European Journal of Emerging Cloud and Quantum Computing
A-Z Journals

STRATEGIC GRID DEVELOPMENT IN THE ANDES: INTEGRATING GEOSPATIAL INTELLIGENCE FOR RESILIENT TRANSMISSION NETWORKS

Authors
  • Dr. Alejandro F. Morales

    Department of Electrical and Computer Engineering, Universidad de Santiago de Chile, Chile
    Author
  • Dr. Paula D. Vargas

    Department of Geomatics, Universidad Técnica Federico Santa María, Chile
    Author
Keywords:
Transmission Expansion Planning, Geospatial Analysis, Andean Electrical Systems, Power Systems
Abstract

This article investigates the crucial role of geospatial considerations in the strategic planning and expansion of electricity transmission networks within the unique geographical context of the Andean region. It delves into how the rugged mountainous terrain, diverse ecosystems, and susceptibility to natural hazards significantly influence the design, cost, and resilience of transmission infrastructure. The paper reviews advanced Transmission Expansion Planning (TEP) methodologies, including AC models and AI-driven approaches for managing uncertainties, and specifically highlights their adaptation to Andean realities through the integration of topographical, geological, and hydrological data. The results demonstrate that a geospatial-informed approach leads to more robust network designs, enhanced resilience against seismic events and climate change impacts, and optimized cross-border interconnections. While acknowledging challenges such as data availability and modeling complexity, the discussion emphasizes the necessity of multi-criteria decision-making and regional collaboration. Future directions include leveraging advanced AI/ML, refining climate change resilience modeling, and fostering supportive policy frameworks to ensure sustainable and adaptable electrical grids in the Andes.

Downloads
Download data is not yet available.
References

[1] P. Vilaça Gomes and J. Tomé Saraiva, “State-of-the-art of transmission expansion planning: A survey from restructuring to renewable and distributed electricity markets,” 2019, doi: 10.1016/j.ijepes.2019.04.035.

[2] Garver, L.L., 1970. “Transmission network estimation using linear programming. IEEE Trans. Power Appar. Syst., vol. PAS-89 (7), 1688–1697. https://doi.org/10.1109/TPAS.1970.292825

[3] Lumbreras, S., 2021. Transm. Expans. Plan.: Netw. Chall. Energy Transit. https://doi.org/10.1007/978-3-030-49428-5

[4] Daniel, R., Wilian, G., 2022. Desarrollo de casos de estudios en base al Sistema Nacional Interconectado de Ecuador para el análisis de sistemas eléctricos de potencia,”. Universidad Técnica de Cotopaxi.

[5] Rider, M.J., Garcia, A.V., Romero, R., 2007. Power system transmission network expansion planning using AC model. IET Gener. Transm. Distrib., vol. 1 (5), 731–742. https://doi.org/10.1049/iet-gtd:20060465

[6] Torres, S.P., Castro, C.A., 2014. Expansion planning for smart transmission grids using ac model and shunt compensation. IET Gener. Transm. Distrib., vol. 8 (5), 966–975. https://doi.org/10.1049/IET-GTD.2013.0231

[7] de Araujo, R.A., Torres, S.P., Filho, J.P., Castro, C.A., Van Hertem, D., 2023. Unified AC transmission expansion planning formulation incorporating VSC-MTDC, FACTS devices, and reactive power compensation (Mar.). Electr. Power Syst. Res., vol. 216, 109017. https://doi.org/10.1016/J.EPSR.2022.109017

[8] Cajas, P., Torres, S.P., Chillogalli, J.E., Chamorro, H.R., Sood, V.K., Romero, R.R., 2022. AC multi-stage transmission network expansion planning considering a multi-voltage approach. IEEE PES Innov. Smart Grid Technol. Conf. Eur., vol. 2022-Octob. https://doi.org/10.1109/ISGT-EUROPE54678.2022.9960363

[9] Wang, Y., et al., 2021a. Flexible transmission network expansion planning based on dqn algorithm. Energies, vol. 14 (7), 1–21. https://doi.org/10.3390/en14071944

[10] Wang, Y., et al., 2021b. Transmission network dynamic planning based on a double deep-q network with deep ResNet. IEEE Access, vol. 9, 76921–76937. https://doi.org/10.1109/ACCESS.2021.3083266

[11] Wang, Y., et al., 2021c. Transmission network expansion planning considering wind power and load uncertainties based on multi-agent ddqn. Energies, vol. 14 (19), 1–28. https://doi.org/10.3390/en14196073

[12] Tejada, D., López-Lezama, J.M., Rider, M.J., Vinasco, G., 2015. Transmission network expansion planning considering repowering and reconfiguration. Int. J. Electr. Power Energy Syst., vol. 69, 213–221. https://doi.org/10.1016/j.ijepes.2015.01.008

[13] Bahiense, L., Oliveira, G.C., Pereira, M., Granville, S., 2001. A mixed integer disjunctive model for transmission network expansion (Aug.). IEEE Trans. Power Syst., vol. 16 (3), 560–565. https://doi.org/10.1109/59.932295

[14] Pupo-Roncallo, O., Campillo, J., Ingham, D., Ma, L., Pourkashanian, M., 2021. The role of energy storage and cross-border interconnections for increasing the flexibility of future power systems: the case of Colombia (May). Smart Energy, vol. 2, 100016. https://doi.org/10.1016/J.SEGY.2021.100016

