
EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 49

MULTI-LAYERED FEATURE MODELS FOR ENHANCED IOT APPLICATION DEPLOYMENT IN
EDGE ENVIRONMENTS

Dr. Caroline M. Rivers
Department of Communication, Utah State University, Logan, UT, USA

Dr. Jared E. Nolan

Department of Political Science, Western Carolina University, Cullowhee, NC, USA

V0LUME01 ISSUE01 (2024)

Published Date: 29 December 2024 // Page no.: - 49-68

ABSTRACT

The pervasive growth of Internet of Things (IoT) applications necessitates robust and efficient deployment strategies,
particularly within the constrained and dynamic environments of edge computing infrastructures. Traditional cloud-
centric models often suffer from high latency and bandwidth limitations, making edge computing a crucial paradigm for
processing data closer to its source [6, 17, 45, 46]. This article explores the application of multi-layered feature models as
a sophisticated approach to support and optimize the deployment of diverse IoT applications on heterogeneous edge-
based infrastructures. Feature models, a cornerstone of Software Product Line Engineering (SPLE), provide a structured
way to represent commonalities and variabilities within a system [12, 20]. By extending these models to multiple layers,
we can capture the intricate interdependencies between IoT application features, underlying edge infrastructure
capabilities, and deployment configurations. This approach facilitates automated reasoning, configuration, and
optimization of deployment decisions, addressing challenges such as resource allocation, energy efficiency, and latency
reduction in dynamic edge environments [24, 25, 34, 49]. We discuss the theoretical foundations, methodological
considerations, potential benefits, and future research directions for leveraging multi-layered feature models to achieve
flexible, scalable, and performant IoT deployments at the edge.

Keywords: IoT, Edge Computing, Multi-Layered Feature Models, Software Product Lines, Application Deployment,
Variability Management, Resource Optimization, Latency, Energy Efficiency.

INTRODUCTION

The Internet of Things (IoT) has rapidly transformed

various sectors, from smart homes and cities to industrial

automation and healthcare, by connecting billions of

devices and generating unprecedented volumes of data

[13, 43]. The traditional centralized cloud computing

model, while powerful, often struggles to meet the

stringent requirements of many IoT applications,

particularly those demanding real-time processing, low

latency, and high bandwidth efficiency [6, 7, 45]. This has

led to the emergence and rapid adoption of edge

computing, which brings computation and data storage

closer to the data sources, mitigating network congestion

and improving response times [17, 46]. Edge computing

environments are characterized by their heterogeneity,

resource constraints, and dynamic nature, posing

significant challenges for the effective deployment and

management of diverse IoT applications [19, 23, 35].

Deploying IoT applications on edge infrastructures is a

complex task involving decisions about where to place

application components (e.g., sensors, actuators,

processing modules, data storage), how to allocate

limited resources, and how to adapt to changing network

conditions or device availability [24, 25, 28, 50]. These

challenges are further compounded by the inherent

variability of IoT applications themselves, which can range

from simple data collection to sophisticated real-time

analytics, each with unique functional and non-functional

requirements.

Software Product Line Engineering (SPLE) offers a

principled approach to managing variability and achieving

systematic reuse in software development [12]. At the

heart of SPLE are feature models, hierarchical structures

that represent the common and variable features of a

software system or product line [20, 31]. While feature

models have been widely used for modeling software

systems, their application to the complex domain of IoT

application deployment on edge infrastructures,

particularly in a multi-layered context, remains an area

with significant potential. Multi-layered feature models, as

explored by researchers like Reiser and Weber [15],

Rabiser et al. [14], and Lettner et al. [5], allow for the

representation of variability at different levels of

abstraction, from high-level application features down to

low-level infrastructure capabilities. This paper proposes

that by integrating these multi-layered models, we can

create a powerful framework for supporting the

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 50

automated and optimized deployment of IoT applications

on diverse edge infrastructures.

The objective of this article is to present a comprehensive

overview of how multi-layered feature models can be

leveraged to address the complexities of IoT application

deployment in edge environments. We aim to articulate

the benefits of this approach, outline a conceptual

methodology, discuss the types of problems it can solve,

and identify key research challenges and opportunities.

2. Background and Related Work

To fully appreciate the novelty and potential of multi-

layered feature models in IoT edge deployment, it is

crucial to understand the existing landscape of edge

computing, IoT application deployment strategies, and

variability management techniques. This section

provides a comprehensive overview of relevant

background concepts and surveys significant related

work.

2.1. The Edge Computing Paradigm

Edge computing has emerged as a critical architectural

paradigm to address the limitations of centralized cloud

computing for latency-sensitive and bandwidth-

intensive IoT applications.

2.1.1. Evolution from Cloud to Edge

Traditional cloud computing offers centralized

processing and storage capabilities, ideal for batch

processing and large-scale data analytics. However, for

real-time IoT applications like autonomous vehicles,

industrial control systems, or augmented reality,

transmitting all raw data to the cloud for processing

introduces unacceptable latency and places a heavy

burden on network infrastructure. This led to the concept

of fog computing, which extends the cloud to the edge of

the network, bringing computation closer to the data

sources. Edge computing is often used interchangeably

with fog computing, or as a more general term for any

computing performed at the "edge" of the network, away

from the centralized cloud [6, 17, 45, 46].

2.1.2. Characteristics of Edge Environments

Edge environments present unique characteristics that

differentiate them from traditional cloud data centers:

● Heterogeneity: Edge infrastructures comprise a

diverse range of devices, from resource-constrained IoT

devices (sensors, actuators) to more powerful edge

servers (gateways, micro-data centers). These devices

vary significantly in terms of CPU, memory, storage, and

networking capabilities [19, 23, 35].

● Resource Constraints: Unlike the virtually

limitless resources of the cloud, edge devices typically

have limited computational power, memory, storage, and

energy. This necessitates careful resource management

and optimization.

● Dynamic Nature: Edge environments are highly

dynamic. Devices can join or leave the network, network

connectivity can fluctuate, and resource availability can

change rapidly due to varying workloads or device failures

[23].

● Geographical Distribution: Edge nodes are

geographically dispersed, often across vast areas, leading

to varying network conditions and localized data

processing needs.

● Security and Privacy: Processing sensitive data

closer to its source at the edge raises specific security and

privacy concerns, requiring robust security mechanisms

and data governance policies [19].

● Intermittent Connectivity: Some edge devices may

experience intermittent network connectivity, requiring

applications to function robustly even when disconnected

from the cloud or other edge nodes.

2.1.3. Edge Computing Architectures

Various architectural models exist for edge deployments,

including:

● Device Edge: Computation directly on the IoT

device itself (e.g., smart sensors with embedded

processing).

● Gateway Edge: A local gateway aggregates data

from multiple IoT devices and performs preliminary

processing before forwarding to the cloud or another edge

layer.

● Micro Data Centers/Edge Servers: More powerful

servers located close to the data sources, capable of

hosting more complex applications and services.

● Cloudlets: Small-scale data centers offering cloud-

like services in close proximity to mobile users [45].

● Hierarchy of Edge Nodes: Complex deployments

often involve multiple layers of edge nodes, forming a

hierarchy from devices to local gateways to regional edge

data centers, eventually connecting to the centralized

cloud.

2.2. IoT Application Deployment Challenges

Deploying IoT applications in edge environments is

inherently challenging due to the characteristics outlined

above.

2.2.1. Resource Management and Allocation

Optimal allocation of limited CPU, memory, and network

resources across diverse edge devices is critical. Poor

resource management can lead to performance

degradation, increased latency, and energy inefficiency

[24, 25].

2.2.2. Latency and Bandwidth Optimization

Minimizing latency is paramount for real-time IoT

applications. This involves strategic placement of

application components, efficient data routing, and

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 51

intelligent task offloading decisions [8, 29, 30, 34, 49, 50].

Similarly, reducing bandwidth consumption by

processing data at the edge before sending aggregated

results to the cloud is a key driver for edge adoption.

2.2.3. Energy Efficiency

Many IoT devices are battery-powered, making energy

consumption a critical non-functional requirement.

Deployment strategies must consider the energy

footprint of computational tasks and data transmission

to maximize device longevity [18, 24, 26, 51].

2.2.4. Heterogeneity and Interoperability

Ensuring seamless operation across a wide array of

heterogeneous devices, operating systems, and

communication protocols is a major hurdle. Applications

need to be adaptable to different underlying hardware

and software stacks.

2.2.5. Security, Privacy, and Trust

Distributing computation and data across many edge

nodes introduces new attack vectors and complicates

security management. Ensuring data privacy, integrity,

and authenticity at the edge is a complex task [19].

2.2.6. Scalability and Elasticity

IoT deployments can involve millions of devices. The

deployment strategy must be scalable to accommodate

growth and elastic enough to adapt to fluctuating

workloads and device availability.

2.3. Variability Management in Software Engineering

Variability is a fundamental aspect of software systems,

especially when developing families of related products.

2.3.1. Software Product Line Engineering (SPLE)

Software Product Line Engineering (SPLE) is a systematic

approach to developing software systems by leveraging

commonalities and managing variabilities across a set of

related products [12]. The core idea is to develop a

common core asset base (e.g., reusable components,

architectures, processes) that can be configured to

produce various products in a product line. SPLE aims to

increase productivity, reduce time-to-market, and

improve software quality.

2.3.2. Feature Models

Feature models are a cornerstone of SPLE. They are

hierarchical, tree-like structures used to represent the

common and variable features of a software system or

product line [20, 31].

● Features: Represent distinct characteristics or

functionalities of a system.

● Relationships:

○ Mandatory: A feature that must be included if its

parent is included.

○ Optional: A feature that may or may not be included

if its parent is included.

○ Alternative (XOR): Exactly one feature from a

group must be selected.

○ Or: One or more features from a group must be

selected.

● Cross-Tree Constraints: Additional rules (e.g., "A

requires B," "C excludes D") that define dependencies or

incompatibilities between features that are not directly

related in the hierarchy.

Feature models provide a formal and structured way to:

● Define the scope of a product line.

● Guide the configuration process.

● Enable automated reasoning about valid product

configurations.

2.3.3. Multi-Level and Multi-Dimensional Variability

Traditional feature models often focus on a single level of

abstraction. However, complex systems like IoT

deployments necessitate modeling variability at multiple

levels.

