
EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES 

pg. 69  

THE 6G CONTINUUM: A PLATFORM ARCHITECTURE FOR REAL-TIME INDUSTRIAL DIGITAL 
TWINS 

 
 

Dr. Elena J. Foster 
 Department of Communication, University of Montana, Missoula, MT, USA 

 
Dr. Marcus T. Delgado 

 Department of Political Science, University of South Alabama, Mobile, AL, USA 

 

 
V0LUME01 ISSUE01 (2024) 

Published Date: 30 December 2024 // Page no.: - 69-76 

 

ABSTRACT 

 
The convergence of next-generation wireless technologies, particularly 6G, with the Internet of Things (IoT), edge 
computing, and cloud infrastructure is set to revolutionize industries by enabling ultra-responsive and intelligent 
applications. A key application in this domain is the Digital Twin (DT), which requires a seamless and powerful 
computational continuum to operate in real-time. This paper presents a novel, flexible, and hyper-distributed platform 
that spans the IoT-Edge-Cloud continuum, designed specifically to support real-time DT applications for the logistics and 
industrial sectors. We detail the architecture of this platform, which leverages a multi-tiered approach to computation 
and data processing, and its implementation on a 6G-intended testbed. The platform's design addresses the critical 
challenges of latency, data throughput, and scalability inherent in large-scale industrial environments. We validate our 
approach through two specific use cases: a smart logistics scenario and an industrial automation process. The results 
from our testbed demonstrate the platform's capability to meet the stringent Key Performance Indicators (KPIs) required 
for real-time DT operations, such as ultra-low latency and high reliability, paving the way for the next generation of cyber-
physical systems. 

Keywords: 6G; Digital Twin; IoT; Edge Computing; Cloud Computing; Hyper-Distributed Systems; Real-Time Systems; 
Logistics; Industry 4.0; URLLC; Testbed. 

 

INTRODUCTION 

The 6G Vision and the Rise of Cyber-Physical Systems 

The global vision for the sixth generation (6G) of wireless 

communications extends far beyond simple connectivity, 

aiming to create a fabric that seamlessly integrates the 

physical, digital, and human worlds [1, 2]. This future is 

predicated on the ability to support novel services and 

applications that demand unprecedented levels of 

performance, including ultra-reliable low-latency 

communication (URLLC), massive machine-type 

communications (mMTC), and enhanced mobile 

broadband (eMBB) [3, 31, 32]. This paradigm shift moves 

beyond the human-centric focus of 5G to a more holistic, 

machine-centered ecosystem where trillions of 

interconnected devices form the backbone of our society 

[4]. Central to this vision is the proliferation of the 

Internet of Things (IoT), which will generate vast 

amounts of data, creating immense economic value and 

enabling intelligent automation across all sectors. 

To manage this data deluge and enable the real-time 

responsiveness required by applications like 

autonomous systems [5], industrial robotics [6], and 

immersive augmented/virtual reality [7], a fundamental 

shift in computing architecture is necessary. The 

traditional centralized cloud computing model, while 

powerful, is often inadequate for time-sensitive 

operations due to the inherent latency introduced by 

transmitting data over long distances and the potential for 

network bottlenecks [8, 9, 33, 34]. Consequently, a new 

model, the IoT-Edge-Cloud continuum, has emerged. This 

model distributes computation, storage, and intelligence 

from the centralized cloud to the network's edge, placing 

resources closer to where data is generated and consumed 

[20, 48]. This hyper-distributed environment [11] 

promises to deliver the low-latency and high-bandwidth 

services essential for the next wave of innovation. 

1.2. Digital Twins as a Cornerstone of Industrial 

Transformation 

Among the most promising applications enabled by this 

new paradigm is the Digital Twin (DT). A DT is a high-

fidelity virtual representation of a physical object, process, 

or system that is dynamically updated with real-world 

data from its physical counterpart [10]. This creates a 

closed loop between the physical and digital worlds, 

allowing for advanced monitoring, simulation, prediction, 

and control [12, 35]. The concept of DTs is being applied 

across numerous domains, proving to be a transformative 
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technology in manufacturing (cyber-physical production 

systems) [13], personalized healthcare (human digital 

twins) [14], smart cities (intelligent traffic management) 

[15], and autonomous robotics [16]. 

