FACULTY PERSPECTIVES ON ARTIFICIAL INTELLIGENCE IN HIGHER EDUCATION: A QUALITATIVE STUDY AT A REGIONAL UNIVERSITY
- Authors
-
-
Dr. Lucia F. Romano
Faculty of Education Sciences, University of Barcelona, SpainAuthor -
Dr. Zanele T. Khumalo
Department of Curriculum Innovation, University of Pretoria, South AfricaAuthor -
Sergio Benitez
Department of Curriculum Innovation, University of Pretoria, South AfricaAuthor
-
- Keywords:
- Artificial Intelligence, Higher Education, Faculty Perceptions, Qualitative Research
- Abstract
-
The integration of Artificial Intelligence (AI) into higher education presents both significant opportunities and complex challenges. This qualitative study explores the perceptions of professors at a regional public university regarding the integration of AI into their teaching and learning practices. Utilizing a qualitative research design, data were collected through semi-structured interviews with faculty members from diverse disciplines. Thematic analysis, aided by NVivo software, revealed several key themes: AI's potential as a catalyst for enhanced learning and efficiency (e.g., personalized learning, automation of tasks) [5, 8, 9, 13, 29], significant challenges and barriers to adoption (e.g., lack of training, absence of clear institutional policies, technical infrastructure limitations) [11, 31, 22, 32], profound ethical dilemmas and the imperative for responsible AI use (e.g., plagiarism, data privacy, bias, impact on critical thinking) [14, 20, 3, 22, 34], and varying levels of faculty readiness coupled with a strong need for institutional support [6, 32, 33]. The findings underscore a critical preparedness gap and highlight the necessity for comprehensive professional development, clear ethical guidelines, robust technical infrastructure, and a collaborative institutional vision for successful AI integration, particularly within regional university contexts [1]. This study contributes to the understanding of faculty perspectives on AI, informing the development of effective AI education strategies that are contextually relevant and supportive of educators' needs.
- Downloads
-
Download data is not yet available.
- References
-
1. Addie, J.-P. D. (2021). The limits of university regionalism. Urban Geography, 42(1), 58–78. https://doi.org/10.1080/02723638.2019.1591144
2. Adell, J. (2006). Tendencias en educacion en la sociedad de las tecnologías de la informacion. Edutec. Revista Electronica de Tecnología Educativa, 7. https://doi.org/10.21556/edutec.1997.7.570
3. Agrawal, A., Suzgun, M., Mackey, L., & Kalai, A. T. (2024). Do language models know when they’re hallucinating references?. https://arxiv.org/abs/2305.18248.
4. Almasi, M. (2023). Deep learning and neural networks: Methods and applications. In Cutting-edge technologies in innovations in computer science and engineering. San International Scientific Publications. https://doi.org/10.59646/csebookc8/004.
5. Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The Journal of the Learning Sciences, 4(2), 167–207. https://doi.org/10.1207/s15327809jls0402_2
6. Antonio, M., Mercedes, A., Aguado, M., Rubio, D. M., Bocanegra, J. C., & Wilfredo, J. (2023). Inteligencia Artificial en la educacion digital y los resultados de la valoracion del aprendizaje. https://doi.org/10.31219/osf.io/c3pmd.
7. Armenta, M. H. (2023). ChatGPT bate el r´ecord de crecimiento mas rapido de usuarios en la historia. Forbes México. https://www.forbes.com.mx/chatgpt-bate-el-record-de-cr ecimiento-mas-rapido-de-usuarios-en-la-historia/.
8. Auguste, D. (1985). Intelligent tutoring systems. Artificial Intelligence, 26(2), 233–238. https://doi.org/10.1016/0004-3702(85)90033-5
9. Brusilovsky, P., & Peylo, C. (2003). Adaptive and intelligent web-based educational systems. International Journal of Artificial Intelligence in Education, 13(2–4), 159–172.