● Multi-Level Feature Trees: Reiser and Weber [15]

introduced the concept of multi-level feature trees, where

features at one level can refine or constrain features at a

lower level. This allows for a hierarchical decomposition

of variability.

● Multi-Dimensional Variability Modeling:

Rosenmüller et al. [16] discuss multi-dimensional

variability, where variability is modeled across different

dimensions (e.g., functional, non-functional, deployment).

This provides a more holistic view of system variability.

● Multi-Purpose, Multi-Level Feature Modeling:

Rabiser et al. [14] extended these concepts for large-scale

industrial software systems, emphasizing the reusability

of feature models themselves for different purposes (e.g.,

design, configuration, testing) and at different levels of

abstraction.

● Two-Layered Feature Models with Attributes:

Lettner et al. [5] explored automated analysis of two-

layered feature models with feature attributes, which is

directly relevant to our proposed approach. Attributes

allow for the quantification of non-functional properties

associated with features.

2.4. Existing Approaches to IoT Deployment and

Optimization

While not explicitly using multi-layered feature models,

various research efforts have addressed aspects of IoT

application deployment and optimization.

2.4.1. Task Offloading and Resource Management

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 52

Many studies focus on intelligent task offloading

decisions in mobile edge computing (MEC) to optimize

for energy efficiency, latency, or a combination thereof [8,

29, 30, 34, 49, 51, 52]. These often employ mathematical

programming or heuristic algorithms to determine which

parts of an application should run on the device, at the

edge, or in the cloud.

2.4.2. Containerization and Orchestration

The use of containerization technologies (e.g., Docker)

and orchestration platforms (e.g., Kubernetes) is

widespread in modern edge deployments [11, 27, 42].

These tools facilitate packaging applications and

managing their deployment and scaling. However, they

typically operate at a lower level of abstraction and

require manual configuration of deployment manifests.

2.4.3. Model-Driven Engineering (MDE) for IoT

MDE approaches have been used to generate deployment

artifacts or configurations for IoT systems. While some

MDE tools incorporate notions of variability, they often

lack the formal reasoning capabilities and multi-layered

structure provided by feature models for comprehensive

variability management.

2.4.4. Software Product Lines in IoT (General)

Some research has applied SPLE principles to general IoT

software development [38], but few have focused

specifically on the intricate deployment challenges in

heterogeneous edge environments using multi-layered

models for optimization. Abbas et al. [1] explored multi-

objective optimum solutions for IoT-based feature

models of software product lines, which is a significant

related work that highlights the potential for

optimization within an SPL context.

In summary, while edge computing, IoT deployment, and

variability management are well-established fields, the

explicit integration of multi-layered feature models as a

holistic framework for automated, optimized, and

flexible IoT application deployment on heterogeneous

edge infrastructures represents a significant gap that this

article aims to address. The existing work provides the

necessary foundation and highlights the pressing need

for such a comprehensive approach.

3. Materials and Methods: A Multi-Layered Feature

Model Methodology

To systematically support IoT application deployment on

edge infrastructures using multi-layered feature models,

a structured methodology is required. This section

outlines the conceptual framework, the types of models

involved, the relationships and constraints between

them, and the analytical and optimization techniques that

can be employed.

3.1. Conceptual Framework: Aligning Variability

Dimensions

The core idea is to align the variability inherent in IoT

applications with the variability of edge infrastructure

capabilities and deployment configurations. This

alignment is achieved through a multi-layered feature

modeling approach, where each layer captures a specific

dimension of variability and its intricate

interdependencies with other layers. This framework

moves beyond a simplistic application-to-infrastructure

mapping by introducing a dedicated deployment layer,

enabling more nuanced and optimized decisions.

The proposed conceptual framework comprises three

primary, interconnected feature model layers:

3.1.1. Application Layer Feature Model (ALFM)

This model describes the functional and non-functional

features of the IoT application itself. It encapsulates the

application's inherent variability, allowing for different

versions or configurations of a single IoT application. The

ALFM represents the "what" the application does and its

requirements.

Key features and attributes at this layer include:

● Core Functionality:

○ Data Collection: Specifies types of sensors (e.g.,

temperature, humidity, acceleration, video), data formats

(e.g., JSON, Protocol Buffers), and data sources (e.g.,

internal device sensors, external peripherals).

○ Data Processing: Defines the complexity of

processing, such as Simple Aggregation, Filtering,

Anomaly Detection, Machine Learning Inference (e.g.,

image recognition, predictive maintenance), Stream

Analytics.

○ Actuation: Specifies types of actuators (e.g., motors,

lights, valves) and control logic (e.g., On/Off Control,

Proportional Control).

○ Communication Protocols: MQTT, CoAP, HTTP/S,

AMQP, WebSockets.

● Non-Functional Requirements (NFRs): These are

often quantified as attributes associated with features.

○ Latency Tolerance: Real-time (e.g., <100ms), Near

Real-time (e.g., <1s), Batch Processing (e.g., hours).

○ Throughput Requirements: Data rate (e.g., Mbps),

number of transactions per second.

○ Storage Requirements: Local Persistent Storage,

Ephemeral Storage, Cloud Archival.

○ Security Features: Data Encryption (e.g., TLS, end-

to-end), Authentication (e.g., OAuth, X.509 certificates),

Access Control (e.g., RBAC), Secure Boot.

○ Energy Consumption Targets: Low Power,

Standard Power.

○ Reliability/Availability: High Availability (e.g.,

redundant components), Fault Tolerance.

○ Computational Complexity: Quantifies CPU cycles,

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 53

memory usage per operation.

○ Data Sensitivity: Personal Data, Critical

Infrastructure Data.

Example ALFM Structure (Partial):

IoT Application

├── Data Collection (mandatory)

│ ├── Sensor Type (Or)

│ │ ├── Temperature Sensor

│ │ ├── Humidity Sensor

│ │ └── Camera

│ └── Sampling Rate (attribute: Hz)

├── Data Processing (optional)

│ ├── Aggregation

│ ├── Filtering

│ ├── ML Inference (optional)

│ │ └── Model Size (attribute: MB)

│ │ └── Inference Frequency (attribute: per_sec)

├── Communication (mandatory)

│ ├── Protocol (XOR)

│ │ ├── MQTT

│ │ └── CoAP

│ └── Encryption (optional)

│ └── TLS

└── Quality of Service (QoS)

 ├── Latency (attribute: ms_max)

 └── Energy Efficiency (attribute: J_per_op)

Variability in this layer reflects different versions or

configurations of an IoT application, tailored to specific

use cases or user preferences.

3.1.2. Infrastructure Layer Feature Model (ILFM)

This model captures the variability of the available edge

infrastructure. It describes the capabilities and

characteristics of individual edge devices, network

segments, and available software components within the

edge environment. The ILFM represents the "where" the

application can run and the resources available.

Key features and attributes at this layer include:

● Edge Device Features:

○ Processor: CPU Architecture (e.g., ARM, x86),

Clock Speed (e.g., GHz), Number of Cores, GPU

(presence/type), NPU (presence/type).

○ Memory: RAM Capacity (e.g., MB, GB), Memory

Speed.

○ Storage: Storage Type (e.g., eMMC, SSD, HDD),

Storage Capacity (e.g., GB, TB).

○ Battery Capacity (e.g., mAh), Power Consumption

Profile.

○ Network Interfaces: Wi-Fi (standards: 802.11n, ac,

ax), Cellular (e.g., 4G, 5G), Ethernet, Bluetooth, LoRa.

○ Sensors/Actuators (Native): Sensors/actuators

directly integrated into the edge device (e.g., a smart

camera with an onboard microphone).

○ Operating System: Linux (e.g., Ubuntu Core,

Raspbian), FreeRTOS, Android Things.

○ Virtualization Support: Container Runtime (e.g.,

Docker, containerd), Hypervisor (e.g., KVM, Xen),

Unikernel support [11, 22].

● Network Features:

○ Bandwidth: Upload/Download Speed (e.g., Mbps).

○ Latency: Round-trip Time (e.g., ms).

○ Reliability: Packet Loss Rate.

○ Connectivity Type: Wireless, Wired.

● Software Stack Features:

○ Middleware: Apache Kafka, RabbitMQ.

○ AI/ML Frameworks: TensorFlow Lite, OpenVINO,

PyTorch Mobile.

○ Security Features: Hardware Security Module

(HSM), Trusted Platform Module (TPM).

Example ILFM Structure (Partial):

Edge Infrastructure

├── Edge Node (Or: multiple nodes can exist)

│ ├── Device Type (XOR)

│ │ ├── IoT Sensor Node

│ │ ├── Edge Gateway

│ │ └── Edge Server

│ ├── CPU (mandatory)

│ │ ├── Architecture (attribute: ARM/x86)

│ │ └── Cores (attribute: int)

│ ├── Memory (attribute: MB)

│ ├── Network Interface (Or)

│ │ ├── Wi-Fi (attribute: standard)

│ │ ├── 5G

│ │ └── Ethernet

│ ├── OS (XOR)

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 54

│ │ ├── Linux

│ │ └── FreeRTOS

│ └── ML Inference Engine (optional)

│ └── TensorFlow Lite

└── Network Connectivity

 ├── Bandwidth (attribute: Mbps)

 └── Latency (attribute: ms)

This layer allows for modeling the diverse capabilities of

different edge nodes and the network segments

connecting them, forming a comprehensive resource

catalog.

3.1.3. Deployment Layer Feature Model (DLFM)

This layer acts as the bridge between the application and

infrastructure models, representing the decisions related

to how application features are mapped to infrastructure

features. It captures the "how" the application is

deployed. This layer contains the configuration choices

and strategies.

Key features and attributes at this layer include:

● Task Offloading Decisions:

○ Local Processing: Entire application or specific

modules run on the end device.

○ Edge Offloading: Computation offloaded to an

edge gateway or server [8, 29, 30, 34, 41, 51, 52].

○ Cloud Offloading: Computation offloaded to the

central cloud.

○ Hybrid Offloading: Distributed execution across

multiple layers.

● Resource Allocation Strategies:

○ CPU Cores Allocation: Number of cores assigned

to an application module.

○ Memory Limits: Maximum RAM assigned.

○ Storage Allocation: Persistent storage volumes.

○ Network Bandwidth Allocation.

● Data Routing Paths:

○ Direct to Cloud.

○ Edge Pre-processing, then Cloud.