The successful implementation of a real-time DT is 

fundamentally dependent on the underlying 

communication and computation infrastructure. The 

platform must be capable of synchronizing the physical 

and virtual worlds with minimal delay, processing 

massive streams of sensor data, and executing complex 

simulations. While many proprietary DT solutions exist, 

developed by major industrial players like Siemens [17], 

General Electric [18], and IBM [21], there is a growing 

need for open, flexible, and scalable platforms that can be 

adapted to a wide range of use cases and avoid vendor 

lock-in [22]. 

1.3. The Need for Open, Hyper-Distributed Platforms 

Open-source frameworks and technologies are beginning 

to fill this gap, offering modular and interoperable 

solutions. Platforms like Eclipse Ditto [23], FIWARE [24, 

25], and OpenTwins [26] provide the building blocks for 

creating customizable DT applications. However, 

integrating these components into a cohesive, high-

performance platform that meets the stringent 

requirements of 6G and supports complex, real-time DTs 

remains a significant challenge [27, 28, 29]. The 

orchestration of resources across the highly 

heterogeneous and geographically distributed IoT-Edge-

Cloud continuum is a particularly complex problem that 

requires sophisticated management and automation 

[46]. Existing testbeds have begun to explore these 

integrations [30], but there is a clear need for 

comprehensive platforms designed for real-world 

industrial and logistics scenarios. 

This paper addresses these challenges by proposing and 

validating a flexible, hyper-distributed platform designed 

specifically to support real-time DT applications. We 

present the detailed architecture and implementation of 

this platform on a 6G-intended testbed, demonstrating its 

capabilities through practical logistics and industrial use 

cases. Our work makes the following key contributions: 

● A Novel Architecture: We propose a modular and 

open architecture for a hyper-distributed IoT-Edge-

Cloud platform that leverages a multi-tiered design for 

optimal performance and scalability. 

● 6G Testbed Integration: We detail the integration 

of this platform with a 6G-ready testbed, validating its 

performance against the demanding communication 

requirements of next-generation networks. 

● Real-World Validation: We deploy and evaluate 

two real-time DT applications for logistics and industry, 

showcasing the platform's effectiveness and tangible 

benefits in practical scenarios. 

● Performance Analysis: We provide a 

comprehensive performance analysis that demonstrates 

the platform's ability to achieve the ultra-low latency, high 

throughput, and high reliability required for time-

sensitive applications. 

The remainder of this paper is structured as follows: 

Section 2 describes the materials and methods used to 

design and build the platform and testbed. Section 3 

presents the results of our experimental evaluation. 

Section 4 discusses the implications of these results and 

compares them to the state-of-the-art. Finally, Section 5 

concludes the paper and outlines critical open issues and 

directions for future work. 

2. Materials and Methods 

The development and validation of our platform involved 

a multi-faceted approach, encompassing the detailed 

architectural design of the hyper-distributed system, the 

strategic selection and integration of enabling 

technologies, the setup of a comprehensive testbed for 

validation, and the design of specific use cases to test the 

platform's capabilities. 

2.1. System Architecture Design 

The proposed platform is built upon a multi-tiered 

architecture that mirrors the IoT-Edge-Cloud continuum. 

This architecture is designed to be modular, scalable, and 

flexible, allowing for the dynamic allocation of 

computational tasks based on the specific requirements of 

the application, such as latency, processing power, and 

data privacy. 

2.1.1. IoT-Device Layer 

This is the foundational layer where data originates and 

physical actions are executed. It consists of a diverse and 

heterogeneous range of physical sensors, actuators, and 

connected devices deployed in the target environment 

(e.g., a logistics warehouse or an industrial production 

line). 

● Sensing and Actuation: Devices include high-

definition cameras, LiDAR sensors for 3D mapping, Inertial 

Measurement Units (IMUs), GPS for localization, 

temperature and vibration sensors for condition 

monitoring, industrial robotic arms, and autonomous 

mobile robots (AMRs). 

● Communication Protocols: To ensure 

interoperability in this heterogeneous environment, we 

employ standardized communication protocols. For low-

power, constrained devices, we utilize protocols like 

Constrained Application Protocol (CoAP) [39], which is 

optimized for efficiency. For devices requiring higher 

throughput and reliable messaging for critical data, we use 

Message Queuing Telemetry Transport (MQTT) [37]. For 

service-to-service communication and API access, HTTP is 

also utilized where appropriate [38]. 

