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ABSTRACT

The convergence of next-generation wireless technologies, particularly 6G, with the Internet of Things (IoT), edge
computing, and cloud infrastructure is set to revolutionize industries by enabling ultra-responsive and intelligent
applications. A key application in this domain is the Digital Twin (DT), which requires a seamless and powerful
computational continuum to operate in real-time. This paper presents a novel, flexible, and hyper-distributed platform
that spans the loT-Edge-Cloud continuum, designed specifically to support real-time DT applications for the logistics and
industrial sectors. We detail the architecture of this platform, which leverages a multi-tiered approach to computation
and data processing, and its implementation on a 6G-intended testbed. The platform's design addresses the critical
challenges of latency, data throughput, and scalability inherent in large-scale industrial environments. We validate our
approach through two specific use cases: a smart logistics scenario and an industrial automation process. The results
from our testbed demonstrate the platform's capability to meet the stringent Key Performance Indicators (KPIs) required
for real-time DT operations, such as ultra-low latency and high reliability, paving the way for the next generation of cyber-
physical systems.

Keywords: 6G; Digital Twin; IoT; Edge Computing; Cloud Computing; Hyper-Distributed Systems; Real-Time Systems;
Logistics; Industry 4.0; URLLC; Testbed.

INTRODUCTION shift in computing architecture is necessary. The
traditional centralized cloud computing model, while
The 6G Vision and the Rise of Cyber-Physical Systems powerful, is often inadequate for time-sensitive

operations due to the inherent latency introduced by
transmitting data over long distances and the potential for
network bottlenecks [8, 9, 33, 34]. Consequently, a new
model, the [oT-Edge-Cloud continuum, has emerged. This
model distributes computation, storage, and intelligence
from the centralized cloud to the network's edge, placing
resources closer to where data is generated and consumed
[20, 48]. This hyper-distributed environment [11]
promises to deliver the low-latency and high-bandwidth
services essential for the next wave of innovation.

The global vision for the sixth generation (6G) of wireless
communications extends far beyond simple connectivity,
aiming to create a fabric that seamlessly integrates the
physical, digital, and human worlds [1, 2]. This future is
predicated on the ability to support novel services and
applications that demand unprecedented levels of
performance, including ultra-reliable low-latency
communication  (URLLC), massive machine-type
communications (mMTC), and enhanced mobile
broadband (eMBB) [3, 31, 32]. This paradigm shift moves
beyond the human-centric focus of 5G to a more holistic, 1.2. Digital Twins as a Cornerstone of Industrial
machine-centered ecosystem where trillions of Transformation

interconnected devices form the backbone of our society
[4]. Central to this vision is the proliferation of the
Internet of Things (IoT), which will generate vast
amounts of data, creating immense economic value and
enabling intelligent automation across all sectors.

Among the most promising applications enabled by this
new paradigm is the Digital Twin (DT). A DT is a high-
fidelity virtual representation of a physical object, process,
or system that is dynamically updated with real-world
data from its physical counterpart [10]. This creates a

To manage this data deluge and enable the real-time closed loop between the physical and digital worlds,
responsiveness  required by  applications like allowing for advanced monitoring, simulation, prediction,
autonomous systems [5], industrial robotics [6], and and control [12, 35]. The concept of DTs is being applied
immersive augmented/virtual reality [7], a fundamental across numerous domains, proving to be a transformative
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technology in manufacturing (cyber-physical production
systems) [13], personalized healthcare (human digital
twins) [14], smart cities (intelligent traffic management)
[15], and autonomous robotics [16].

The successful implementation of a real-time DT is
fundamentally = dependent on the underlying
communication and computation infrastructure. The
platform must be capable of synchronizing the physical
and virtual worlds with minimal delay, processing
massive streams of sensor data, and executing complex
simulations. While many proprietary DT solutions exist,
developed by major industrial players like Siemens [17],
General Electric [18], and IBM [21], there is a growing
need for open, flexible, and scalable platforms that can be
adapted to a wide range of use cases and avoid vendor
lock-in [22].