10. Carbonell, J. (1970). AI in CAI: An artificial-intelligence approach to computer-assisted instruction. IEEE Transactions on Man-Machine Systems, 11(4), 190–202. https://doi.org/10.1109/TMMS.1970.299942
11. Celik, I. (2023). Towards Intelligent-TPACK: An empirical study on teachers’ professional knowledge to ethically integrate artificial intelligence (AI)-based tools into education. Computers in Human Behavior, 138, Article 107468. https://doi.org/10.1016/j.chb.2022.107468
12. Chien, S.-P., & Wu, H.-K. (2020). Examining influences of science teachers’ practices and beliefs about technology-based assessment on students’ performances: A hierarchical linear modeling approach. Computers & Education, 157, Article 103986. https://doi.org/10.1016/j.compedu.2020.103986
13. Ching-Chiang, L. W. C., & Fernandez-Cárdenas, J. M. (2020). Analysing dialogue in STEM classrooms in Ecuador: A dual socioeconomic context in a high school. Journal of New Approaches in Educational Research, 9(2). https://doi.org/10.7821/naer.2020.7.529
14. De La Cruz, M. A. T., Benites, E. M. M., Cachinelli, C. G. C., & Caicedo, E. V. A. (2023). Incidencias de la inteligencia artificial en la educacion. RECIMUNDO, 7(2), 238–251.
15. El Naqa, I., & Murphy, M. J. (2015). What is machine learning?. In Machine learning in radiation oncology (pp. 3–11). Springer International Publishing. https://doi.org/10.1007/978-3-319-18305-3_1.
16. Eppich, W. J., Gormley, G. J., & Teunissen, P. W. (2019). In-Depth interviews. In Healthcare simulation research (pp. 85–91). Springer International Publishing. https://doi.org/10.1007/978-3-030-26837-4_12.
17. Ferguson, R. (2012). Learning analytics: Drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304. https://doi.org/10.1504/IJTEL.2012.051816
18. García-Martínez, I., Fernandez Batanero, J. M., Fernandez Cerero, J., & Leon, S. (2023). Analysing the impact of artificial intelligence and computational sciences on student performance: Systematic review and meta-analysis. Journal of New Approaches in Educational Research, 12(1), 171–197. https://doi.org/10.7821/naer.2023.1.1240
19. Haan, K. (2023). 24 top AI statistics and trends in 2023. https://www.forbes.com/advis or/business/ai-statistics/.
20. Hinojo-Lucena, F. J., Aznar-Díaz, I., Caceres-Reche, M. P., & Romero-Rodríguez, J. M. (2019). Artificial intelligence in higher education: A bibliometric study on its impact in the scientific literature. Education Sciences, 9(1). https://doi.org/10.3390/educsci9010051
21. Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586.
22. Kooli, C. (2023). Chatbots in education and research: A critical examination of ethical implications and solutions. Sustainability, 15(7), 5614. https://doi.org/10.3390/su15075614
23. Lertvittayakumjorn, P., & Toni, F. (2023). Argumentative explanations for pattern-based text classifiers. Argument & Computation, 14(2), 163–234. https://doi.org/10.3233/AAC-220004
24. Lopezosa, C. (2020). Entrevistas semiestructuradas con NVivo: pasos para un analisis cualitativo eficaz. In Methodos Anuario de Métodos de Investigacion en Comunicacion Social (Vol. 1). https://doi.org/10.31009/methodos.2020.i01.08
25. Ma, X., & Jiang, C. (2023). On the ethical risks of artificial intelligence applications in education and its avoidance strategies. Journal of Education, Humanities and Social Sciences, 14, 354–359. https://doi.org/10.54097/ehss.v14i.8868
26. Marcos, M. A., Andrea, A., Araceli, A., Deyanira, P.-R., Jesús, S., & Jorge, C. (2023). Inteligencia Artificial en la educacion digital y los resultados de la valoracion del aprendizaje.