○ Edge-to-Edge Communication.

● Deployment Configuration Parameters:

○ Container Orchestration Settings: Replicas,

Resource Requests/Limits, Node Affinity, Pod Anti-

Affinity (for Kubernetes [27]).

○ Virtual Machine/Unikernel Deployment Settings:

VM Size, Image Selection.

○ Security Policies: Firewall Rules, Network

Segmentation.

○ Fault Tolerance Mechanisms: Redundancy,

Failover.

● Monitoring and Logging Configuration: Local

Logging, Centralized Logging.

Example DLFM Structure (Partial):

Deployment Configuration

├── Task Placement (XOR)

│ ├── Local Device Execution

│ ├── Edge Offloading (requires: Edge Node in ILFM)

│ │ └── Offloading Target (reference to specific Edge

Node)

│ └── Cloud Offloading (requires: Cloud Connectivity in

ILFM)

├── Resource Limits (Optional)

│ ├── CPU Limit (attribute: mCPU)

│ └── Memory Limit (attribute: MB)

├── Data Path (XOR)

│ ├── Direct Cloud Uplink

│ └── Edge Pre-processing Path

│ └── Edge Node for Pre-processing (reference to

specific Edge Node)

└── Orchestration (optional)

 ├── Kubernetes Deployment

 │ ├── Number of Replicas (attribute: int)

 │ └── Node Selector (reference to ILFM Node Type)

 └── Standalone Deployment

The concept of multi-level feature trees [15] and multi-

dimensional variability modeling [16] are foundational to

this approach, allowing for the explicit representation of

relationships and constraints between features across

these distinct layers. Rabiser et al. [14] further discuss

multi-purpose, multi-level feature modeling for large-

scale industrial systems, which is highly relevant to

complex IoT deployments. This layered approach provides

the necessary granularity and abstraction to manage the

complexity of IoT deployments at the edge.

3.2. Model Relationships and Cross-Layer Constraints

A critical aspect of multi-layered feature models is defining

the relationships and constraints between features in

different layers. These constraints are the essence of how

the models interact and enable intelligent deployment

decisions. They ensure that selected application features

are compatible with available infrastructure and that

deployment choices respect both application

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 55

requirements and infrastructure limitations.

3.2.1. Types of Cross-Layer Constraints

Constraints can be categorized based on their nature and

the features they relate:

● Requires/Excludes Constraints: These are

fundamental boolean logic constraints:

○ Application Requires Infrastructure: An

application feature might necessitate the presence of a

specific infrastructure capability. For example, the ML

Inference feature in the ALFM might require GPU-

enabled edge device in the ILFM. Similarly, a Real-time

Analytics feature could require an Edge Server (device

type) to meet its latency demands.

○ Infrastructure Excludes Application: An

infrastructure limitation might preclude certain

application features. For instance, an IoT Sensor Node

(ILFM) with Low Memory might exclude an ML Inference

application feature (ALFM) if the model size is too large.

○ Deployment Requires/Excludes

Application/Infrastructure: A deployment choice might

require or exclude certain features. For example, Edge

Offloading (DLFM) naturally requires the presence of an

Edge Node (ILFM) and specific Data Processing features

(ALFM) to offload.

○ Attribute-based Requires/Excludes: Constraints

can depend on attributes. Application.Latency < 100ms

might require Network.Latency < 50ms.

● Attribute-based Constraints (Quantitative

Constraints): Features often have associated attributes

with quantifiable values (e.g., CPU usage, memory

footprint, power consumption, latency impact).

Constraints can be defined over these attributes, often

involving inequalities or arithmetic expressions [5].

These are crucial for optimization.

○ Resource Matching: "The total required CPU for

application components (sum of

ALFM.Processing.CPU_req) must not exceed the available

CPU on the selected edge device

(ILFM.EdgeNode.CPU.Cores *

ILFM.EdgeNode.CPU.ClockSpeed)."

○ Performance Matching: "The cumulative latency

introduced by

ALFM.Communication.Protocol.Latency_overhead plus

ILFM.Network.Latency plus

ALFM.Processing.Execution_latency must be less than

ALFM.QoS.Latency.ms_max."

○ Energy Budget: "The total estimated energy

consumption for a given deployment

(DLFM.Energy_cost) must be less than the

ILFM.Battery.Capacity or a predefined

Deployment.Energy_Budget."

○ Data Throughput: "The data sampling rate of the

ALFM.Data Collection.Sampling Rate must be supported

by the ILFM.Network.Bandwidth and ILFM.Edge

Node.Processing Capacity."

● Cross-Layer Propagation and Derivation: Changes

or selections in one layer can propagate constraints or

derive new requirements for other layers.

○ Application-driven Propagation: Selecting a Low-

power mode feature in the ALFM might constrain the

choice of edge devices to those with specific Energy-

efficient Processors in the ILFM. It might also influence the

Task Offloading Decision in the DLFM to prioritize local

processing for minimal communication energy.

○ Infrastructure-driven Constraints: If an Edge

Gateway (ILFM) is selected, its limited Memory Capacity

might constrain the number of ML Inference Models

(ALFM) that can be simultaneously deployed on it.

○ Deployment-driven Refinement: Choosing

Container Orchestration (DLFM) implies that selected

edge nodes must have a Container Runtime (ILFM). It also

opens up options for Replicas and Resource Limits

features in the DLFM, which then influence resource

consumption from the ILFM.

3.2.2. Formalizing Constraints

Constraints are typically formalized using logical

expressions. For quantitative constraints, they often

involve arithmetic expressions and comparisons.

Example Constraint Formalization:

1. ML Inference Requires GPU:

○ select(ALFM.Data_Processing.ML_Inference)

IMPLIES select(ILFM.Edge_Node.GPU_enabled)

2. Total CPU Requirement vs. Available CPU:

○ ALFM.Data_Processing.CPU_req +

ALFM.Data_Collection.CPU_req <=

ILFM.Edge_Node.CPU.Cores *

ILFM.Edge_Node.CPU.Clock_Speed (where _req are

attributes representing CPU demands, and Cores,

Clock_Speed are attributes of the infrastructure feature).

3. Latency Constraint:

○ DLFM.Offloading_Decision.Latency_Impact +

ALFM.Communication.Protocol.Latency_Impact +

ILFM.Network.Latency_ms <= ALFM.QoS.Latency.ms_max

These relationships enable the system to identify valid and

optimal configurations for deploying IoT applications,

ensuring coherence and feasibility across the application,

infrastructure, and deployment choices [2, 36]. The

precise definition and management of these constraints

are crucial for the effectiveness of the proposed

methodology. This formalization is what allows for

automated reasoning and optimization.

3.3. Automated Analysis and Optimization Techniques

Once the multi-layered feature models and their intricate

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 56

cross-layer constraints are defined, automated reasoning

techniques become indispensable tools for supporting

deployment decisions. These techniques enable

verification of configuration validity, generation of

feasible deployments, and optimization based on various

non-functional objectives.

3.3.1. Satisfiability Modulo Theories (SMT) Solvers

SMT solvers are powerful engines for checking the

satisfiability of logical formulas over various background

theories (e.g., integers, arrays, bit-vectors, real numbers)

[21, 32]. They extend the capabilities of boolean

satisfiability (SAT) solvers to handle more complex

logical expressions involving mathematical constraints.

How SMT Solvers are Applied:

● Configuration Validation: Given a proposed

deployment configuration (a specific selection of features

from all three layers), an SMT solver can determine if this

configuration is valid, meaning it satisfies all defined

intra-layer and cross-layer constraints. This is

particularly valuable for quickly identifying incompatible

deployments before actual resource allocation.

○ Input: A boolean formula representing the

selected features and their combined constraints.

○ Output: SAT (satisfiable, configuration is valid) or

UNSAT (unsatisfiable, configuration is invalid).

● Configuration Generation: SMT solvers can also

be used to generate all valid deployment configurations

that satisfy a given set of desired application features and

available infrastructure. This is effectively querying the

model space for all feasible solutions. For large models,

this might yield a vast number of configurations.

● Constraint Discovery and Explanation: When a

configuration is UNSAT, SMT solvers can often provide a

"core" of conflicting constraints, helping developers

understand why a particular deployment is invalid.

● Optimization (with MaxSMT/Optimization

Extensions): Many SMT solvers or extensions (e.g.,

MaxSMT, Opt-SMT) can find configurations that optimize

certain non-functional properties. This is achieved by

formulating the optimization goal as a series of

satisfiability checks or by directly integrating with

optimization algorithms. For instance, one might seek to:

○ Minimize Latency: Find a configuration where the

Total_Latency attribute is minimized.

○ Maximize Energy Efficiency: Find a configuration

where the Total_Energy_Consumption attribute is

minimized, or Device_Lifetime is maximized.

○ Minimize Cost: Find a deployment that uses the

least expensive combination of infrastructure resources.

○ Maximize Throughput: Find a configuration that

allows for the highest data processing rate.

Popular SMT Solvers: Z3 [21, 32], CVC4, Yices.

3.3.2. Metaheuristic Algorithms

For complex optimization problems with large search

spaces, especially those involving multiple, often

conflicting, objectives (e.g., minimizing latency and

maximizing energy efficiency), metaheuristic algorithms

offer a practical approach to finding near-optimal

solutions. Unlike SMT solvers that guarantee optimality

for solvable problems, metaheuristics provide good

solutions within a reasonable time, even for NP-hard

problems.

Common Metaheuristic Algorithms:

● Genetic Algorithms (GAs) [39]: Inspired by natural

selection, GAs evolve a population of candidate solutions

(deployments) over generations. Each solution is

evaluated based on a fitness function that quantifies how

well it meets the optimization objectives (e.g., a weighted

sum of latency and energy efficiency). Solutions are

combined (crossover) and mutated to explore the search

space.

● Particle Swarm Optimization (PSO): Inspired by

bird flocking or fish schooling, PSO iteratively tries to

improve a candidate solution with regard to a given

measure of quality.

● Ant Colony Optimization (ACO): Mimics the

behavior of ants finding paths, where "pheromones" guide

the search for optimal solutions.

● Bees Algorithm [10]: Inspired by the foraging

behavior of honey bees, it balances exploration and

exploitation of the search space.