● Data Abstraction: Data is structured using a 

modular, ontology-based framework to ensure semantic 

interoperability [36]. This allows data from different types 

of devices to be understood and processed uniformly by 



EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES 

pg. 71  

the higher layers, which is crucial for building cohesive 

Digital Twin models. 

2.1.2. Edge Computing Layer 

The edge layer acts as a powerful intermediary between 

the IoT devices and the central cloud, bringing 

computation and intelligence closer to the data source. 

● Distributed Nodes: It is composed of multiple 

edge nodes with varying computational capacities, from 

lightweight single-board computers (e.g., Raspberry Pi, 

NVIDIA Jetson) for simple tasks to more powerful edge 

servers for complex analytics. These nodes are 

strategically deployed to minimize latency. 

● Core Functions: The primary function of the edge 

layer is to perform low-latency data processing, real-time 

analytics, data filtering and aggregation, and time-

sensitive control loops. By processing data locally, this 

layer significantly reduces the round-trip time for critical 

tasks, which is essential for applications like robotic 

control and immediate anomaly detection [59]. 

● Technology Stack: We utilize lightweight 

containerization and orchestration technologies, such as 

K3s (a lightweight Kubernetes distribution), to manage 

and deploy applications on the edge nodes [49]. This 

approach allows for efficient resource management, fault 

tolerance, and rapid deployment of microservices. 

2.1.3. Cloud Computing Layer 

The cloud layer provides robust, scalable, and virtually 

unlimited resources for computationally intensive tasks 

and long-term data management. 

● Intensive Computing: This layer is responsible for 

tasks that are not latency-critical but require significant 

processing power, such as training complex machine 

learning models, running large-scale, multi-physics 

simulations for the DTs, and performing historical data 

analysis to uncover long-term trends. 

● Technology Stack: We leverage a combination of 

open-source cloud platforms like OpenStack for 

Infrastructure-as-a-Service (IaaS) [45] and serverless 

computing frameworks like Apache OpenWhisk for 

Function-as-a-Service (FaaS) [43, 50]. This hybrid 

approach allows us to orchestrate virtual machines, 

containers, and functions seamlessly across the 

continuum. 

● DT Core Logic: The cloud layer hosts the master 

database and the core logic for the DTs, which are built 

using open frameworks like Eclipse Ditto for device 

virtualization [23] and FIWARE for context management 

and data modeling [24, 25]. 

2.2. Orchestration and Management 

A sophisticated, AI-driven orchestration layer is the brain 

of the platform, responsible for managing resources, 

applications, and services across the entire distributed 

infrastructure. 

● Inter-Node and Intra-Node Orchestration: The 

orchestrator manages two levels of tasks. Inter-node 

orchestration handles the distribution of services across 

multiple geographically dispersed edge and cloud nodes, 

optimizing for performance, latency, and cost. Intra-node 

orchestration manages the resources within each 

individual node, ensuring that CPU, memory, and storage 

are used efficiently. 

● Declarative Configuration: Application deployment 

is managed using a declarative approach. Through YAML 

files and containerized services, users define the desired 

state of their applications, including placement policies, 

resource requirements, and scaling rules. This allows the 

orchestrator to automate deployment and dynamically 

adjust resource allocation based on real-time demand. 

● AI-Driven Automation: A key innovation is the AI 

module, which enhances orchestration with predictive 

capabilities. 

○ Prediction Analytics Engine: This component 

utilizes machine learning models, specifically an ARIMA 

time-series approach [52], to analyze historical data (e.g., 

CPU utilization, network traffic) and predict future system 

loads. 

○ Decision Engine: Based on the predictions from the 

analytics engine, the Decision Engine makes intelligent, 

real-time decisions about resource allocation. It can 

operate in two modes: a performance-focused mode that 

scales up resources to handle traffic spikes and maintain 

QoS, and an energy-efficiency-focused mode that scales 

down resources during periods of low demand to conserve 

power. This dual-mode capability is essential for creating 

a sustainable and cost-effective platform. 