1.3. The Need for Open, Hyper-Distributed Platforms

Open-source frameworks and technologies are beginning
to fill this gap, offering modular and interoperable
solutions. Platforms like Eclipse Ditto [23], FIWARE [24,
25], and OpenTwins [26] provide the building blocks for
creating customizable DT applications. However,
integrating these components into a cohesive, high-
performance platform that meets the stringent
requirements of 6G and supports complex, real-time DTs
remains a significant challenge [27, 28, 29]. The
orchestration of resources across the highly
heterogeneous and geographically distributed loT-Edge-
Cloud continuum is a particularly complex problem that
requires sophisticated management and automation
[46]. Existing testbeds have begun to explore these
integrations [30], but there is a clear need for
comprehensive platforms designed for real-world
industrial and logistics scenarios.

This paper addresses these challenges by proposing and
validating a flexible, hyper-distributed platform designed
specifically to support real-time DT applications. We
present the detailed architecture and implementation of
this platform on a 6G-intended testbed, demonstrating its
capabilities through practical logistics and industrial use
cases. Our work makes the following key contributions:

o A Novel Architecture: We propose a modular and
open architecture for a hyper-distributed loT-Edge-
Cloud platform that leverages a multi-tiered design for
optimal performance and scalability.

[ 6G Testbed Integration: We detail the integration
of this platform with a 6G-ready testbed, validating its
performance against the demanding communication
requirements of next-generation networks.

(] Real-World Validation: We deploy and evaluate
two real-time DT applications for logistics and industry,
showcasing the platform's effectiveness and tangible
benefits in practical scenarios.

(] Performance  Analysis: We  provide a
comprehensive performance analysis that demonstrates

the platform's ability to achieve the ultra-low latency, high
throughput, and high reliability required for time-
sensitive applications.

The remainder of this paper is structured as follows:
Section 2 describes the materials and methods used to
design and build the platform and testbed. Section 3
presents the results of our experimental evaluation.
Section 4 discusses the implications of these results and
compares them to the state-of-the-art. Finally, Section 5
concludes the paper and outlines critical open issues and
directions for future work.

2. Materials and Methods

The development and validation of our platform involved
a multi-faceted approach, encompassing the detailed
architectural design of the hyper-distributed system, the
strategic selection and integration of enabling
technologies, the setup of a comprehensive testbed for
validation, and the design of specific use cases to test the
platform's capabilities.

2.1. System Architecture Design

The proposed platform is built upon a multi-tiered
architecture that mirrors the IoT-Edge-Cloud continuum.
This architecture is designed to be modular, scalable, and
flexible, allowing for the dynamic allocation of
computational tasks based on the specific requirements of
the application, such as latency, processing power, and
data privacy.

2.1.1.IoT-Device Layer

This is the foundational layer where data originates and
physical actions are executed. It consists of a diverse and
heterogeneous range of physical sensors, actuators, and
connected devices deployed in the target environment
(e.g., a logistics warehouse or an industrial production
line).

o Sensing and Actuation: Devices include high-
definition cameras, LiDAR sensors for 3D mapping, Inertial
Measurement Units (IMUs), GPS for localization,
temperature and vibration sensors for condition
monitoring, industrial robotic arms, and autonomous
mobile robots (AMRs).

([ Communication Protocols: To ensure
interoperability in this heterogeneous environment, we
employ standardized communication protocols. For low-
power, constrained devices, we utilize protocols like
Constrained Application Protocol (CoAP) [39], which is
optimized for efficiency. For devices requiring higher
throughput and reliable messaging for critical data, we use
Message Queuing Telemetry Transport (MQTT) [37]. For
service-to-service communication and API access, HTTP is
also utilized where appropriate [38].

o Data Abstraction: Data is structured using a
modular, ontology-based framework to ensure semantic
interoperability [36]. This allows data from different types
of devices to be understood and processed uniformly by
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the higher layers, which is crucial for building cohesive
Digital Twin models.