27. Martínez-Comesaña, M., Rigueira-Díaz, X., Larranaga-Janeiro, A., Martínez-Torres, J., Ocarranza-Prado, I., & Kreibel, D. (2023). Impacto de la inteligencia artificial en los métodos de evaluacion en la educacion primaria y secundaria: revision sistematica de la literatura. Revista de Psicodidactica, 28(2), 93–103. https://doi.org/10.1016/j.psicod.2023.06.001
28. McGrath, C., Cerratto Pargman, T., Juth, N., & Palmgren, P. J. (2023a). University teachers’ perceptions of responsibility and artificial intelligence in higher education - An experimental philosophical study. Computers and Education: Artificial Intelligence, 4, Article 100139. https://doi.org/10.1016/j.caeai.2023.100139
29. McGrath, C., Cerratto Pargman, T., Juth, N., & Palmgren, P. J. (2023b). University teachers’ perceptions of responsibility and artificial intelligence in higher education - An experimental philosophical study. Computers and Education: Artificial Intelligence, 4. https://doi.org/10.1016/j.caeai.2023.100139
30. Munoz-Basols, J., Neville, C., Lafford, B. A., & Godev, C. (2023). Potentialities of applied translation for language learning in the era of artificial intelligence. Hispania, 106(2), 171–194. https://doi.org/10.1353/hpn.2023.a899427
31. Ocana-Fernández, Y., Valenzuela-Fernández, L. A., & Garro-Aburto, L. L. (2019). Inteligencia artificial y sus implicaciones en la educacion superior. Propositos y Representaciones, 7(2). https://doi.org/10.20511/pyr2019.v7n2.274
32. OECD. (2021). OECD digital education outlook 2021: Pushing the frontiers with artificial intelligence, blockchain and robots. OECD Publishing.
33. Okonkwo, C. W., & Ade-Ibijola, A. (2021). Chatbots applications in education: A systematic review. Computers and Education: Artificial Intelligence, 2, Article 100033. https://doi.org/10.1016/j.caeai.2021.100033
34. Papakostas, K., & Papadopoulou, I. (2023). Model analysis & evaluation for ambiguous question answering. ArXiv (Cornell University), 1. https://doi.org/10.48550/arxiv.2305.12483
35. Ponce Gallegos, J., Torres Soto, A., Quezada Aguilera, F. S., Silva Sprock, A., Martínez Flor, E. U., Casali, A., Scheihing, E., Túpac Valdivia, Y. J., Torres Soto, D., Ornelas Zapata, F. J., Hernández, J. A., Zavala, C., Vakhnia, N., & Pedreno, O. (2014). Inteligencia artificial. In saber.ucv.ve. 1a ed. - Iniciativa Latinoamericana de Libros de Texto Abiertos (LATIn). http://hdl.handle.net/10872/17468.
36. Ramdani, J. M., Yanto, E. S., Sri, M., & Djunaedi, R. (2022). Exploring the impact of workshops and a mini-project in student teachers becoming qualitative researchers. Qualitative Report, 27(7). https://doi.org/10.46743/2160-3715/2022.3445
37. Rouhiainen, L. (2018). Inteligencia artificial : 101 cosas que debes saber hoy sobre nuestro futuro. Alienta.
38. Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. Educause Review, 30–32.
39. Silva Batatina, M., & de, L. P. (2017). El transitar en la investigacion narrativa y su empleo en la construccion de teoría. Revista de Investigacion, 91.
40. Su, G. (2018). Unemployment in the AI age. AI Matters, 3(4), 35–43.
41. Ulvik, M., Eide, H. M. K., Eide, L., Helleve, I., Jensen, V. S., Ludvigsen, K., Roness, D., & Torjussen, L. P. S. (2022). Teacher educators reflecting on case-based teaching – A collective self-study. Professional Development in Education, 48(4), 657–671. https://doi.org/10.1080/19415257.2020.1712615
42. UNESCO. (2023a). Una encuesta de la UNESCO revela que menos del 10% de las escuelas y universidades disponen de orientaciones formalP. (2017). El transitar en la investigacion narrativa y su empleo en la construccion de teoría. Revista de Investigacion, 91.
43. UNESCO. (2023b). Una encuesta de la UNESCO revela que menos del 10% de las escuelas y universidades disponen de orientaciones formales sobre IA. Recuperado el 29 de septiembre de 2023.