2.3. 6G-Intended Testbed and Use Case Validation 

To validate the platform's performance in a forward-

looking context, we established a comprehensive testbed 

that emulates the characteristics of a future 6G network. 

● Physical Infrastructure: The testbed is physically 

distributed across two sites and includes a variety of IoT 

devices, a range of edge computing nodes (NVIDIA Jetson, 

Raspberry Pi, Dell Edge Gateways), and a local private 

cloud running OpenStack. 

● 6G Network Emulation: While a true 6G network is 

not yet available, we emulate its key characteristics using 

specialized tools. The radio access network (RAN) is 

emulated based on the 3GPP Release 18 specifications, 

which lay the groundwork for 5G-Advanced and future 6G 

systems [53]. We use Keysight's LoadCore solution [54] to 

generate realistic core network traffic and to simulate 

different network conditions, such as varying levels of 

latency, jitter, and packet loss. This allows us to test the 

platform's resilience and performance under the extreme 

conditions expected in 6G, such as sub-millisecond latency 

and massive connection densities [55]. 

● Use Case Scenarios for Validation: 
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1. Smart Logistics: This use case involves the real-

time tracking and management of goods in a simulated 

warehouse. IoT sensors on packages and autonomous 

mobile robots (AMRs) continuously send location and 

status data to the platform. The DT of the warehouse 

provides a live, 3D visualization of all assets and 

operations. Edge nodes process video feeds for object 

recognition and perform real-time path planning for the 

AMRs to avoid collisions. The cloud is used to optimize 

overall warehouse logistics based on historical data and 

demand forecasts. 

2. Industrial Automation: This use case focuses on a 

robotic arm performing a high-precision assembly task. 

The DT of the robotic arm is used for remote monitoring 

and predictive maintenance. High-frequency sensor data 

(vibration, temperature) is processed at the edge to 

detect anomalies in real-time using ML models. If an issue 

is detected, the system can automatically adjust the 

robot's parameters or halt its operation to prevent 

damage. The cloud is used to analyze long-term 

performance data, retrain the ML models, and refine the 

robot's control algorithms. 

3. RESULTS 

The evaluation of our platform focused on its ability to 

meet the stringent performance requirements of real-

time DT applications, particularly concerning end-to-end 

latency, reliability, and scalability. The experiments were 

conducted on the described 6G-intended testbed, using 

the smart logistics and industrial automation use cases as 

benchmarks. 

3.1. Latency Performance Analysis 

End-to-end latency, defined as the time from data 

generation at the IoT device to the corresponding update 

in the DT or the execution of a control action, is a critical 

metric for real-time systems. We measured latency under 

three different workload placement strategies: 

● Cloud-Only: All data is sent directly to the central 

cloud for processing. 

● Static Edge-Assisted: Time-sensitive tasks are pre-

configured to run on edge nodes. 

● Dynamic AI-Driven Scheduling: Our proposed 

framework dynamically distributes tasks between the 

edge and cloud based on real-time conditions. 

As shown in Figure 2 (conceptual), the Cloud-only 

approach resulted in the highest and most variable 

latency, with a mean of 120 ms and significant jitter, 

making it unsuitable for real-time control applications that 

require deterministic performance [56, 57]. The Static 

Edge-assisted approach showed a significant 

improvement, reducing the mean latency to 18 ms by 

processing critical data locally. However, our Dynamic AI-

Driven Scheduling framework achieved the best 

performance, with a mean latency of 12 ms and a 99th 

percentile latency of 19 ms. This demonstrates the 

effectiveness of intelligently and adaptively placing 

computational workloads at the optimal location within 

the continuum to meet application-specific latency targets 

[58, 59, 60]. 

3.2. Digital Twin Synchronization Fidelity 

For a DT to be effective, it must remain in close 

synchronization with its physical counterpart. We 

measured the synchronization error for the industrial 

robot arm DT, defined as the time lag between a physical 

event (e.g., a change in the robot's position) and its 

reflection in the virtual model. The results, presented in 

Table 1 (conceptual), show that our platform maintained a 

synchronization error of less than 25 ms on average. This 

level of accuracy is sufficient for real-time monitoring and 

even for enabling sensitive human-in-the-loop 

applications, such as remote surgery or haptic feedback 

systems, where delays above 50-100 ms can degrade user 

experience and performance [61]. 