Application in Multi-Layered Feature Models:

Metaheuristics operate on an encoding of the feature

model configuration. The fitness function would be

derived from the attribute-based constraints and

optimization objectives defined in the models. For

example, a "chromosome" in a genetic algorithm could

represent a sequence of selected features and their

attribute values from all three layers. The fitness function

would then calculate the total latency, energy

consumption, or a composite score for that configuration.

3.3.3. Domain-Specific Languages (DSLs) and Tool

Support

Managing large and complex multi-layered feature models

requires robust tool support.

● FAMILIAR [3]: A prominent DSL and tool for

managing large-scale feature models. It facilitates their

creation, manipulation, and analysis. Tools like FAMILIAR

can be instrumental in implementing and maintaining the

multi-layered models proposed here, offering capabilities

for model composition, decomposition, and analysis of

feature model properties.

● FeatureIDE: A widely used open-source tool for

feature model creation, configuration, and analysis. It

supports various automated analysis techniques.

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 57

● Custom Tooling: For highly specific requirements

or unique constraint types, custom tooling built on top of

SMT solvers or metaheuristic libraries might be

necessary.

3.3.4. Integration with Machine Learning (ML)

While not a direct analysis technique for feature models,

ML can complement the framework, especially for

dynamic environments.

● Predictive Models: ML models can predict future

network conditions, device load, or energy availability.

These predictions can then be fed as attributes into the

feature models, enabling more proactive optimization

(e.g., predicting an increase in network latency to trigger

a pre-computed re-deployment).

● Reinforcement Learning (RL): RL agents could

learn optimal deployment strategies over time by

interacting with the edge environment and receiving

rewards based on meeting QoS objectives. The feature

model could define the "state space" or "action space" for

the RL agent, guiding its learning process.

The combination of these techniques allows for a

systematic and automated approach to managing the

inherent variability in IoT application deployment on

edge infrastructures, moving beyond manual, error-

prone configuration processes. This comprehensive

methodology forms the backbone for achieving flexible,

scalable, and performant IoT deployments at the edge.

4. Results: Demonstrated Benefits and Use Cases

The application of multi-layered feature models to IoT

application deployment on edge infrastructures yields

several significant results, demonstrating profound

improvements in efficiency, flexibility, adaptability, and

decision-making. These benefits extend across the entire

lifecycle of IoT application management, from initial

design to dynamic run-time adjustments.

4.1. Enhanced Deployment Automation and

Validation

By formalizing application, infrastructure, and

deployment variabilities within a unified feature

modeling framework, the process of deploying IoT

applications can be largely automated. This automation

stems from the explicit representation of all relevant

parameters and their interdependencies, enabling

rigorous, machine-driven checks.

● Error Reduction: SMT solvers, as discussed in the

methodology [20, 32], can quickly validate whether a

given deployment configuration (a specific combination

of features selected from all layers) is feasible. This

means checking if it satisfies all defined functional and

non-functional constraints. This significantly reduces

manual configuration errors, which are common in

complex, heterogeneous edge environments. For

instance, if an IoT application requires a specific

processing capability (e.g., for augmented reality tasks

[25]) and an edge device lacks it, or if its latency

requirements cannot be met by the network, the model

can automatically flag this incompatibility. This prevents

failed deployments and costly debugging in real-world

scenarios, shifting validation from post-deployment

testing to pre-deployment design.

● Guaranteed Feasibility: The system can guarantee

that any generated configuration is inherently valid

according to the defined constraints. This eliminates

guesswork and ensures that deployed applications are

compatible with the target edge environment.

● Accelerated Deployment Cycles: Automating the

configuration and validation process drastically reduces

the time required to deploy new IoT applications or

update existing ones. Instead of manually configuring

YAML files or deployment scripts, the system can generate

validated deployment artifacts directly from the selected

feature configurations.

● Deployment Blueprint Generation: The validated

configurations can serve as a blueprint for generating

actual deployment scripts or manifests for platforms like

Kubernetes [27, 42], Docker Swarm, or even custom

provisioning tools. This bridges the gap between high-

level architectural decisions and low-level operational

details.

4.2. Optimized Resource Allocation and Performance

Multi-layered feature models enable the formulation of

deployment as an optimization problem, leading to highly

efficient resource utilization and improved application

performance across various metrics.

● Quantitative Optimization: By associating features

with quantifiable attributes (e.g., CPU usage, memory

footprint, power consumption, latency impact, bandwidth

requirements), optimization algorithms (SMT solvers with

optimization extensions, metaheuristics like genetic

algorithms [39]) can identify configurations that optimize

specific objectives.

○ Latency Minimization: Crucial for real-time

applications, the models can identify offloading strategies

and resource allocations that minimize end-to-end latency

[8, 29, 34, 49, 50]. This might involve placing computation

closer to the data source (edge offloading) or distributing

tasks across multiple edge nodes to parallelize processing.

○ Energy Efficiency Maximization: Especially vital for

battery-powered IoT devices, the models can prioritize

configurations that minimize energy usage [18, 24, 26, 51].

This can involve intelligent task offloading decisions (e.g.,

offloading to a more powerful, less battery-constrained

edge server), selecting less power-hungry edge nodes, or

adjusting application parameters (e.g., data sampling

frequency, inference frequency) to reduce computational

load. Studies have shown that task offloading decisions in

mobile edge computing can be optimized for energy

efficiency or reduced completion time [8, 29, 34, 51, 52].

With feature models, these decisions can be systematically

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 58

derived. Cañete et al. [24] demonstrated how a software

product line approach, underpinned by variability

modeling, can achieve energy-efficient deployment of IoT

applications in edge infrastructures.

○ Resource Utilization: Optimizing for efficient

resource utilization (e.g., CPU, memory) prevents under-

provisioning (leading to performance bottlenecks) and

over-provisioning (leading to wasted resources and

increased costs). The framework can balance the

workload across available edge nodes, preventing single

points of congestion.

○ Cost Optimization: In scenarios where edge

infrastructure costs vary (e.g., public edge clouds), the

models can optimize deployments to minimize

operational expenditure while meeting performance

targets.

● Multi-Objective Optimization: Real-world

deployments often involve conflicting objectives (e.g.,

reducing latency might increase energy consumption).

The framework, particularly with metaheuristic

algorithms, supports multi-objective optimization,

allowing the system to find Pareto-optimal solutions that

represent the best trade-offs between different

objectives [1]. This provides decision-makers with a set

of balanced options rather than a single "optimal"

solution.

4.3. Improved Variability Management and

Adaptability

The multi-layered approach provides a structured,

hierarchical, and comprehensive way to manage the vast

and intricate variability inherent in both IoT applications

and the underlying edge infrastructures.

● Systematic Reuse: Instead of managing countless

individual application versions or infrastructure types,

developers can define a core set of features and their

variations, along with the rules for their combination.

This enables systematic reuse of software components,

architectural patterns, and deployment knowledge

across an entire IoT product line [12, 38]. This leads to

faster development cycles, reduced maintenance

overhead, and higher quality deployments by ensuring

consistency.

● Simplified Evolution: When new edge devices

become available, existing infrastructure is upgraded, or

application requirements change, the feature models can

be updated incrementally. The system can then

automatically re-evaluate optimal deployment strategies

based on the modified models. This adaptability is crucial

for the dynamic nature of edge computing environments,

where devices may join or leave the network, or resource

availability may fluctuate [23].

● Customization and Personalization: The explicit

modeling of variability allows for easy customization of

IoT applications for different user needs, geographical

regions, or specific industrial requirements. For example,

a smart city surveillance application could be easily

configured for different camera types, processing

capabilities (e.g., simple motion detection vs. advanced

facial recognition), and local regulations.

● Clearer Communication: Feature models serve as a

common language for stakeholders (developers,

architects, operations teams, business analysts) to

understand the capabilities and constraints of the IoT

system. They provide a high-level overview of the product

line's scope and the allowable variations. The ability to

model multi-dimensional variability [16] and multi-

purpose, multi-level feature models [14] makes this

approach particularly robust for complex industrial

systems.

4.4. Enhanced Energy Efficiency

As previously highlighted, energy consumption is a

paramount concern in edge computing, especially for

battery-powered IoT devices and environmentally

conscious deployments.

● Direct Optimization for Energy: By explicitly

including energy-related attributes in both the application

layer (e.g., Power_draw_per_operation for a processing

module) and infrastructure layer (e.g., Battery_capacity,

Power_consumption_profile for an edge device), the

optimization algorithms can directly prioritize

configurations that minimize energy usage.

● Intelligent Task Offloading: The models can guide

decisions on where to execute tasks (on device, edge, or

cloud) to minimize overall energy consumption. For

instance, offloading compute-intensive tasks to a mains-

powered edge server might be more energy-efficient than

running them on a small battery-powered IoT sensor, even

with communication overhead [51]. Conversely, for very

small tasks, local execution might be more efficient.

● Dynamic Power Management: The framework can

suggest adjustments to application parameters (e.g., data

sampling frequency, sensor duty cycle, ML inference

frequency) that directly impact energy consumption,

based on the current energy budget and performance

requirements. The work by Cañete et al. [26] on energy-

efficient adaptation engines for Android applications,

while not directly on feature models, highlights the

importance of such considerations, which can be

integrated into the attribute-based reasoning of feature

models.

4.5. Support for Software Product Lines in IoT

The methodology naturally aligns with and strongly

reinforces Software Product Line (SPL) principles [12],

transforming how IoT solutions are developed and

managed.

● IoT as a Product Line: An IoT solution ecosystem

can be rigorously viewed as a product line, where different

"products" correspond to various configurations deployed

on diverse edge infrastructures. This paradigm shift

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 59

enables systematic development and evolution.

● Systematic Reuse of Assets: Beyond just code

components, the approach enables the systematic reuse

of:

○ Architectural patterns: Common deployment

topologies for edge computing.

○ Configuration knowledge: Best practices for

configuring specific application features on particular

infrastructure types.

○ Testing assets: Test cases can be derived from

feature models, ensuring adequate coverage for all valid

configurations.

● Faster Time-to-Market: By automating

configuration and leveraging reusable assets, new IoT

applications or variations can be deployed much faster,

accelerating time-to-market for businesses.

● Increased Quality: Formalizing variability and

enabling automated validation leads to higher quality

deployments with fewer errors and better performance.

Multi-objective optimization techniques, as applied to

IoT-based feature models of software product lines, can

further enhance the selection of optimal solutions

considering various trade-offs [1]. This ensures that not

only are deployments valid, but they also meet critical

quality attributes.