[15] Villamarín, A., Haro, R., Aguirre, M., Ortíz, D., 2021. Evaluación de Resiliencia en el Sistema Eléctrico Ecuatoriano frente a Eventos Sísmicos [Evaluation of the Resilience of the Ecuadorian Electrical System to Seismic Events]. Rev. Técnica “Energ. ía, vol. 17 (2), 18–28. https://doi.org/10.37116/revistaenergia.v17.n2.2021.440

[16] Guamán, W.P., Pesántez, G.N., Torres R, M.A., Falcones, S., Urquizo, J., 2023. Optimal dynamic reactive power compensation in power systems: case study of Ecuador-Perú interconnection. Electr. Power Syst. Res., vol. 218 (February). https://doi.org/10.1016/j.epsr.2023.109191

[17] Benalcazar, P., Suski, A., Kamiński, J., 2020. Optimal sizing and scheduling of hybrid energy systems: the cases of Morona Santiago and the Galapagos Islands. Energies, vol. 13 (15). https://doi.org/10.3390/en13153933

[18] Ministerio de Energía y Minas, 2021. Balance Energetico Nacional Ecuador 2021. Ecuador National Energy Balance 2021].

[19] Benalcazar, P., Orozco, L.F., Kamiński, J., 2019. Resource dependence in ecuador: an extractives dependence index analysis. Gospod. Surowcami Miner. / Miner. Resour. Manag., vol. 35 (3), 49–62. https://doi.org/10.24425/gsm.2019.128533

[20] OLADE, 2022. Panorama Energético de América Latina y el Caribe 2022. First, Quito.

[21] MERNNR, “Plan Maestro de Electricidad 2018-2027,” Quito, 2018. [Online]. Available: 〈https://www.centrosur.gob.ec/wp-content/uploads/2020/01/Plan-Maestrode-Electricidad.pdf〉.

[22] Verdin, K.L., 2024. Hydrol. Deriv. Model. Anal. -A N. Glob. High. -Resolut. Database. https://doi.org/10.3133/ds1053

[23] Martínez, J., 2007. Coordinación de Aislamiento en Redes Eléctricas de Alta Tensión, 1a ed. McGraw-Hill, Madrid.

[24] Jacho, A., Barrera, H., Plazarte, J., Urquizo, J., 2021. Technical feasibility analysis of an underground HVDC line. A case study in Ecuador (Jun.). IEEE Int. Symp. Ind. Electron., vol. 2021-June. https://doi.org/10.1109/ISIE45552.2021.9576402

[25] MERNR, 2019. Plan Maest. De. Electr. Ecuad. 2018 - 2027.

[26] AEMO, 2021. Transm. Cost. Rep.

[27] Miranda, L., Mueller-Stoffels, M., Whitney, E., 2017. An Alaska case study: Electrical transmission. J. Renew. Sustain. Energy, vol. 9 (6). https://doi.org/10.1063/1.4986582

[28] W. Guamán, P. Benalcazar, K. Ñacato et al. Journal of Economy and Technology 2 (2024) 31–46

[29] Agency for the Cooperation of Energy Regulators, “UIC Report-Electricity Infrastructure,” 2015. [Online]. Available: 〈http://www.acer.europa.eu/Official_documents/Publications/UIC_Electricity〉.

[30] ETESA, “Plan de Expansión del Sistema Interconectado Nacional de Panama 2022-2036 [Panama’s National Interconnected System Expansion Plan 2022-2036],” 2023.

[31] Brinckerhoff Parsons and Cable Consulting International Ltd., “Electricity Transmission Costing Study,” 2012.

[32] ENDE Corporacion, “Audiencia rendición de cuentas Sistema Nacional de Transmision de Electrididad de Bolivia [Accountability Hearing National Electricity Transmission System of Bolivia],” 2018.

[33] CELEC EP Transelectric, “Servicios de consultoría para la fiscalización de los diseños, suministro y construcción de sistemas de transmisión de extra alta tensión a 500 kV y obras asociadas a 230 kV [Consulting services for the supervision of the design, supply and construction o,” 2014.

[34] Unidad de Planeacion Minero Energetica, “Selección de un inversionista y un interventor para el diseño, adquisición de los suministros, construcción, operación y mantenimiento de la segunda línea de transmisión Bolivar-Cartagena 220 kV [Selection of an investor and an auditor for the design, pro,” Bogota, 2013. [Online]. Available: 〈http://www.nber.org/papers/w16019〉.

[35] Ministerio de Economia y Finanzas del Peru, “Contrato de Consecion ‘Linea de Transmision SGT 500 kV Chilca-Marcona-Montalvo’ [Consulting Contract "Transmission Line SGT 500 kV Chilca-Marcona-Montalvo],” 2010.

Downloads
Published
2024-12-24
Section
Articles
License

All articles published by The Parthenon Frontiers and its associated journals are distributed under the terms of the Creative Commons Attribution (CC BY 4.0) International License unless otherwise stated. 

Authors retain full copyright of their published work. By submitting their manuscript, authors agree to grant The Parthenon Frontiers a non-exclusive license to publish, archive, and distribute the article worldwide. Authors are free to:

  • Share their article on personal websites, institutional repositories, or social media platforms.

  • Reuse their content in future works, presentations, or educational materials, provided proper citation of the original publication.

How to Cite

STRATEGIC GRID DEVELOPMENT IN THE ANDES: INTEGRATING GEOSPATIAL INTELLIGENCE FOR RESILIENT TRANSMISSION NETWORKS. (2024). European Journal of Emerging Cloud and Quantum Computing, 1(01), 64-76. https://parthenonfrontiers.com/index.php/ejecqc/article/view/94

Similar Articles

You may also start an advanced similarity search for this article.