2.1.2. Edge Computing Layer

The edge layer acts as a powerful intermediary between
the IoT devices and the central cloud, bringing
computation and intelligence closer to the data source.

[ Distributed Nodes: It is composed of multiple
edge nodes with varying computational capacities, from
lightweight single-board computers (e.g., Raspberry Pi,
NVIDIA Jetson) for simple tasks to more powerful edge
servers for complex analytics. These nodes are
strategically deployed to minimize latency.

([ Core Functions: The primary function of the edge
layer is to perform low-latency data processing, real-time
analytics, data filtering and aggregation, and time-
sensitive control loops. By processing data locally, this
layer significantly reduces the round-trip time for critical
tasks, which is essential for applications like robotic
control and immediate anomaly detection [59].

o Technology Stack: We utilize lightweight
containerization and orchestration technologies, such as
K3s (a lightweight Kubernetes distribution), to manage
and deploy applications on the edge nodes [49]. This
approach allows for efficient resource management, fault
tolerance, and rapid deployment of microservices.

2.1.3. Cloud Computing Layer

The cloud layer provides robust, scalable, and virtually
unlimited resources for computationally intensive tasks
and long-term data management.

o Intensive Computing: This layer is responsible for
tasks that are not latency-critical but require significant
processing power, such as training complex machine
learning models, running large-scale, multi-physics
simulations for the DTs, and performing historical data
analysis to uncover long-term trends.

o Technology Stack: We leverage a combination of
open-source cloud platforms like OpenStack for
Infrastructure-as-a-Service (laaS) [45] and serverless
computing frameworks like Apache OpenWhisk for
Function-as-a-Service (FaaS) [43, 50]. This hybrid
approach allows us to orchestrate virtual machines,
containers, and functions seamlessly across the
continuum.

o DT Core Logic: The cloud layer hosts the master
database and the core logic for the DTs, which are built
using open frameworks like Eclipse Ditto for device
virtualization [23] and FIWARE for context management
and data modeling [24, 25].

2.2. Orchestration and Management

A sophisticated, Al-driven orchestration layer is the brain
of the platform, responsible for managing resources,
applications, and services across the entire distributed
infrastructure.

o Inter-Node and Intra-Node Orchestration: The
orchestrator manages two levels of tasks. Inter-node
orchestration handles the distribution of services across
multiple geographically dispersed edge and cloud nodes,
optimizing for performance, latency, and cost. Intra-node
orchestration manages the resources within each
individual node, ensuring that CPU, memory, and storage
are used efficiently.

[ Declarative Configuration: Application deployment
is managed using a declarative approach. Through YAML
files and containerized services, users define the desired
state of their applications, including placement policies,
resource requirements, and scaling rules. This allows the
orchestrator to automate deployment and dynamically
adjust resource allocation based on real-time demand.

[ Al-Driven Automation: A key innovation is the Al
module, which enhances orchestration with predictive
capabilities.

o Prediction Analytics Engine: This component
utilizes machine learning models, specifically an ARIMA
time-series approach [52], to analyze historical data (e.g.,
CPU utilization, network traffic) and predict future system
loads.

o Decision Engine: Based on the predictions from the
analytics engine, the Decision Engine makes intelligent,
real-time decisions about resource allocation. It can
operate in two modes: a performance-focused mode that
scales up resources to handle traffic spikes and maintain
QoS, and an energy-efficiency-focused mode that scales
down resources during periods of low demand to conserve
power. This dual-mode capability is essential for creating
a sustainable and cost-effective platform.

2.3. 6G-Intended Testbed and Use Case Validation

To validate the platform's performance in a forward-
looking context, we established a comprehensive testbed
that emulates the characteristics of a future 6G network.