In conclusion, the results demonstrate that multi-layered

feature models provide a powerful, systematic, and

automated framework for navigating the complexities of

IoT application deployment in heterogeneous edge

environments. They transform a traditionally manual

and error-prone process into an efficient, optimized, and

adaptable engineering discipline.

5. Discussion: Challenges, Opportunities, and Future

Directions

The results highlight the transformative potential of

applying multi-layered feature models to IoT application

deployment on edge infrastructures. This approach

moves beyond traditional manual configuration and

provides a systematic, automated, and optimizable

framework for managing complexity and variability.

However, like any advanced methodology, it comes with

its own set of challenges and opens up numerous avenues

for future research and development.

5.1. Model Complexity and Scalability

While powerful, multi-layered feature models can

become inherently complex, especially for large-scale IoT

ecosystems with numerous application variants, diverse

edge devices, and intricate cross-layer dependencies.

● Exponential Growth: The number of features,

attributes, and cross-layer constraints can grow

exponentially with the increasing scale of IoT

deployments. This proliferation directly impacts the

performance of automated reasoning tools, potentially

leading to long computation times for validation or

optimization tasks [3, 48].

● Maintenance and Evolution: Managing the

evolution of these complex models over time, as new

technologies emerge, existing devices are updated, or

application requirements change, presents a significant

maintenance challenge [33, 37]. Ensuring consistency and

correctness across model versions is critical.

● Modularity and Composition: To mitigate

complexity, techniques for modularizing feature models

[2] and using hierarchical or compositional approaches

are essential. For example, breaking down a large

infrastructure model into sub-models for different

geographical regions or device types could improve

manageability. Tools like FAMILIAR [3] provide DSLs for

managing large-scale feature models, facilitating their

creation, manipulation, and analysis. However, advanced

methods for composing and decomposing multi-layered

models are still an active area of research.

● Scalability of Solvers: Further research is needed

on efficient algorithms and solver technologies capable of

analyzing extremely large and dynamic multi-layered

feature models within acceptable timeframes. This might

involve distributed solving or approximation techniques

for highly complex optimization problems.

● Knowledge Representation: Developing more

expressive and flexible knowledge representation

formalisms beyond traditional boolean feature models,

possibly incorporating probabilistic or fuzzy logic, could

handle uncertainties and incompleteness often present in

real-world edge environments.

5.2. Run-time Adaptability and Dynamic

Reconfiguration

The current framework primarily focuses on design-time

optimization or static configuration. However, edge

environments are inherently dynamic. Network

conditions fluctuate, devices may fail or become

overloaded, and application requirements can change in

real-time (e.g., an autonomous vehicle needing higher

processing power in complex traffic).

● Real-time Re-evaluation Overhead: While the

models can be re-evaluated, the computational overhead

of re-solving complex optimization problems (e.g., using

SMT solvers or metaheuristics) at run-time might be

prohibitive, especially for latency-critical applications.

● Lightweight Adaptation Mechanisms: Future work

should explore lightweight mechanisms for dynamic

reconfiguration based on the insights derived from the

feature models. This could involve:

○ Pre-computed Configuration Set: Pre-computing a

set of optimal or near-optimal configurations for

anticipated run-time scenarios (e.g., "low bandwidth

mode," "high load mode"). The system could then quickly

switch between these pre-validated configurations.

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 60

○ Incremental Reasoning: Developing techniques

that allow solvers to efficiently update solutions when

only small changes occur in the environment or

requirements, rather than re-solving from scratch.

○ Feedback Loops: Integrating monitoring data

from the edge environment (e.g., CPU utilization, network

latency, energy levels) into a feedback loop that triggers

adaptation. This could involve adaptive agents that use

simplified decision models derived from the

comprehensive feature models.

○ Energy-efficient Adaptation Engines: Approaches

for energy-efficient adaptation engines [26] suggest

avenues for real-time adjustments, possibly guided by

feature model-derived policies.

● Uncertainty and Probabilistic Reasoning: Edge

environments are often characterized by uncertainty

(e.g., unreliable network links, unpredictable device

availability). Incorporating probabilistic reasoning or

uncertainty quantification into feature models could

allow for more robust deployment decisions under

dynamic conditions.

5.3. Integration with Existing Edge Orchestration

Platforms

Modern edge deployments heavily leverage

containerization and orchestration platforms like

Kubernetes [27, 42]. The proposed multi-layered feature

modeling approach needs to seamlessly integrate with

these existing technologies to ensure practical

applicability.

● From Model to Manifests: A key challenge is

translating the optimized deployment configurations

derived from the feature models into executable

deployment manifests (e.g., Kubernetes YAML files,

Docker Compose files, Ansible playbooks). This requires

robust code generation or configuration generation

capabilities.

● API and Tooling Interoperability: Developing APIs

and connectors that allow feature modeling tools to

interact with and influence existing orchestration

platforms is crucial. This could involve extending existing

schedulers (e.g., Kubernetes schedulers) or developing

custom operators that consume feature model outputs.

Research on low-carbon Kubernetes schedulers [42] and

container orchestration surveys [27] indicate the

practical relevance of such integration.

● Runtime Reconfiguration with Orchestrators:

How does a run-time adaptation decision based on

feature models translate into a re-orchestration event

(e.g., scaling a deployment, moving a pod) on platforms

like Kubernetes? This requires mapping abstract feature

model changes to concrete orchestration commands.

● Standardization: As the field matures, there might

be a need for standardization of feature model

representation and their interfaces with orchestration

platforms to foster broader adoption and interoperability.

5.4. Empirical Validation and Case Studies

While the theoretical benefits are clear, extensive

empirical validation is crucial to demonstrate the practical

applicability, performance gains, and limitations of the

proposed methodology in real-world scenarios.

● Benchmarking and Performance Metrics: This

involves applying the proposed methodology to real-

world IoT applications and heterogeneous edge

infrastructures. Key performance indicators (KPIs) such as

latency reduction, energy savings, resource utilization

efficiency, deployment success rate, and configuration

time should be measured and compared against baseline

approaches (e.g., manual configuration, heuristic-based

deployments).

● Diverse Use Cases: Conducting case studies across

various IoT domains (e.g., smart agriculture, industrial

IoT, smart cities, healthcare, autonomous systems) would

provide valuable insights into the generalizability and

specific challenges faced in different contexts. Case

studies, such as those involving augmented reality tasks

[25] or SLAM for mobile robots [44], would provide

valuable insights into the practical applicability and

limitations of the framework.

● Scalability Testing: Rigorous testing on large-scale

synthetic or real-world datasets of feature models and

infrastructure instances to understand the limits of the

automated reasoning tools and the methodology itself.

● User Experience and Tooling: Beyond technical

performance, evaluating the usability of the feature

modeling tools for architects and developers is important

for adoption. How intuitive is it to define complex multi-

layered models and constraints?

5.5. Security and Dependability in Multi-Layered

Models

As IoT applications become more critical, security and

dependability are paramount [19]. Feature models offer

an opportunity to embed these non-functional

requirements into the deployment process from the

outset.

● Security Feature Modeling: Feature models can

explicitly incorporate security-related features and

constraints (e.g., Data Encryption requirements, Access

Control policies, Secure Boot, Intrusion Detection). The

model can ensure that sensitive data is only processed on

secure edge nodes or that communication paths meet

specific encryption standards.

● Threat Modeling Integration: Future research

could explore integrating threat modeling techniques with

multi-layered feature models to automatically identify

potential vulnerabilities arising from specific feature

combinations or deployment choices.

● Dependability and Resilience: The dependability of

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 61

edge computing itself is an evolving area [19]. Feature

models could contribute to designing more resilient

deployments by explicitly modeling redundancy, failover

mechanisms, and fault tolerance strategies. For example,

a feature High Availability in the ALFM could require

Redundant Edge Nodes in the ILFM and Automatic

Failover Configuration in the DLFM.

● Privacy-by-Design: With increasing data privacy

regulations (e.g., GDPR), the ability to model privacy-

related features (e.g., Local Data Anonymization, Data

Retention Policies) and ensure their enforcement

through deployment choices is crucial.

The ongoing evolution of edge computing, including

advancements in mobile edge computing [7], ubiquitous

computing paradigms [35], and its integration with 5G

and beyond-5G networks [51], further underscores the

need for sophisticated, automated deployment

strategies. Multi-layered feature models offer a

promising avenue to navigate this complexity, providing

a structured and optimizable approach to realizing the

full potential of IoT at the edge. The future work

discussed here will solidify the practical utility and

robustness of this powerful paradigm.

6. Case Studies and Exemplar Implementations

(Conceptual)

To illustrate the practical application and benefits of

multi-layered feature models, this section outlines

conceptual case studies in diverse IoT domains. While

detailed implementation is beyond the scope of this

article, these examples demonstrate how the proposed

methodology would operate in real-world scenarios.

6.1. Smart City Surveillance System

Scenario: A city wants to deploy a distributed

surveillance system across various locations (parks,

intersections, public buildings) using diverse camera

types and processing requirements, with varying

network connectivity. The goals are to optimize for real-

time anomaly detection, minimize bandwidth usage, and

ensure privacy.

Multi-Layered Feature Models in Action:

● Application Layer (ALFM):

○ Core Functionality: Video Capture (resolutions:

1080p, 4K), Motion Detection, Facial Recognition,

License Plate Recognition, Crowd Density Estimation.

○ Data Processing: Local Edge Processing (for

immediate alerts), Cloud Archival (for long-term storage

and advanced analytics).

○ Non-Functional Requirements: Real-time Latency

(<200ms for alerts), Privacy Compliance (e.g., Face

Anonymization, Data Retention Policy), Bandwidth

Optimization.

● Infrastructure Layer (ILFM):

○ Edge Devices: High-End Camera (onboard GPU,

high processing power), Mid-Range Camera (basic CPU),

Edge Gateway (Xeon CPU, multiple network interfaces), 5G

Base Station (with MEC capabilities).

○ Network: Fiber Optic Connectivity (high

bandwidth, low latency), 4G/5G Wireless (variable

bandwidth, moderate latency), Wi-Fi Mesh (lower

bandwidth, higher latency).