44. Wang, B., Rau, P.-L., & Yuan, T. (2022). Measuring user competence in using artificial intelligence: Validity and reliability of artificial intelligence literacy scale. Behaviour & Information Technology, 42, 1–14. https://doi.org/10.1080/0144929X.2022.2072768
45. Wang, B., Rau, P.-L., & Yuan, T. (2022). Measuring user competence in using artificial intelligence: Validity and reliability of artificial intelligence literacy scale. Behaviour & Information Technology, 42(9), 1324–1337.
46. Yuskovych-Zhukovska, V., Poplavska, T., Diachenko, O., Mishenina, T., Topolnyk, Y., & Gurevych, R. (2022a). Application of artificial intelligence in education. Problems and opportunities for sustainable development. BRAIN: Broad Research in Artificial Intelligence and Neuroscience, 13(1Sup1), 339–356. https://doi.org/10.18662/brain/13.1Sup1/322
47. Yuskovych-Zhukovska, V., Poplavska, T., Diachenko, O., Mishenina, T., Topolnyk, Y., & Gurevych, R. (2022b). Application of artificial intelligence in education. Problems and opportunities for sustainable development. BRAIN: Broad Research in Artificial Intelligence and Neuroscience, 13(1Sup1), 339–356. https://doi.org/10.18662/brain/13.1Sup1/322
48. Zhang, S., Pan, L., Zhao, J., & Wang, W. Y. (2023). Mitigating language model hallucination with interactive question-knowledge alignment. https://api.semanticscholar.org/CorpusID:258840979
- Downloads
- Published
- 2024-12-12
- Section
- Articles
- License
-
All articles published by The Parthenon Frontiers and its associated journals are distributed under the terms of the Creative Commons Attribution (CC BY 4.0) International License unless otherwise stated.
Authors retain full copyright of their published work. By submitting their manuscript, authors agree to grant The Parthenon Frontiers a non-exclusive license to publish, archive, and distribute the article worldwide. Authors are free to:
-
Share their article on personal websites, institutional repositories, or social media platforms.
-
Reuse their content in future works, presentations, or educational materials, provided proper citation of the original publication.
-
How to Cite
Similar Articles
- Dr. Thabo V. Mokoena, Carlos E. Navarro, EXPLORING THE INFLUENCE OF DEMOGRAPHIC ATTRIBUTES ON UNDERGRADUATE INNOVATIVE BEHAVIOR , European Journal of Emerging Social Science and Humanities: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Dr. Anna M. Kowalska, Dr. Tomas Nowicki, ENHANCING TEACHER READINESS: EXPLORING THE IMPACT OF CREATIVE ASSESSMENTS, INSTRUCTIONAL QUALITY, AND ATTITUDES TO CREATIVE LEARNING THROUGH STRUCTURAL EQUATION MODELING , European Journal of Emerging Social Science and Humanities: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Dr. Mesfin T. Bekele, Dr. Selamawit D. Alemu, Fitsum Desta, TEMPORAL SHIFTS AND CONTRIBUTING FACTORS TO HOUSEHOLD WELFARE DISPARITIES IN CENTRAL ETHIOPIA: A COMPARATIVE STUDY OF ENSET-CULTIVATING AND NON-CULTIVATING HOUSEHOLDS USING EXPENDITURE AND ASSET METRICS , European Journal of Emerging Social Science and Humanities: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Dr. Farmana N. El-Ghazali, Dr. Chloe Richardson, THE DOBBS V. JACKSON DECISION: A CRITICAL EXAMINATION OF ITS FOUNDATIONS AND IMPACT ON DEMOCRATIC EDUCATION , European Journal of Emerging Social Science and Humanities: Vol. 1 No. 01 (2024): Volume 01 Issue 01
- Dr. Fatima N. Qureshi, Dr. Meera Raghavan, THE IMPERATIVE OF CRIMINALIZING MARITAL SEXUAL ASSAULT IN INDIA: A SCOPING REVIEW , European Journal of Emerging Social Science and Humanities: Vol. 1 No. 01 (2024): Volume 01 Issue 01
You may also start an advanced similarity search for this article.