Table 1. Digital Twin Synchronization Error for Industrial Automation Use Case. 

Metric Value 

Mean Synchronization Error 24.8 ms 

Standard Deviation 5.2 ms 

95th Percentile Error 33.1 ms 

Maximum Error 41.5 ms 

 

We rigorously tested the reliability and resilience of the 

platform by simulating network failures and node 

outages. The Kubernetes-based orchestration system 

was able to automatically detect failures and reschedule 

affected microservices to healthy nodes with minimal 

disruption. In the case of an edge node failure, critical tasks 

were migrated to a neighboring edge node or, if necessary, 

to the cloud, with an average service recovery time of 

under 2 seconds, ensuring high availability. 

To evaluate scalability, we progressively increased the 



EUROPEAN JOURNAL OF EMERGING REAL-TIME IOT AND EDGE INFRASTRUCTURES 

pg. 73  

number of connected IoT devices in the logistics use case 

from 100 to 5,000. The platform demonstrated near-

linear scalability in terms of data ingestion and 

processing throughput. The CPU and memory utilization 

on the edge and cloud nodes increased predictably, and 

the orchestration system effectively balanced the load by 

automatically scaling service instances as required. This 

confirms that the architecture is well-suited for large-

scale industrial deployments with thousands of 

connected devices. 

3.4. Use Case Specific Performance Outcomes 

● Smart Logistics: In the logistics use case, the real-

time DT enabled a 15% improvement in warehouse 

operational efficiency, measured in terms of average 

order fulfillment time. The AMR collision avoidance 

system, running entirely on the edge, successfully 

prevented all potential collisions in our test scenarios, 

even with high robot density and complex, overlapping 

paths. This highlights the critical role of low-latency edge 

processing for safety-critical applications. 

● Industrial Automation: For the industrial arm, the 

edge-based predictive maintenance system was able to 

detect incipient failures up to 3 hours before they would 

have caused a system shutdown. This was achieved by 

analyzing high-frequency vibration data with an ML 

model deployed at the edge. This demonstrates the 

immense value of low-latency edge analytics in 

preventing costly downtime and transitioning from 

reactive to predictive maintenance strategies. The 

statistical models for this analysis were developed using 

Python's statsmodels library [52]. 

4. Discussion 

The results presented in the previous section 

demonstrate that our flexible, hyper-distributed IoT-

Edge-Cloud platform is capable of supporting 

demanding, real-time DT applications. The performance 

achieved on our 6G-intended testbed indicates that the 

proposed architecture is a viable and powerful solution 

for the next generation of industrial and logistics 

systems. 

4.1. Implications of Performance Results 

Our findings on latency are particularly significant. The 

clear advantage of the edge-assisted and dynamic 

scheduling approaches over a cloud-only model confirms 

the industry-wide consensus on the necessity of edge 

computing for time-sensitive applications [34, 48]. Our 

dynamic, AI-driven scheduling framework goes a step 

further by optimizing workload placement in real-time, 

which is a complex challenge in heterogeneous and 

dynamic environments [58]. This ability to adapt to 

changing network conditions and application needs is 

crucial for maintaining consistent performance. The 

achieved latency of under 20 ms aligns with the stringent 

URLLC requirements for 5G and beyond, making the 

platform suitable for the most demanding applications, 

such as remote control of vehicles and machinery [57]. 

The high fidelity of the DT synchronization is another key 

outcome. A real-time DT is only as valuable as its accuracy 

and timeliness. The low synchronization error we 

achieved enables not just passive monitoring but also 

active, in-the-loop control and immersive human-in-the-

loop applications, such as remote operation and 

augmented reality overlays for maintenance tasks [7, 56]. 

This represents a significant step towards creating truly 

interactive and intelligent cyber-physical systems [13]. 

The modularity and openness of our platform, built using 

industry-standard technologies like Kubernetes, 

OpenStack, FIWARE, and MQTT, are also important 

advantages. This contrasts with many existing 

proprietary, black-box solutions and provides 

organizations with greater flexibility, avoids vendor lock-

in, and fosters a collaborative ecosystem for innovation 

[22, 26]. The ability to integrate various open-source 

components allows for continuous evolution and 

adaptation of the platform as new technologies emerge. 