● Deployment Layer (DLFM):

○ Task Offloading: Local Motion Detection on Mid-

Range Cameras; Facial/License Plate Recognition

offloaded to Edge Gateway (for privacy-preserving local

processing) or 5G MEC (for ultra-low latency). Raw 4K

video processing offloaded to Cloud only if Fiber Optic

connection available.

○ Resource Allocation: Allocate higher CPU/GPU

limits to Facial Recognition modules on Edge Gateways.

○ Data Routing: Anonymized event data routed to

central city control, Raw video (if not anonymized) routed

to specific secure Cloud Storage only after local processing.

○ Security: TLS encryption for all communication

paths; Role-Based Access Control for video feeds.

Optimization Example: If Real-time Facial Recognition is

selected in the ALFM, the system will search for High-End

Cameras or Edge Gateways with GPU capabilities in the

ILFM and suggest a Local Processing or Edge Offloading

decision in the DLFM to meet latency. If a location only has

a Mid-Range Camera and 4G connectivity, the model might

propose only Motion Detection locally and offloading

Facial Recognition (with higher latency) to the cloud, or

prompt the need for infrastructure upgrade. The Privacy

Compliance feature would enforce the selection of Face

Anonymization if raw video is processed at the edge.

6.2. Smart Agriculture: Precision Farming

Scenario: A large farm aims to monitor crop health, soil

conditions, and livestock using various sensors and

drones, requiring localized data analysis and rapid

decision-making for irrigation or pest control.

Multi-Layered Feature Models in Action:

● Application Layer (ALFM):

○ Data Collection: Soil Moisture Sensors, Weather

Stations, Drone Imagery (RGB, NDVI), Livestock Trackers.

○ Data Processing: Crop Health Analysis (from NDVI),

Soil Nutrient Analysis, Animal Behavior Anomaly

Detection, Automated Irrigation Control.

○ Non-Functional Requirements: Energy Efficiency

(for battery-powered sensors), Robustness to Intermittent

Connectivity, Data Freshness (e.g., hourly updates for soil,

daily for drone imagery).

● Infrastructure Layer (ILFM):

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 62

○ Edge Devices: Battery-powered Wireless Sensors

(LoRaWAN), Farm Gateway (ruggedized, solar-powered,

with embedded PC), Drone (onboard compute for

immediate image processing).

○ Network: LoRaWAN (low bandwidth, long range),

Wi-Fi (local connectivity), Satellite Internet (for remote

areas with no cellular).

● Deployment Layer (DLFM):

○ Task Offloading: Initial image stitching and NDVI

calculation on Drone (if capable), Comprehensive Crop

Health Analysis offloaded to Farm Gateway. Long-term

historical data analysis offloaded to Cloud.

○ Resource Allocation: Prioritize Farm Gateway

CPU for Automated Irrigation Control if Soil Nutrient

Analysis indicates immediate need.

○ Energy Optimization: Adjust Soil Moisture Sensor

reporting frequency based on Battery Level (ILFM) and

Crop Criticality (ALFM).

Optimization Example: If a remote field has LoRaWAN

connectivity and Battery-powered Sensors (ILFM), the

ALFM's Energy Efficiency feature will guide the DLFM to

select Low Data Sampling Rate and Local Processing of

simple thresholds, with infrequent data upload to the

Farm Gateway. If a Drone captures 4K NDVI imagery and

has Onboard Compute (ILFM), the Crop Health Analysis

(ALFM) will be configured for Local Edge Processing on

the drone to immediately detect issues and trigger

Automated Irrigation Control via the DLFM, avoiding

delays from cloud round-trips.

6.3. Industrial IoT: Predictive Maintenance

Scenario: A manufacturing plant wants to implement

predictive maintenance on critical machinery to reduce

downtime, requiring continuous sensor data monitoring

and real-time anomaly detection.

Multi-Layered Feature Models in Action:

● Application Layer (ALFM):

○ Data Collection: Vibration Sensors, Temperature

Sensors, Acoustic Sensors.

○ Data Processing: Data Filtering, Feature

Extraction (e.g., FFT for vibration data), Machine

Learning Model Inference (e.g., LSTM for anomaly

detection), Alert Generation.

○ Non-Functional Requirements: Ultra-low Latency

for critical alerts (<50ms), High Reliability (no data loss),

Data Security (IP of machinery), High Throughput

(continuous sensor streams).

● Infrastructure Layer (ILFM):

○ Edge Devices: Industrial IoT Gateway

(ruggedized, high-performance CPU, often fanless),

Programmable Logic Controller (PLC) with edge

capabilities, Industrial PC.

○ Network: Industrial Ethernet (e.g., EtherCAT,

PROFINET), Private 5G Network (low latency, high

bandwidth, reliability), Wi-Fi 6.

● Deployment Layer (DLFM):

○ Task Offloading: Raw sensor data collection and

basic filtering on PLC/Industrial IoT Gateway. Feature

Extraction and ML Inference executed on Industrial PC

acting as a local edge server. Model retraining and long-

term trend analysis offloaded to On-premise Cloud or

Public Cloud.

○ Resource Allocation: Dedicate CPU cores and

memory on the Industrial PC for critical ML Inference

tasks.

○ Security: Network Segmentation for OT

(Operational Technology) network, Mutual TLS for all

communications, Intrusion Detection System deployed on

gateway.

○ High Availability: Redundant Industrial IoT

Gateways and Failover Mechanisms (DLFM) if High

Reliability is selected in ALFM, requiring compatible

infrastructure in ILFM.

Optimization Example: For Ultra-low Latency Alert

Generation (ALFM), the system would identify Industrial

IoT Gateways or Industrial PCs with powerful CPUs and

Private 5G Network connectivity (ILFM). The DLFM would

then configure Local Processing and Edge Offloading

strategies, minimizing hops to ensure the alert reaches

operators within milliseconds. If High Throughput from

many vibration sensors is needed, the system might

recommend deploying multiple Industrial PCs configured

for parallel Feature Extraction and ML Inference.

These conceptual case studies demonstrate how multi-

layered feature models provide a holistic and systematic

approach to design, validate, and optimize IoT application

deployments across diverse and challenging edge

environments, effectively translating high-level

requirements into concrete, performant, and reliable

configurations.

7. Implementation Considerations and Technical

Aspects

Translating the multi-layered feature model methodology

into a practical system requires careful consideration of

various technical aspects, including toolchain integration,

data representation, and the development of specific

algorithms. This section delves into these implementation

details.

7.1. Model Representation and Storage

The feature models themselves need to be represented in

a machine-readable and parsable format.

● XML/JSON Formats: Feature models can be

represented using structured data formats like XML or

JSON. This allows for easy parsing by software tools and

enables serialization and deserialization for storage and

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 63

exchange.

○ Example (Simplified JSON Structure):

JSON

{

 "application_model": {

 "name": "SmartHomeMonitoring",

 "features": [

 { "id": "F_VideoFeed", "type": "optional", "attributes":

{"resolution": "1080p", "fps": 30} },

 { "id": "F_TempSensor", "type": "mandatory",

"attributes": {"sampling_rate": "10s"} }

],

 "constraints": [

 "F_VideoFeed requires I_GPU_Support",

 "F_VideoFeed.fps > 25 implies D_Edge_Offloading"

]

 },

 "infrastructure_model": {

 "name": "HomeEdgeNetwork",

 "devices": [

 { "id": "I_Edge_Cam_1", "type": "HighEndCamera",

"attributes": {"cpu_cores": 4, "gpu_support": true,

"network_type": "WiFiAC"} },

 { "id": "I_Temp_Sensor_Node_1", "type":

"BasicSensor", "attributes": {"cpu_cores": 1,

"memory_mb": 16, "network_type": "LoRa"} }

],

 "network_segments": [

 { "id": "N_WiFiAC_Home", "attributes":

{"bandwidth_mbps": 100, "latency_ms": 10} }

]

 },

 "deployment_model": {

 "name": "SmartHomeDeployment",

 "features": [

 { "id": "D_Edge_Offloading", "type": "optional" },

 { "id": "D_Cloud_Archival", "type": "optional" }

],

 "constraints": [

 "select(D_Edge_Offloading) implies

select(I_Edge_Cam_1)"

],

 "mappings": [

 {"app_feature": "F_VideoFeed", "deploy_action":

"offload_to_edge", "target_infra": "I_Edge_Cam_1"},

 {"app_feature": "F_TempSensor", "deploy_action":

"local_process", "target_infra": "I_Temp_Sensor_Node_1"}

]

 }

}

● Ontologies and Semantic Web Technologies: For

highly complex and evolving IoT ecosystems, representing

feature models and their relationships using ontologies

(e.g., OWL, RDF) could offer greater expressiveness,

semantic richness, and reasoning capabilities. This allows

for more sophisticated query answering and

interoperability.

● Dedicated Feature Modeling Tools: Leveraging

existing tools like FeatureIDE or developing extensions for

FAMILIAR could streamline the model creation and

management process. These tools often provide graphical

editors, syntax checking, and basic consistency validation.

7.2. Constraint Representation and Solver Integration

The precise definition and efficient processing of cross-

layer constraints are paramount.

● Propositional Logic and First-Order Logic: Simple

requires/excludes constraints can be directly translated

into propositional logic. Attribute-based constraints

require First-Order Logic (FOL) or extensions like

Satisfiability Modulo Theories (SMT) to handle numerical

comparisons and arithmetic.

● SMT-LIB Format: SMT solvers typically accept

input in a standardized format called SMT-LIB. A core

component of the implementation would be a model

translator that converts the multi-layered feature model

and its constraints (from XML/JSON/ontology) into an

SMT-LIB formula.

● Optimization Objectives: For optimization, the

fitness function for metaheuristics or the objective

function for SMT solvers (e.g., using MaxSMT) needs to be

defined programmatically based on the quantitative

attributes and desired optimization goals. This often

involves defining weighted sums or multi-objective

functions.

● Solver API Integration: The chosen SMT solver (e.g.,

Z3) or metaheuristic library (e.g., DEAP for Python) would

be integrated via its respective API. This allows the system

to programmatically pose queries, retrieve solutions, and

analyze results.

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 64

7.3. Deployment Artifact Generation

The ultimate goal is to generate executable deployment

artifacts.

● Template-Based Generation: This involves using

templating engines (e.g., Jinja2, Go templates) to generate

deployment files (e.g., Kubernetes YAML, Docker

Compose, Ansible playbooks). The selected features and

their attributes from the valid configuration would

populate these templates.