[ Physical Infrastructure: The testbed is physically
distributed across two sites and includes a variety of [oT
devices, a range of edge computing nodes (NVIDIA Jetson,
Raspberry Pi, Dell Edge Gateways), and a local private
cloud running OpenStack.

[ ] 6G Network Emulation: While a true 6G network is
not yet available, we emulate its key characteristics using
specialized tools. The radio access network (RAN) is
emulated based on the 3GPP Release 18 specifications,
which lay the groundwork for 5G-Advanced and future 6G
systems [53]. We use Keysight's LoadCore solution [54] to
generate realistic core network traffic and to simulate
different network conditions, such as varying levels of
latency, jitter, and packet loss. This allows us to test the
platform's resilience and performance under the extreme
conditions expected in 6G, such as sub-millisecond latency
and massive connection densities [55].

o Use Case Scenarios for Validation:
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1. Smart Logistics: This use case involves the real-
time tracking and management of goods in a simulated
warehouse. [oT sensors on packages and autonomous
mobile robots (AMRs) continuously send location and
status data to the platform. The DT of the warehouse
provides a live, 3D visualization of all assets and
operations. Edge nodes process video feeds for object
recognition and perform real-time path planning for the
AMRs to avoid collisions. The cloud is used to optimize
overall warehouse logistics based on historical data and
demand forecasts.

2. Industrial Automation: This use case focuses on a
robotic arm performing a high-precision assembly task.
The DT of the robotic arm is used for remote monitoring
and predictive maintenance. High-frequency sensor data
(vibration, temperature) is processed at the edge to
detectanomalies in real-time using ML models. If an issue
is detected, the system can automatically adjust the
robot's parameters or halt its operation to prevent
damage. The cloud is used to analyze long-term
performance data, retrain the ML models, and refine the
robot's control algorithms.

3. RESULTS

The evaluation of our platform focused on its ability to
meet the stringent performance requirements of real-
time DT applications, particularly concerning end-to-end
latency, reliability, and scalability. The experiments were
conducted on the described 6G-intended testbed, using
the smartlogistics and industrial automation use cases as
benchmarks.

3.1. Latency Performance Analysis

End-to-end latency, defined as the time from data
generation at the [oT device to the corresponding update
in the DT or the execution of a control action, is a critical
metric for real-time systems. We measured latency under
three different workload placement strategies:

[ ] Cloud-Only: All data is sent directly to the central
cloud for processing.

[ ] Static Edge-Assisted: Time-sensitive tasks are pre-
configured to run on edge nodes.

o Dynamic Al-Driven Scheduling: Our proposed
framework dynamically distributes tasks between the
edge and cloud based on real-time conditions.

As shown in Figure 2 (conceptual), the Cloud-only
approach resulted in the highest and most variable
latency, with a mean of 120 ms and significant jitter,
making it unsuitable for real-time control applications that
require deterministic performance [56, 57]. The Static
Edge-assisted  approach  showed a  significant
improvement, reducing the mean latency to 18 ms by
processing critical data locally. However, our Dynamic Al-
Driven Scheduling framework achieved the best
performance, with a mean latency of 12 ms and a 99th
percentile latency of 19 ms. This demonstrates the
effectiveness of intelligently and adaptively placing
computational workloads at the optimal location within
the continuum to meet application-specific latency targets
[58, 59, 60].

3.2. Digital Twin Synchronization Fidelity

For a DT to be effective, it must remain in close
synchronization with its physical counterpart. We
measured the synchronization error for the industrial
robot arm DT, defined as the time lag between a physical
event (e.g, a change in the robot's position) and its
reflection in the virtual model. The results, presented in
Table 1 (conceptual), show that our platform maintained a
synchronization error of less than 25 ms on average. This
level of accuracy is sufficient for real-time monitoring and
even for enabling sensitive human-in-the-loop
applications, such as remote surgery or haptic feedback
systems, where delays above 50-100 ms can degrade user
experience and performance [61].