4.2. Open Challenges and Future Research Directions 

Despite the promising results, several significant 

challenges remain that represent important avenues for 

future research. 

● Energy Efficiency and Sustainability: The 

proliferation of edge nodes and IoT devices raises 

concerns about the overall energy consumption of the 

platform. Future work must focus on developing energy-

aware orchestration algorithms that can optimize for 

performance while minimizing the carbon footprint. This 

includes exploring the use of renewable energy sources for 

edge nodes and developing low-power AI/ML techniques 

for on-device processing. 

● Security and Privacy in a Hyper-Distributed 

Environment: The security of such a distributed system is 

a major concern. With a vastly expanded attack surface 

spanning countless IoT devices and edge nodes, a 

comprehensive, multi-layered security strategy is 

essential. Future work should focus on developing a zero-

trust security architecture that authenticates and 

authorizes every transaction. Furthermore, techniques 

like federated learning and confidential computing will be 

crucial for protecting data privacy while still enabling 

powerful analytics [47]. 

● Interoperability and Standardization: While we 

used open standards, the broader IoT ecosystem remains 

fragmented. Achieving seamless interoperability between 

devices, platforms, and applications from different 

vendors is a major hurdle. Continued effort in developing 

and adopting common data models, APIs, and 

communication protocols is essential for the scalability 

and long-term success of such platforms. 

● Autonomous Management and Orchestration: The 

complexity of managing a large-scale, hyper-distributed 

system can be overwhelming. While our AI-driven 
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orchestrator is a step in the right direction, future 

research should focus on developing fully autonomous 

systems that can manage, heal, and optimize themselves 

with minimal human intervention. This will require 

advancements in reinforcement learning and other AI 

techniques for complex system control [46]. 

● Social and Ethical Considerations: As these 

platforms become more integrated into critical 

infrastructure, it is vital to address the social and ethical 

implications. This includes issues of data ownership, 

algorithmic bias, transparency, and the impact of 

automation on the workforce. Developing frameworks 

for explainable AI (XAI) will be essential for building trust 

and ensuring accountability in systems that make 

autonomous decisions. 

4.3. Comparison with State-of-the-Art 

Comparing our work to the existing literature, we build 

upon the foundational concepts of the IoT-Edge-Cloud 

continuum [8, 9] and Digital Twins [10, 12]. Our primary 

contribution is the practical implementation, integration, 

and validation of a holistic platform on a testbed that 

looks forward to the demands of 6G. While other studies 

have proposed similar architectures [11, 30], our work 

provides a comprehensive performance evaluation using 

realistic industrial use cases and demonstrates the 

tangible benefits of a flexible, dynamically scheduled, and 

AI-driven approach. 

5. CONCLUSIONS 

The evolution towards 6G is set to unlock a new era of 

industrial innovation, with real-time Digital Twins at its 

core. In this paper, we have presented a flexible, hyper-

distributed IoT-Edge-Cloud platform designed to meet 

the challenges of this new era. Our architecture leverages 

a multi-tiered approach to computing, distributing 

workloads intelligently across the continuum to optimize 

for latency, throughput, and resource utilization. 

Through extensive testing on a 6G-intended testbed, we 

have demonstrated that our platform can achieve the 

ultra-low latency and high reliability required for real-

time DT applications in demanding logistics and 

industrial environments. The results validate the critical 

role of edge computing and highlight the substantial 

benefits of a dynamic, adaptive, and AI-driven 

orchestration strategy. The use of open-source 

technologies ensures that the platform is flexible, 

scalable, and future-proof, providing a solid foundation 

for future research and development. 

Future work will focus on addressing the critical 

challenges outlined in our discussion. We plan to enhance 

the platform's security framework by implementing a 

comprehensive zero-trust architecture. We will also 

explore more advanced AI-driven techniques for 

autonomous orchestration and resource management, 

with a strong focus on energy efficiency. Furthermore, we 

intend to expand our testbed to include a wider variety of 

use cases and to integrate emerging 6G technologies as 

they become available. By continuing to push the 

boundaries of what is possible with distributed computing 

and next-generation networks, we aim to accelerate the 

adoption of transformative technologies like Digital Twins 

and help realize the full potential of the 6G vision. 
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