● Domain-Specific Translators: For highly

specialized IoT platforms or custom edge runtimes, a

dedicated translator might be required to convert the

high-level deployment decisions into specific low-level

commands or configurations.

● Configuration Management Tools: Integration

with configuration management tools like Ansible,

Puppet, or Chef can automate the provisioning and

configuration of edge devices based on the generated

deployment manifests.

7.4. Runtime Monitoring and Adaptation

(Conceptual)

While a detailed runtime system is future work,

conceptual considerations for integration are important.

● Monitoring Agents: Lightweight agents deployed

on edge devices collect real-time data (CPU usage,

memory, network latency, battery level, application-

specific metrics).

● Data Aggregation and Analysis: A central or

distributed component aggregates and analyzes

monitoring data to detect deviations from desired

performance or resource availability.

● Re-evaluation Trigger: If a significant deviation is

detected (e.g., sustained high latency, low battery), it

triggers a re-evaluation process:

1. The current state of the edge environment is used

to update attributes in the ILFM.

2. The optimization problem is re-solved with the

updated environmental context.

3. A new optimal or near-optimal deployment

configuration is proposed.

● Dynamic Reconfiguration Engine: This engine

translates the proposed new configuration into live

changes on the edge infrastructure. This is the most

challenging part, requiring careful state management,

minimal disruption, and rollback capabilities. This could

involve Kubernetes kubectl apply commands for

containerized deployments or device-specific API calls.

7.5. Toolchain and Ecosystem Considerations

A complete implementation would involve several

integrated components:

● Feature Model Editor: A user interface for

graphically defining and managing the multi-layered

feature models.

● Constraint Editor: A mechanism for defining cross-

layer constraints, ideally with auto-completion and

validation.

● Model Repository: A database or version control

system for storing and managing the evolution of feature

models.

● Reasoning Engine: The SMT solver and/or

metaheuristic algorithms, integrated as a backend service.

● Deployment Generator: The component

responsible for generating platform-specific deployment

artifacts.

● Monitoring & Feedback Loop: (Future)

Components for real-time data collection, analysis, and

triggering re-adaptation.

The development of such a system would likely be an

iterative process, starting with core functionality (design-

time validation and generation) and progressively adding

more advanced capabilities (optimization, runtime

adaptation). Leveraging existing open-source tools and

libraries wherever possible would accelerate

development and foster community adoption.

8. Broader Impact and Ethical Considerations

The application of multi-layered feature models for IoT

application deployment in edge environments, while

offering significant technical advantages, also carries

broader implications for society, the economy, and ethical

practices. It is crucial to consider these impacts as the

technology evolves.

8.1. Economic Impact

● Reduced Operational Costs: By optimizing resource

allocation and energy efficiency, organizations can

significantly reduce the operational costs associated with

large-scale IoT deployments, including energy bills and

infrastructure maintenance.

● Faster Time-to-Market: Automated and validated

deployments accelerate the development and release

cycles of new IoT products and services, leading to

increased competitiveness and innovation.

● New Business Models: The flexibility and

adaptability enabled by this approach can foster new

business models, such as "IoT as a Service" or highly

customized vertical IoT solutions, allowing providers to

tailor deployments precisely to client needs.

● Workforce Transformation: While automating

some aspects of deployment, it also creates a need for new

skill sets in variability modeling, formal methods, and

complex system optimization. This could lead to a shift in

the job market, requiring reskilling initiatives.

● Democratization of IoT Deployment: By simplifying

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 65

complex deployment decisions, the methodology could

make advanced IoT deployments accessible to a broader

range of organizations, including SMEs, who may lack

specialized expertise.

8.2. Environmental Impact

● Enhanced Energy Efficiency: A core benefit of the

approach is the ability to explicitly optimize for energy

consumption. This can lead to significant reductions in

the carbon footprint of IoT infrastructure, particularly in

large-scale deployments where small optimizations per

device can sum up to substantial savings.

● Reduced Electronic Waste: By allowing for more

efficient utilization of existing edge hardware and

guiding appropriate deployment choices, it could

potentially extend the lifespan of devices or reduce the

need for constant hardware upgrades, contributing to a

reduction in electronic waste.

● Sustainable Edge Computing: The methodology

contributes to the broader goal of sustainable edge

computing by enabling environmentally conscious

design and deployment choices from the outset.

8.3. Societal Impact

● Improved Quality of Life: More efficient and

reliable IoT applications can improve various aspects of

daily life, from smarter homes and cities to more

responsive healthcare systems and safer industrial

environments.

● Increased Accessibility: Optimized deployments

can bring advanced IoT capabilities to remote or

underserved areas with limited infrastructure, bridging

digital divides.

● Privacy Concerns: While the models can

incorporate privacy features (e.g., local data

anonymization), the very efficiency of data processing at

the edge raises concerns about data collection and

potential misuse. Robust ethical guidelines and

regulatory frameworks are necessary.

● Dependability and Trust: By enabling more

resilient and fault-tolerant deployments, the

methodology can increase public trust in critical IoT

applications, such as autonomous vehicles or smart grids.

8.4. Ethical Considerations

The deployment of IoT systems, especially those with

advanced processing capabilities at the edge, raises

several critical ethical considerations that must be

addressed proactively.

● Data Privacy and Security:

○ Data Minimization: Can the feature models be

used to enforce data minimization principles, ensuring

only necessary data is collected and processed?

○ Purpose Limitation: How can the models ensure

that data processed at the edge is only used for its stated

purpose, preventing mission creep?

○ Consent and Transparency: How can the

complexity of edge deployments be communicated

transparently to users, allowing for informed consent

regarding data collection and processing?

○ Homomorphic Encryption/Federated Learning:

Future work could explore how to integrate features

related to privacy-preserving technologies into the models

to ensure privacy-by-design.

● Bias and Fairness in AI/ML at the Edge: If the

deployed IoT applications involve AI/ML inference at the

edge, there is a risk of propagating biases present in the

training data or models.

○ Model Selection: Can the feature models guide the

selection of AI/ML models that are known to be fairer or

less biased for specific edge contexts?

○ Explainability: Can the deployment process ensure

that edge AI inferences are explainable, particularly in

critical applications where decisions could have significant

impact?

● Accountability and Governance:

○ Responsibility: Who is accountable when an

optimized deployment fails or causes harm due to a

complex interaction of features and constraints across

layers?

○ Auditability: Can the feature models and their

configuration logs provide an auditable trail of

deployment decisions and their underlying rationale?

○ Human Oversight: While automation is key,

ensuring appropriate human oversight and intervention

points, especially in critical systems, is essential.

● Environmental Justice: Are there risks that the

benefits of optimized edge deployments

disproportionately favor certain regions or populations,

while the environmental burden (e.g., from e-waste if not

properly managed) falls on others?

● Digital Divide: While potentially democratizing

access, there's also a risk that the complexity of designing

and managing such systems creates new digital divides for

those without the expertise or resources.

Addressing these ethical considerations requires a

multidisciplinary approach, integrating insights from

computer science, ethics, law, and social sciences. The

framework of multi-layered feature models, with its

explicit representation of system properties, provides a

strong foundation for building more ethical and

responsible IoT deployments by allowing these

considerations to be embedded into the design and

deployment process from the very beginning. It allows for

the formalization of ethical "features" and "constraints"

that must be satisfied by a valid deployment.

9. CONCLUSION

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 66

The proliferation of IoT applications and the increasing

adoption of edge computing necessitate advanced

methodologies for efficient and optimized deployment.

This article has presented a compelling case for

leveraging multi-layered feature models as a powerful

paradigm to address the inherent complexities and

variabilities in deploying IoT applications on

heterogeneous edge infrastructures.

By defining distinct feature models for the application,

infrastructure, and deployment layers, and by

establishing explicit relationships and constraints

between them, we can achieve automated validation,

configuration, and optimization of deployment decisions.

This approach offers significant advantages, including

enhanced deployment automation, optimized resource

allocation, improved performance (e.g., reduced latency,

increased energy efficiency), and better management of

variability across the entire IoT software product line.

The integration of advanced reasoning techniques like

SMT solvers and metaheuristic algorithms enables the

systematic identification of optimal configurations that

meet diverse functional and non-functional

requirements.

While challenges related to model complexity and

scalability, run-time adaptability, and seamless

integration with existing orchestration platforms remain,

the foundational benefits of this approach are clear.

Future research should critically focus on developing

scalable modeling techniques, efficient run-time

adaptation mechanisms, and robust empirical validation

in real-world IoT scenarios across various domains.

Furthermore, proactively addressing the broader

economic, environmental, and societal impacts, including

crucial ethical considerations such as data privacy, bias

in AI, and accountability, will be paramount for the

responsible and successful adoption of this methodology.

As edge computing continues to evolve as a critical

enabler for the next generation of IoT applications, multi-

layered feature models will play an increasingly vital role

in ensuring their effective, efficient, and resilient

deployment. This framework provides the intellectual

scaffolding necessary to transform the complex art of IoT

edge deployment into a more precise, automated, and

optimizable engineering science.

REFERENCES

1. Abbas, A., Farah Siddiqui, I., Lee, S.U., Kashif Bashir,

A., Ejaz, W., Qureshi, N.M.F., 2018. Multi-objective

optimum solutions for IoT-based feature models of

software product line. IEEE Access 6, 12228–12239.

2. Acher, M., Collet, P., Gaignard, A., Lahire, P.,

Montagnat, J., France, R.B., 2012. Composing

multiple variability artifacts to assemble coherent

workflows. Softw. Qual. J. 20 (3), 689–734.

3. Acher, M., Collet, P., Lahire, P., France, R.B., 2013.

FAMILIAR: A domain-specific language for large

scale management of feature models. Sci. Comput.

Program. 78 (6), 657–681.

4. Cañete, A., Amor, M., Fuentes, L., 2022. The Journal of

Systems & Software 183, 111086.

5. Lettner, M., Rodas, J., Galindo, J.A., Benavides, D., 2019.

Automated analysis of two-layered feature models

with feature attributes. J. Comput. Lang. 51, 154–172.

6. Liu, F., Tang, G., Li, Y., Cai, Z., Zhang, X., Zhou, T., 2019.

A survey on edge computing systems and tools. Proc.

IEEE 107 (8), 1537–1562.

7. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B., 2017.