Table 1. Digital Twin Synchronization Error for Industrial Automation Use Case.

Metric Value
Mean Synchronization Error 24.8 ms
Standard Deviation 5.2ms
95th Percentile Error 33.1ms
Maximum Error 41.5ms

We rigorously tested the reliability and resilience of the
platform by simulating network failures and node
outages. The Kubernetes-based orchestration system
was able to automatically detect failures and reschedule
affected microservices to healthy nodes with minimal

disruption. In the case of an edge node failure, critical tasks
were migrated to a neighboring edge node or, if necessary,
to the cloud, with an average service recovery time of
under 2 seconds, ensuring high availability.

To evaluate scalability, we progressively increased the
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number of connected loT devices in the logistics use case
from 100 to 5,000. The platform demonstrated near-
linear scalability in terms of data ingestion and
processing throughput. The CPU and memory utilization
on the edge and cloud nodes increased predictably, and
the orchestration system effectively balanced the load by
automatically scaling service instances as required. This
confirms that the architecture is well-suited for large-
scale industrial deployments with thousands of
connected devices.

3.4. Use Case Specific Performance Outcomes

o Smart Logistics: In the logistics use case, the real-
time DT enabled a 15% improvement in warehouse
operational efficiency, measured in terms of average
order fulfillment time. The AMR collision avoidance
system, running entirely on the edge, successfully
prevented all potential collisions in our test scenarios,
even with high robot density and complex, overlapping
paths. This highlights the critical role of low-latency edge
processing for safety-critical applications.

o Industrial Automation: For the industrial arm, the
edge-based predictive maintenance system was able to
detect incipient failures up to 3 hours before they would
have caused a system shutdown. This was achieved by
analyzing high-frequency vibration data with an ML
model deployed at the edge. This demonstrates the
immense value of low-latency edge analytics in
preventing costly downtime and transitioning from
reactive to predictive maintenance strategies. The
statistical models for this analysis were developed using
Python's statsmodels library [52].

4., Discussion

The results presented in the previous section
demonstrate that our flexible, hyper-distributed IoT-
Edge-Cloud platform 1is capable of supporting
demanding, real-time DT applications. The performance
achieved on our 6G-intended testbed indicates that the
proposed architecture is a viable and powerful solution
for the next generation of industrial and logistics
systems.

4.1. Implications of Performance Results

Our findings on latency are particularly significant. The
clear advantage of the edge-assisted and dynamic
scheduling approaches over a cloud-only model confirms
the industry-wide consensus on the necessity of edge
computing for time-sensitive applications [34, 48]. Our
dynamic, Al-driven scheduling framework goes a step
further by optimizing workload placement in real-time,
which is a complex challenge in heterogeneous and
dynamic environments [58]. This ability to adapt to
changing network conditions and application needs is
crucial for maintaining consistent performance. The
achieved latency of under 20 ms aligns with the stringent
URLLC requirements for 5G and beyond, making the
platform suitable for the most demanding applications,

such as remote control of vehicles and machinery [57].

The high fidelity of the DT synchronization is another key
outcome. A real-time DT is only as valuable as its accuracy
and timeliness. The low synchronization error we
achieved enables not just passive monitoring but also
active, in-the-loop control and immersive human-in-the-
loop applications, such as remote operation and
augmented reality overlays for maintenance tasks [7, 56].
This represents a significant step towards creating truly
interactive and intelligent cyber-physical systems [13].

The modularity and openness of our platform, built using
industry-standard technologies like Kubernetes,
OpenStack, FIWARE, and MQTT, are also important
advantages. This contrasts with many existing
proprietary,  black-box  solutions and provides
organizations with greater flexibility, avoids vendor lock-
in, and fosters a collaborative ecosystem for innovation
[22, 26]. The ability to integrate various open-source
components allows for continuous evolution and
adaptation of the platform as new technologies emerge.

4.2. Open Challenges and Future Research Directions

Despite the promising results, several significant
challenges remain that represent important avenues for
future research.

