FG, Toledo Filho RD. Influence of Alkaline Hornification Treatment Cycles on the Mechanical Behavior in Curauá Fibers. Macromol Symp. 2018; 381: 1800096.
53. Berlim LS, Bezerra AG, Pazin WM, Ramin TS, Schreiner WH, Ito AS. Photophysical Properties of Flavonoids Extracted from Syngonanthus Nitens, the Golden Grass. Journal of Luminescence. 2018; 194: 394-400.
54. Kalia S. Lignocellulosic Composite Materials; Springer Series on Polymer and Composite Materials; Springer: Dehradun, India. 2018; 1-96.
55. Kalia S. Lignocellulosic Composite Materials; Springer Series on Polymer and Composite Materials; Springer: Dehradun, India. 2018; 177-214.
56. Simonassi NT, Braga FO, Monteiro SN. Processing of a Green Fiber-Reinforced Composite of High-Performance Curauá Fiber in Polyester. JOM. 2018.
57. Amorim F do C, Souza JFB de. Reis JML. dos. The Quasi-static and Dynamic Mechanical Behavior of Epoxy Matrix Composites Reinforced with Curauá Fibers. Materials Research. 2018; 21.