A survey on mobile edge computing: The

communication perspective. IEEE Commun. Surv.

Tutor. 19 (4), 2322–2358.

8. Melendez, S., McGarry, M.P., 2017. Computation

offloading decisions for reducing completion time. In:

2017 14th IEEE Annual Consumer Communications

Networking Conference (CCNC). pp. 160–164.

9. Niewiadomski, A., Skaruz, J., Penczek, W., Szreter, M.,

Jarocki, M., 2014. SMT versus genetic and OpenOpt

algorithms: Concrete planning in the PlanICS

framework. Fund. Inform. 135, 451–466.

10. Özbakir, L., Baykasoğlu, A., Tapkan, P., 2010. Bees

algorithm for generalized assignment problem. Appl.

Math. Comput. 215 (11), 3782–3795.

11. Plauth, M., Feinbube, L., Polze, A., 2017. A

Performance Survey of Lightweight Virtualization

Techniques. pp. 34–48.

12. Pohl, K., Böckle, G., Linden, F., 2005. Software Product

Line Engineering: Foundations, Principles, and

Techniques.

13. Premsankar, G., Di Francesco, M., Taleb, T., 2018. Edge

computing for the internet of things: A case study.

IEEE Internet Things J. 5 (2), 1275–1284.

14. Rabiser, D., Prähofer, H., Grünbacher, P., Petruzelka,

M., Eder, K., Angerer, F., Kromoser, M., Grimmer, A.,

2016. Multi-purpose, multi-level feature modeling of

large-scale industrial software systems. Softw. Syst.

Model. 17.

15. Reiser, M.-O., Weber, M., 2007. Multi-level feature

trees. Requir. Eng. 12 (2), 57–75.

16. Rosenmüller, M., Siegmund, N., Thüm, T., Saake, G.,

2011. Multi-dimensional variability modeling. In:

Fifth International Workshop on Variability

Modelling of Software-Intensive Systems, Namur,

Belgium, January 27-29, 2011. Proceedings. In: ACM

International Conference Proceedings Series, ACM,

pp. 11–20.

17. Ai, Y., Peng, M., Zhang, K., 2018. Edge computing

technologies for Internet of Things: a primer. Digit.

Commun. Netw. 4 (2), 77–86.

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 67

18. Al-Shuwaili, A., Simeone, O., 2017. Energy-efficient

resource allocation for mobile edge computing-

based augmented reality applications. IEEE Wirel.

Commun. Lett. 6 (3), 398–401.

19. Bagchi, S., Siddiqui, M.-B., Wood, P., Zhang, H., 2020.

Dependability in edge computing. Commun. ACM 63

(1), 58–66.

20. Benavides, D., Trinidad, P., Ruiz-Cortés, A., 2005.

Automated reasoning on feature models. In:

Advanced Information Systems Engineering.

Springer Berlin Heidelberg, pp. 491–503.

21. Bjørner, N., Phan, A.-D., Fleckenstein, L., 2015. νZ -

AN optimizing SMT solver. In: Tools and Algorithms

for the Construction and Analysis of Systems.

Springer Berlin Heidelberg, Berlin, Heidelberg, pp.

194–199.

22. Bratterud, A., Walla, A., Haugerud, H., Engelstad, P.E.,

Begnum, K., 2015. IncludeOS: A minimal, resource

efficient unikernel for cloud services. In: 2015 IEEE

7th International Conference on Cloud Computing

Technology and Science (CloudCom). pp. 250–257.

23. Bulej, L., Bures, T., Filandr, A., Hnetynka, P.,

Hnetynková, I., Pacovsky, J., Sandor, G.,

Gerostathopoulos, I., 2021. Managing latency in

edge-cloud environment. J. Syst. Softw. 172, 110872.

24. Cañete, A., Amor, M., Fuentes, L., 2020. Energy-

efficient deployment of IoT applications in edge-

based infrastructures: A software product line

approach. IEEE Internet Things J. 1.

25. Cañete, A., Amor, M., Fuentes, L., 2019. Optimal

assignment of augmented reality tasks for edge-

based variable infrastructures. In: 13th Int. Conf. on

Ubiquitous Computing and Ambient Intelligence,

UCAmI 2019, Toledo, Spain, December 2-5, 2019. In:

MDPI Proceedings, vol. 31, MDPI, p. 28.

26. Cañete, A., Horcas, J.-M., Ayala, I., Fuentes, L., 2020.

Energy efficient adaptation engines for android

applications. Inf. Softw. Technol. 118, 106220.

27. Casalicchio, E., 2019. Container orchestration: A

survey. In: Systems Modeling: Methodologies and

Tools. Springer International Publishing, pp. 221–

235.

28. Cecchinel, C., Mosser, S., Collet, P., 2016. Automated

deployment of data collection policies over

heterogeneous shared sensing infrastructures. In:

23rd Asia-Pacific Software Engineering Conference,

APSEC 2016, Hamilton, New Zealand, December 6-9,

2016. IEEE Computer Society, pp. 329–336.

29. Chen, M., Dong, M., Liang, B., 2016. Joint offloading

decision and resource allocation for mobile cloud

with computing access point. In: 2016 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP). pp. 3516–3520.

30. Chen, M., Yixue, H., 2018. Task offloading for mobile

edge computing in software defined ultra-dense

network. IEEE J. Sel. Areas Commun. PP, 1.

31. Czarnecki, K., Helsen, S., Eisenecker, U., 2005.

Formalizing cardinality-based feature models and

their specialization. Softw. Process: Improv. Pract. 10

(1), 7–29.

32. De Moura, L., Bjørner, N., 2008. Z3: An efficient SMT

solver. In: Proceedings of the Theory and Practice of

Software, 14th International Conference on Tools and

Algorithms for the Construction and Analysis of

Systems. In: TACAS’08/ETAPS’08, Springer-Verlag,

Berlin, Heidelberg, pp. 337–340.

33. Dhungana, D., Grünbacher, P., Rabiser, R., Neumayer,

T., 2010. Structuring the modeling space and

supporting evolution in software product line

engineering. J. Syst. Softw. 83 (7), 1108–1122, SPLC

2008.

34. Dinh, T.Q., Tang, J., La, Q.D., Quek, T.Q.S., 2017.

Offloading in mobile edge computing: Task allocation

and computational frequency scaling. IEEE Trans.

Commun. 65 (8), 3571–3584.

35. Elazhary, H., 2018. Internet of Things (IoT), mobile

cloud, cloudlet, mobile IoT, IoT cloud, fog, mobile

edge, and edge emerging computing paradigms:

Disambiguation and research directions. J. Netw.

Comput. Appl. 128, 105–140.

36. Farahani, E., Habibi, J., 2019. Feature model

configuration based on two-layer modelling in

software product lines. Int. J. Electr. Comput. Eng. 9,

1–11.

37. Gámez, N., Fuentes, L., 2013. Architectural evolution

of FamiWare using cardinality-based feature models.

Inf. Softw. Technol. 55 (3), 563–580.

38. Geraldi, R.T., Reinehr, S., Malucelli, A., 2020. Software

product line applied to the Internet of Things: A

systematic literature review. Inf. Softw. Technol. 124,

106293.

39. Guo, J., White, J., Wang, G., Li, J., Wang, Y., 2011. A

genetic algorithm for optimized feature selection with

resource constraints in software product lines. J. Syst.

Softw. 84 (12), 2208–2221.

40. Holl, G., Grünbacher, P., Rabiser, R., 2012. A systematic

review and an expert survey on capabilities

supporting multi product lines. Inf. Softw. Technol. 54

(8), 828–852.

41. Huang, M., Liu, W., Wang, T., Liu, A., Zhang, S., 2020. A

cloud–MEC collaborative task offloading scheme with

service orchestration. IEEE Internet Things J. 7 (7),

5792–5805.

42. James, A., Schien, D., 2019. A low carbon kubernetes

scheduler. In: Proceedings of the 6th International

Conference on ICT for Sustainability, ICT4S 2019,

EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES

pg. 68

Lappeenranta, Finland, June 10-14, 2019. In: CEUR

Workshop Proceedings, vol. 2382, CEUR-WS.org.

43. Köksal, O., Tekinerdogan, B., 2019. Architecture

design approach for IoT-based farm management

information systems. Precis. Agric. 20 (5), 926–958.

44. Sarker, V.K., Peña Queralta, J., Gia, T.N., Tenhunen, H.,

Westerlund, T., 2019. Offloading SLAM for indoor

mobile robots with edge-fog-cloud computing. In:

2019 1st Int. Conf. on Advances in Science,

Engineering and Robotics Technology (ICASERT).

pp. 1–6.

45. Satyanarayanan, M., 2017. The emergence of edge

computing. Computer 50 (1), 30–39.

46. Shi, W., Pallis, G., Xu, Z., 2019. Edge computing

[scanning the issue]. Proc. IEEE 107 (8), 1474–1481.

47. Spinczyk, O., Beuche, D., 2004. Modeling and

building software product lines with eclipse. In:

Companion to the 19th Annual ACM SIGPLAN

Conference on Object-Oriented Programming

Systems, Languages, and Applications. In: OOPSLA

’04, ACM, New York, NY, USA, pp. 18–19.

48. Sundermann, C., Thüm, T., Schaefer, I., 2020.

Evaluating #SAT solvers on industrial feature

models. In: Proceedings of the 14th Int. Conference

on Variability Modelling of Software-Intensive

Systems. In: VAMOS ’20, ACM, New York, NY, USA.

49. Tran, T.X., Pompili, D., 2019. Joint task offloading and

resource allocation for multi-server mobile-edge

computing networks. IEEE Trans. Veh. Technol. 68

(1), 856–868.

50. Wang, J., Pan, J., Esposito, F., Calyam, P., Yang, Z.,

Mohapatra, P., 2019. Edge cloud offloading

algorithms: Issues, methods, and perspectives. ACM

Comput. Surv. 52 (1), 2:1–2:23.

51. Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X.,

Pan, L., Maharjan, S., Zhang, Y., 2016. Energy-efficient

offloading for mobile edge computing in 5G

heterogeneous networks. IEEE Access 4, 5896–

5907.

52. Zhang, W., Wen, Y., Wu, D.O., 2013. Energy-efficient

scheduling policy for collaborative execution in

mobile cloud computing. In: 2013 Proceedings IEEE

INFOCOM. pp. 190–194.