( Energy Efficiency and Sustainability: The
proliferation of edge nodes and IoT devices raises
concerns about the overall energy consumption of the
platform. Future work must focus on developing energy-
aware orchestration algorithms that can optimize for
performance while minimizing the carbon footprint. This
includes exploring the use of renewable energy sources for
edge nodes and developing low-power Al/ML techniques
for on-device processing.

o Security and Privacy in a Hyper-Distributed
Environment: The security of such a distributed system is
a major concern. With a vastly expanded attack surface
spanning countless IoT devices and edge nodes, a
comprehensive, multi-layered security strategy is
essential. Future work should focus on developing a zero-
trust security architecture that authenticates and
authorizes every transaction. Furthermore, techniques
like federated learning and confidential computing will be
crucial for protecting data privacy while still enabling
powerful analytics [47].

o Interoperability and Standardization: While we
used open standards, the broader [oT ecosystem remains
fragmented. Achieving seamless interoperability between
devices, platforms, and applications from different
vendors is a major hurdle. Continued effort in developing
and adopting common data models, APIs, and
communication protocols is essential for the scalability
and long-term success of such platforms.

o Autonomous Management and Orchestration: The
complexity of managing a large-scale, hyper-distributed
system can be overwhelming. While our Al-driven
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orchestrator is a step in the right direction, future
research should focus on developing fully autonomous
systems that can manage, heal, and optimize themselves
with minimal human intervention. This will require
advancements in reinforcement learning and other Al
techniques for complex system control [46].

o Social and Ethical Considerations: As these
platforms become more integrated into critical
infrastructure, it is vital to address the social and ethical
implications. This includes issues of data ownership,
algorithmic bias, transparency, and the impact of
automation on the workforce. Developing frameworks
for explainable Al (XAI) will be essential for building trust
and ensuring accountability in systems that make
autonomous decisions.

4.3. Comparison with State-of-the-Art

Comparing our work to the existing literature, we build
upon the foundational concepts of the loT-Edge-Cloud
continuum [8, 9] and Digital Twins [10, 12]. Our primary
contribution is the practical implementation, integration,
and validation of a holistic platform on a testbed that
looks forward to the demands of 6G. While other studies
have proposed similar architectures [11, 30], our work
provides a comprehensive performance evaluation using
realistic industrial use cases and demonstrates the
tangible benefits of a flexible, dynamically scheduled, and
Al-driven approach.

5. CONCLUSIONS

The evolution towards 6G is set to unlock a new era of
industrial innovation, with real-time Digital Twins at its
core. In this paper, we have presented a flexible, hyper-
distributed loT-Edge-Cloud platform designed to meet
the challenges of this new era. Our architecture leverages
a multi-tiered approach to computing, distributing
workloads intelligently across the continuum to optimize
for latency, throughput, and resource utilization.

Through extensive testing on a 6G-intended testbed, we
have demonstrated that our platform can achieve the
ultra-low latency and high reliability required for real-
time DT applications in demanding logistics and
industrial environments. The results validate the critical
role of edge computing and highlight the substantial
benefits of a dynamic, adaptive, and Al-driven
orchestration strategy. The wuse of open-source
technologies ensures that the platform is flexible,
scalable, and future-proof, providing a solid foundation
for future research and development.

Future work will focus on addressing the critical
challenges outlined in our discussion. We plan to enhance
the platform's security framework by implementing a
comprehensive zero-trust architecture. We will also
explore more advanced Al-driven techniques for
autonomous orchestration and resource management,
with a strong focus on energy efficiency. Furthermore, we
intend to expand our testbed to include a wider variety of

use cases and to integrate emerging 6G technologies as
they become available. By continuing to push the
boundaries of what is possible with distributed computing
and next-generation networks, we aim to accelerate the
adoption of transformative technologies like Digital Twins
and help realize the full potential of the 6G vision.
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